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DISCONNECTEDNESSES AND CLOSURE OPERATORS (*)

F. CacL1AaRI AND M., CicCHESE

Abstract

Closure operators which characterize disconnectednesses and relative
disconnectednesses are introduced. Such operators are used to find condi-
tions under which a relative disconnectednes is a disconnectedness.

AMS Subject Classification: 54B30, 18B30, 18A40.

§1. Preliminaries (**)

In this paper we denote by T the class of all topological spa-
ces, by '1‘i (i = 0,1,2) the classes of Ti—spaces, by Sing the class
of spaces which have at most one point. Moreover we denote by P an
arbitrary nonempty subclass of T and by P the category of spaces
of P and continuous functions. Of course P is a full subcategory

of T.

Let X be a space and xeX.
1.1 DEFINITION. We call P-component of x in X the largest sub-
space Y of X containing x such that for each' PeP and for each

f: Y =P, f is constant (see [11], p.297).

1.2 DEFINITION. We call P-quasicomponent of x in X the largest

subspace Y of X containing x such that for each PeP and for each

(*) This paper is in final form and no version of it will be submitted
for publication elsewhere.

(**) Notations and definitions not explicitly given are from [6]. More-
over, the functions we consider are always continuous functions between to-
pological spaces.
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f: X =P, f|Y is constant (see [11], p.297).

1.3. DEFINITION. A space X is called totally P-disconnected if

its P-components are singletons, totally P-separated if its P-qua-

sicomponents are singletons (see [11], p.297).

We denote by UP the class of all totally P-disconnected spaces
and by QP the class of all totally P-separated spaces.
It follows immediately from the definitions that

1.4 PcQPcUP .

1.5 DEFINITION. A class P of spaces is called disconnectedness

if P = UP, and relative disconnectedness if P = QP.

§2. The closure operators Ex and Kx.

Let £f: A —B be a continuous function.
2.1 DEFINITION. f is said to be P-cancellable if for every

PeP and for every gl,g2: B —P such that glf = g f, we have

2
g, = &5
Suppose now X is a space containing B as subspace.

2.2 DEFINITION. f is said to be P-cancellable rel X if for e-

very PeP and for every 8,:8," X — P such that (gllB)f = (g2IB)f,
h B = B.
we have gll g2|

2.3. PROPOSITION. If P' is a <class of spaces such that
PcP'cQP, we have that f: A =B is P'-cancellable (or P'-cancel-
lable rel X) iff f is P-cancellable (or P-cancellable rel X).

PROOF. Since PcP' if f is P'-cancellable it is obvious that f
is P-cancellable too.

Conversely, suppose f: A —B is P-cancellable. Let P'eP' and
gl,g2: B —+P' be functions such that glf = g2f. Then for every
PeP and for every h: P' —P we have hglf = hg2f and therefore
hgl = hgz. Since P'eQP, the class of all continuous functions from
P' whose range is in P distinguishis the points (see [10], 3.3). It

follows that gl =g

2
Similar arguments can be used to prove the proposition when
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the function is cancellable rel X.
From now on we denote by X an arbitrary topological space and by

A an arbitrary subspace of X,

P
2.4 DEFINITION. By EX(A) we denote the largest subspace Y of X

such that AcY and the inclusion of A into Y is P-cancellable.

P
2.5 DEFINITION. By KX(A) we denote the largest subspace Y of X
such that AcY and the inclusion of A into Y is P-cancellable

rel X.

P P
It can be easily proved that the operators EX and KX are Moore

closures and that if f: X —Y is a céntinuous function we have:

2.6 E (A)CKE(A) ;

U<

P
2.7 Ky (A) = X & EX(A) =X ;
P P P P
2.8 f(EX(A))CEY(f(A)) ; f(KX(A))CKY(f(A)) ;
2.9 the followings are equivalent:

(i) f is P-cancellable;

(ii) E_(f(X)) =Y ;

(iii) K

(£(x))

1}

Y .

<Y<+

P
The operator KX was introduced in [12] and studied in [4]. The

operator E_, coincides with the epiclosure defined in [2] when P is

X
productive, hereditary and XeP.
When there is no confusion about the class P, we indicate the
introduced operators only by EX and by KX.
2.10 PROPOSITION. If P' is a class of spaces such that PcP'cQP,
we have

P P! P P!
= E ; K. = K .
EX X X X

PROOF. It follows immediately from 2.3.

