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DETERMINISM AND MARTINGALE DECOMPOSITIONS OF STRICTLY STATIONARY
" RANDOM PROCESSES

Dalibor Volny

1. Introduction. Let ({2,#,T,w) be a dynemical system where
(Q,vﬂ,&) is a probability space and T is a ‘1 - | bimeasurable
and measure preserving tramnsformation of 2 onto itself. If for
each A€ A such that TA=A it is & A=0 or wA=1, we shall say that
& 1is ergodie. If Mc A is a T-algebra and mer! M, we shall
say that M is inverient. L (A#) assigns the Hilbert space of
square integrable functions on {2, If 54‘«/9 is a G-algebra, 12(&)
1s the Hilbert space of funetions f ¢ L2(#) for vhich E(fla) =f
mod ». For each inverient O-algebra 7 end i€¢7Z , 2(rimy is
a .subspace of L (T-i'i'm) end the projection opérator onto
2(171"'M) o 12(T717) will be called a differenmce projection
operator and denoted by Pj. The unitary operator sending f¢ 12 A)
to foT is denoted by U. For each T-algebra £c.# and f¢ 12 (A),
it is U E(fle) = E(Uf|T™ 8 ) mods. From this we obtein that
UP,f = u(E(ri-m)- E(fil’l‘ imyy = P 4qUf modu. If £ =P f mod.
for some k€/Z, then (foT';i€Z) is a martingale difference
sequence (i.e. for each i€Z, the sums J n=0 ror*d, n=0,1,...
form a martingelel. Putting M = c{roTd: 4 ¢ 0} we can express each
martingale difference sequence in this form..

For each Jf-measurable function f on f1, the sequence
(foTi;iGZ) is strictly stationary. Moreover, for each strictly
stationary sequence of random veriables (xi,1€Z), a dynamical ]
system (Q ,4 ,T,&) and a function f can be found in such a
menner that (X,) end (foT') have the seme distributiom. If the
measure & is ergodic, we shall say that the process (x ) is
ergodic. By the gegtza; limit g;oblem we shall mean. the problem
of weak convergence of measures f"'sn (£) where 8,(f) =
o Tt £o19, n=1,2,... . In 1961 P.Billingsley and in 1963
I.A.Ibragimov proved the central limit theorem for ergodic
nmartingale difference sequences (see [11,[4]). In 1969 M.I.Gordin
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([2]) published a generalization of this theorem based on
properties of difference projection operators. Gordin’s result
was followed by contributionsjof other authors (some of them are
collected in the monography [3]). This development of the central
limit problem evokes a question of poséibility of decomposition of
a function f¢ Lz(f?) by difference projection operators (i.e.

a question of decomposition of (foTi;i&Z) into martingale
difference sequences). In the following two parts of this article,
two ways of decomposition of (foTi) into & sum of martingale
difference sequences and of a sequence which is in some sense
deterministic will be shown.

2. Invariant 0 -algebras generated by the process. Investigat-
ing the possibility of decomposition of f¢ Lzhﬂ ) by difference
projection operators, we have to choose an appropriate invariant
¢ -algebra. In many cases it is convenient to use the fact that
the o-algebra &(f) = O{fort:14 0} is invarient. If we have
ey = T E(p) mod &, we shall say that the process (foTi) is
deterministic (in the theory of stochastic processes, ‘the determi-
nistic process is defined in somehow stronger sense as instead of
L2( € (£)) the closed limear envelop of {foTi:i< 0} is used there).
Let us put £_(£) = [ the(n), £, = B(elg_ (£)), E(£) =
= °{f1oT1:il 0}; in the sesme way we cam obtain flm(f), : O 22(s)
ete. The main aim of the following example is to show that the
process (f1oTi) need not be deterministic.