2.11 PROPOSITION. Let xeX. We have:

(a) Ei({x}) is the P- component of X in X;

(b) Ki({x}) is the P-quasicomponent of x in X.

PROOF. (a) It follows immediately from the fact that if V is a

subspace of X such that xeX, the inclusion j: {x} —V is P-cancel-
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lable iff for each Pe¢P the functions from V to P are all constant.

(b) It can be proved in a similar way as (a).

2.12 COROLLARY. (a) UP is the class of all spaces X whose points

are EP—closed.

X
P
(b) QP is the class of all spaces X whose points are KX—closed.

PROOF. It follows from 2.11.
2.13 PROPOSITION. The followings are equivalent:
(a) PcT2 ;
- P
(b) AcE_(A) ;
X
(c) AcKr(a) .

PROOF. (a) = (b) It follows from the fact that the inclusion

j: A —A is T2-cance11ab1e and therefore P-cancellable.

(b) = (c) It follows from 2.6.

(c) = (a) see [12] (p.555).

2.14 LEMMA. A space X belongs to QP iff the diagonal AX is
P
KXxX—closed.

PROOF. If XeQP, the projections pl,pg- XxX — X coincide exactly

on Ax, and therefore (see 2.3) K (a.) =

XxX" X

P
Conversely, suppose K (a,) = &

wxx 2% X" ‘Then there are two functions

f,g: XxX —P, with PeQP, such that fIAX = glAX and f(x,y) # g(x,y)

whenever X # y. If z is. an arbitrary point of X, we consider the

embedding j: X —XxX defined by j(x) = (x,z). We have: f£j(z) = gj(z)

and £j(t) # gj(t) for every teX-{z}. Hence Ki({z}) = {z}, and from

2.12 XeQP.

2.15 PROPOSITION. The followings are equivalent:

(a) QPcQP' ;

P P
(b) KX(A)DKX (a).

PROOF. (a) = (b) It follows easily from the definitions and

2.3.

(b) = (a) If (b) holds for each space X we have

P P
A
Kyxx (8x) € Ky (850«
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P Pl
If XeQP, by 2.14 we have KXxX(AX) = AX and so AX is KXxX-closed. By

2.14 again we have XeQP'.
2.16 COROLLARY. The followings are equivalent:

(a) P CTO ;

(b) bX(A)CE (a) 5

R

(c) bX(A)C:K (A) .

PROOF. (a) = (b) It follows from the fact that the inclusion
J: A —*bX(A) is To—cancellable (see [131]) and therefore P-cancel-
lable. ’

(b) = (c¢) It follows from 2.6.

(¢) =» (a) It follows from 2.15 and [12] (p.557).

Examples.

Let S be a singleton, C the two-points indiscrete space, D the
Sierpinski dyad, I the real interval [0,1].

If P = {S} then QP = UP = Sing and Ei(A) = Ki(A) = X.
If P = {C} then QP = UP = T and Ei(A) = Ki(A) = A.
If P = {D} then QP = UP = TO and Ei(A) = K§(A) = bX(A), where

bX(A) is the b-closure of A in X (see [13] , 2.5; [12], p.557).
If P = {Dz}, where D2 is the two-points discrete space, then QP
is the class of all totally separated spaces and UP is the class of

all totally disconnected spaces. Moreover
P
K (A) = N{B| AcBcX, B is clopen in X}.

If P = {I} then QP is the class of all functionally Hausdorff

spaces. Moreover
P . .
KX(A) = M{B| AcBcX, B is a zeroset in X} .

We observe that when P {I} and in many other cases it is not easy

to know how the operator E, works and how the class UP is.

Xl
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§3. Disconnectednesses and relative disconnectednesses.

UP and QP are subcategories of T closed under products and
injective functions. Therefore they are extremal epireflective in
T (see [8]).

*We indicate by R: T —UP, S: T — QP the corresponding epire-
flectors and by rX: X — RX and sx: X — 58X the epireflection maps
associated to R»and S respectively. We remind that rx is the quo-
tient map which identifies the points of each P-component (see [1],
Th.3.7) and sX is the quotient map which identifies the points of
each P-quasicomponent (see [10], p.304).