Example. Let (X, , 2 ) be a probability space where X = {-1,1),
F = exp X and A (-1) =%='}\—(1); wepuit X=X29 =92, 2 =
= >% end for @€ X we define (Sw); = w,, . Let us define (2 =
=XxX, # = fuf, @ = 2ma and for W’',w")€2 we put
(%' w") = (S&,Sw"). Thus, (X,S,S,2) and (Q,ﬂ,T,Cw) are
dynamical systems. For i€Z eand @ é€X we define qi(&J) = wy, for
(o' ,w")EQ we define plw’,w') = w', plaw’,0") = w® By
g=qy + I :;1 (32;_, a, + 32n. q_,) we define a bounded J-mea-

surable function on X. Let q = q and t = 2+g be functions on X,
r = (qop).(top”), s = 8qop” and f = r+s be functions on (2. We
shall show that for f, = E(fI€f_ (f)) modm it is f; = s modp. It
follows that (f1oTi) is a sequence of independent random variables,
- 1 = =

Thus, f, = E(f,le_ajf?) = Ef, = 0 modu .

First of all, we s?all show :hat o4g} = F. We have

LY 1
(= n=1 (gﬁﬁ:T q, + 32n q-n)’£ 21859 is 0 {g}-measurable.
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If k» 0 and the functions q_pjyeeeyQys T€SPe Q_j 4 qye+,Q BTE o{g}-
~measurable, then the fumction

L) 1 1 . = .
DI (__32n-1 %Wt T2 Q) = Qg resp. 3% Gk *

0 1 1 A’
+2_ n=k+1 ('32T qp * ;'2—' Q) = Qs is T{g}-measurable, too«
1

From the fact that lQ - 3 k+1 qk.Hl #WT y resp. IQ{{‘ 3_2f q_k|4

52—;—21-, we obtain U {g}-measurability of Q419 TeSP. Q. Thus,
the 'G{g}-measurability of all q; is proved end hemnce a{g} =

Let us put M’ = &(s), M“= €(top”) and m¥= £(r). It cen be

4 U “
easily seen thet Mm'e MM QTimI" = m’modcy and E(£ITY) =

= srmod4 . From this emd from the fact that m" = €(f) we obtain
that f, = s moduw. o

Theorem 1. Let f€ L2(A), There exists a countable ordinal
number 4 and a femily of invarient G-algebras &°(f) emd fumeti-
ons £ , g d such that
1. f£,°f, )

2, for &21, it is f, = E(flﬂ e-.(£)) mogum ,
3. £*(r) = F{.fo‘o'l‘ :4< 0} and
4. & is the least ordinal number such that T™ '™ (f£) = &£7(f)
mod . .
The family (f , E(f);xsd ) is determined by the function f
uniquelly (with respect to equality modu). '
If P, L1 :xéJ :L’- 0 are difference projection operators
generated by K(f), then
£ .EZ Sem P, if * B(EIE7(£)) mode .
Let A be a linearly ordered set and let ?TL «x6/1  be invariant
g -algetras such that for o«<@ and i,j€Z we have i m, < Tﬁm .
We shall say then that (7% ;xe¢/L) is an ordered family of G’—al-
gebras. The T -algebras ¢&*(f), x<d from Theorem 1 form a speci-
al case of such a family.

Let P__ be the projection operator onto L (ﬂ N, Ti7?7;() and
reA  iez
'Pm’1 be the difference projection operator onto

12(173"m ) o 12(T717 ). We chall say then that Al(4) =
= (P P 1 x€/l ,i€7) is a family of difference projections. If

f = Z xed pa tez FPx,if mods , we shall sy that f is difference

decomposable with respect to fIL(A). If fe 12 (A) is difference
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decomposable with respect to some family of difference projections,
we shall say that f is difference decomposable. In [8], several
prdpositions about difference decomposability of functions from °
12(AR ) are proved.

If there exists a countable set gcﬂ such that o = A mod i
we shall say that f is countably generated. On the g-algebra A
we define a pseudometric 4 by d(A,B) = (A aB) where Aa B is the
symmetric difference of A,B. If we identify sets A=B mod, we
obtain a metric space (JJ/& ,d) If A is countably generated, the
space ‘ﬂéw is separable.

Lemma 1. Let & be sub- ¢-algebras of A4, X being all
countable ordinals, snd for «< @ let E% £,
If A is countably generated, there exists o such that
(A E“modc-.

Proof. Ir C7# &% mod ., there exist E(cx )€ €% and €>0 such
that d(E(ex ),C)> &€ for all C¢ @“”. Suppose that the Lemma does
not hold. Then there exist an uncountable set 4 of (countable)
ordinals and €2 0 such that for each €4, it is d(E(« ),C)>€
for all c€ &%*', For every x# 43 from /| we then have
d(E(x ),E(R))>€£ which contradicts the assumption that ‘ﬂé‘ is
separable.

Proof of Theorem 1. For a countable ordinal number p let
V(g ) denotes the statement thaffor each a%g there exist a
unique (mods ) o -algebra €%(f) and a function f, such that the
conditions 1,2,3 hold end that f-f, =3 5 S . B, ;f modg.
We shall prove by transfinite induction that for each countable
¢ , V(7) holds.

It is evident that V(0) holds.

Suppose that g is a countable ordinal and that for each 4<yp-,
V(A3 ) holds. The function 1} and the G -algebra £7(f) are then
uniquelly determined by conditions 2,3.

If ¢ is not a limit ordinel, there exists 7, # = 7" +l. From the
fact that f£_ is T_15'7(f)-measurable and that et ) ¢

c Q,;- €% (f) it follows that f; = E(elT ! £7(r)) mod . . Thus,

f.-f, = EgiT'e¥ i) - E(fle’f’w(f)) =39

i=-w
_ 0
£-f, = Ze«, 2 eem P, ,4f mod s . |
If v is a limit ordinal then there exists an increasing sequence

. o‘k -
‘ v
X Loyl Ly, ak'l‘y. It holds that L’__m(f)\L “() Er (£).
From this and from the martingzle limit theorem we obtain that

P?‘-,if modcu, , hence
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2
£, T:)T" fy in L°(A ). The last statement and V(Ofk), k=1,2,...

imply that £-f, =T 5 Y B 4f mod.

The last thing left to do is to find J . From Lemma 1 it follows
that there éxists sn ordinal number 9 such that £7(£) = T '£7(f)
mod & . Choosing the minimal one from these ordinals for J , the
proof of the theorem is finished.

3. General invarient O-algebras. In the sequel, @’ will ddnote
the Pinsker G-algebra (see [5] for the defimition). In each
dynemical system the Pinsker ©-algebra exists (see [5]) amnd in [§]
it is proved that the Pinsker G -algebra is fully characterized by
the following three properties:

1. ( is en inverient sub-G G -algebra of A H '
2. for each invarient G -algebra Mc@, it is M = 'm mod i 3
3. @ is the maximal O -algebra satisfying conditions 1 amnd 2.

The fumction fe€ L2(4) will be said to be absolutely undecompose-
ble iff £ is (’-measurable.

It follows directly from the above cheracterization of Pinsker
G-algebra that if f is absolutely undecomposable, then
(foTi;iGZ) is deterministic. If £ is finitely valued, the opposite
implication holds, too. However, the opposite implication does
not hold in general. As ascounterexample can serve the sequence
(goSi;iez ) from the example from section 2. The dynamical system
(X,¥,S,a) is Bernoulli, hence its Pinsker ¢--algebra is trivial
(see [5]). Thus, g cennot be absolutely undecomposable.

Theorem 2. The difference decomposable functions from L2(.f] )
form a Hilbert space L2(A ) e L2(® ). Each function fe L2(4 ) cen
be thus uniquelly expressed as a sum of a difference decomposable
and an absolutely undecomposable function.

If f¢ L (A ) is difference decomposable, it is decomposable with
respect to some (single) invariant T -algebra.