3.1. PROPOSITION. A function f: X —Y is P-cancellable iff
Sf: SX —SY is an epimorphism in QP.

PROOF. Let f: X —Y be P-cancellable, PeQP and fl,f2; SY —P

such that fl(Sf)'= f2(Sf). Then fl(Sf)sX = f2(Sf)sX . Since
(Sf)sX = sz we have flef = fZSYf' By 2.3 f 1is QP-cancellable,
hence fle = f2sY' Since sY is an epimorphism in T, we obtain
f1 = f2.

Conversely, let Sf be an epimorphism in QP. If PeP and

fl,f2: Y — P are functions such that flf f £, there exist two

2

functions gl,gz: SY — P such that gle = f = f_. Thus

10 825y 2

g2(Sf)sx. Since sy is an

epimorphism in T and Sf is an epimorphism in QP, we obtain gl =

= h
glef gstf , and therefore gl(Sf)sX
g,¢
3.2 PROPOSITION. kP(A) = s'l(KP (s, (A))).

X X USXUX

PROOF. By 2.8 we have KX(A)<:s;1(KX(sX(A))). Suppose there

exists a point yesxl(KX(sX(A))) - KX(A). Then we can find two fun-
ctions f ,f,:X —P, with PeP, such that fllA = f2|A and
fl(y) # fz(y). If we consider the functions g,,8,:5X —P, such that
8,55 = f1 s 8,8y = f2 , we obtain glsx(y) # gzsx(y). Since
gllsx(A) = g2|sx(A) we deduce that sx(y) éKSX(sX(A)), and this is
absurd.

REMARK. We do not know whether an analogous proposition for the
P .
X X holds. By 2.13 it could

only be proved that such equality holds when I’CTé.

operator E_, and the epireflection map r
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We remind that if P is productive and hereditary and XeP, for
each AcX the inclusion j: A —X is an extremal monomorphism iff
E;’(A) = A, and J is a regular monomorphism iff Ki(A)- = A (see [2]).

As a consequence of this fact and of corollaries 3.5, 3.6 in

[3], we obtain the following

3.3 PROPOSITION. If P if a disconnectedness contained in T1 and
different from Sing we have
P
(

P
EX(A) = KX

A) = A .
3.4 PROPOSITION. The following conditions are equivalent:

(a) UP = QP ;

P P
(b) EX = KX for each XeT ;
P P
(c) EX( {x}) =KX({X}) for each XeT and xeX
(d) K)F:(A) = Kg(A) for each X,A,B such that Ac<BcX and
P
=B .
KX(B)

PROOF. (a) => (b) If QP coincides with T, T_ or QIS}, then
QP = UP and E§ = K)lz (see examples in §2).

Moreover the only disconnectednesses which are not contained in
T1 are T and T0 (see [1], Prop. 2.10). Thus we have only to consi-
der the case QP = UPch, with QP # Q S . If X is a space and AcCX,

by 3.3 we have KSX(SX(A)) = sX(A) and by 3.2
-1 -1
KX(A) = sy (KSX(SX(A))) = sy (sX(A)) .
It follows
-1 -1
KX(A) = sy (sX(A)) = ry (rX(A)) = U(EX({x})I xeA}CEX(A) ,

hence, by 2.6, KX(A) = EX(A)'

(b) = (c) Obvious.

(c) = (a) It follows immediately from 2.12.

(c) & (d) 1t can be proved in a similar way as in Prop.1.8
in"[2], even though the present assertion is more general.

REMARKS. (a) If P is a class of Hausdorff spaces, the operators

P P
EX and K;) coincide if and only if QP = Sing. For if Ei = KX
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and QP # Sing, for every XeP and AcX we have by 2.13 and 3.3:
- P
A.CEX(A) = K_(A) = A .

This would imply that every XeP is discrete and this is not
possible. As a consequence we get again that in T2 there are no
disconnectednesses different from Sing (see [1]).

(b) The notions given in this paper can be introduced in a to-
pological category. In particular PreuBl introduced and studied the
relative disconnectednesses in this more general setting ([10]).
The situation seems to be a little hore complicated for the discon-
nectednesses. A reason is that in T the quotient space obtained by
identifying the points of each P-component is P-totally disconf
nected and this fact is not always true in a topological category.

For instance this is not true in the bireflective hull in T of the

Hausdorff spaces.
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