An snalogous result can be obtained if T is surjective, but not
1-1 and bimeasurable. Such a trensformation will be called an endo-
morphism; an endomorphism which is 1-1 end bimeasurable will be
called an automorphism. Let us enlarge the definition of a dynamice
al system to the case when T is an endomorphism.

If T is an endomorphism, it is A>T R 2 ...; ®R= () 184
n=0
is the Rohlin T -algebra. In the definition of difference decompo-
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sable function we could use T"WZ cM as the defining property of
invariant UT-algebras (instead of the opposite inclusion) and we
could define Pf = E(£1Tim) - E(£IT3"'"M) modp . Each function
£6€12(A ) o 12(R) is thus (in this semse) difference decomposable
In the dynamical system ({2,® T, ) the transformation T behaves
as en automorphism (if we put poimts from (2 that are undistingui-
shable by 03, together, we really obtain an automorphism). Accord-
ing to Theorem 2 the following theorem thus holds.

Theorem 3. Let (Q,#,T,« ) be a dynamicael system where T is
an endomorphism. Then each f € L2(# ) can be uniquelly (mod )
expressed as a sum f, +f2+f3 where f1 is absolutely undecomposable,
f2 is difference decgmposableawith respect to a (single) invarient
G -algebra and f, €L (A) e L(R).

The Theorem 2 is an easy consequence of the following two
propositions.

Proposition 1. (Rohlin-Sinai theorem). If J is countably
generated and T is an automorphism then there exists en invarient

o -algebra 7L such that <( U/ Tlm) A esnd N i m=@.
iez iez

The proof cen be found e.g. in [5].

Proposition 2. Let (7 ; x¢4) be an ordered system of
T-algebras. Let P, ,i x€/1, i€Z be the difference projection
operators generated by ('m «€/) end Py 10 xeA , 1€Z be the
difference projection operators generated by (77L fP xel),
If fe1%(A)end £ =2 T P_ .f mod/~, then we have

xeA — iez TN,i
Po( i = P if mod/ for all «é¢/ and 15/7(.

This proposition is proved in [8] In [8] it 1s also shown that
without the assumption that f = P_.,if mod /- , the
equalities need not hold.

As en immediate consequence of Proposition 2 we obtain the
following leuma,

1—-%4_i¢

Lemma 2. If f¢€ Lz((ﬂ ) is a difference deconposable function
then E(fIC) = 0 moddb.

Proof of Theorem 2. Let fe¢ LZ(H) and ¢ = G{foTi; jeZ }. The
T-algebra f is countably generated, ([}, f,T, 54',/6) is a
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dynamical system and by Propoeltlon 1 there exists an invariant
q -elgebra 7 such that © (“7 T m) = t, ipzf T ¢ @. From this
we obtain that f is a sum of en absolutely undecomposable end a
difference decomposable functions. From Proposition 2 it follows

that this decomposition is unique (mods ).

4. The central limit problem. At the end we shall introduce
some information about the CLP for difference decomposable functi-
ons. In [8] it is proved that the Billingsley - Ibragimov theorem
cen be generalized for functions f =3 .. P, ,of modg end non-
ergodic measure & (the limit law is then a mixture of normals
then), From this proposition, several sufficient conditions for
the CLT for difference decomposable functions (amalogous to those
of M. I. Gordin and C. C. Heyde) cen be obtained. Some information
about the case of absolutely undecomposable functions can be. found
in Bﬂ (however, it is khown very little about the CLP for such
functions). In [10] it is shown that in some cases from the central
limit theorem for a difference decomposable function and a central
limit theorem for en absolutely undecomposable function a CLT for
their sum can be obtained. Our last theorem cen speak for itself.

Theorem 4. In the space of difference decomposable functions
12(4 ) e L2(() there exists a dense set of functions £ for which
the measures é~s;1(f), n=1,2,... weakly converge to some probabil-
ity measure (i.e. the CLT holds) and there exists a dense subset
of functions for which this sequence has at least two distinct
limit points.

This theorem is proved in [8] (see also [7]).
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