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DISCONNECTEDNESSES AND CLOSURE OPERATORS (*) 

F. CAGLIARI AND M. CICCHESE 

Abstract 

Closure operators which character ize disconnectednesses and re la t ive 
disconnectednesses are introduced. Such operators are used to f i nd cond i ­
tions under which a re la t ive disconnectednes is a disconnectedness. 

AMS Subject C lass i f ica t ion: 54B30, 18B30, 18A40. 

§ 1 . P r e l i m i n a r i e s ( * * ) 

In t h i s paper we denote by T the c l a s s of a l l topological spa­

ces, by T. ( i = 0,1,2) the c lasses of T.-spaces, by Sing the c lass 

of spaces which have a t most one po in t . Moreover we denote by P an 

a rb i t r a ry nonempty subclass of T and by P the category of spaces 

of P and continuous funct ions . Of course P i s a fu l l subcategory 

of T. 

Let X be a space and xeX. 

1.1 DEFINITION. We c a l l P-component of x in X the l a rges t sub-

space Y of X containing x such tha t for each' PeP and for each 

f: Y —-p, f i s constant (see [11], p .297) . 

1.2 DEFINITION. We c a l l P-quasicomponent of x in X the l a rges t 

subspace Y of X containing x such tha t for each PeP and for each 

(*) This paper is in f i na l form and no version of i t w i l l be submitted 
for publ icat ion elsewhere. 

( ** ) Notations and def in i t ions not exp l i c i t l y given are from [ 6 ] . More­
over, the funct ions we consider are always continuous funct ions between to­
pological spaces. 
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f: X — P , f|Y is constant (see [11], p.297). 

1.3. DEFINITION. A space X is called totally P-disconnected if 

its P-components are singletons, totally P-separated if its P-qua-

sicomponents are singletons (see [11], p.297). 

We denote by UP the class of all totally P-disconnected spaces 

and by QP the class of all totally P-separated spaces. 

It follows immediately from the definitions that 

1.4 PcQPcUP . 

1.5 DEFINITION. A class P of spaces is called disconnectedness 

if P = UP, and relative disconnectedness if P = QP. 

§2. The closure operators E and K . 

Let f: A —*• B be a continuous function. 

2.1 DEFINITION, f is said to be P-cancellable if for every 

PeP and for every g ,g : B —*• P such that g f = g f, we have 

gl = g2* 

Suppose now X is a space containing B as subspace. 

2.2 DEFINITION, f is said to be P-cancellable rel X if for e-

very PeP and for every g ,g : X -»• P such that (g |B)f = (g |B)f, 

we have gjB = g2|B. 

2.3. PROPOSITION. If P* is a class of spaces such that 

PcP'cQp, we have that f: A —* B is P'-cancellable (or P-cancel­

lable rel X) iff f is P-cancellable (or P-cancellable rel X). 

PROOF. Since PcP» if f is P-cancellable it is obvious that f 

is P-cancellable too. 

Conversely, suppose f: A —*• B is P-cancellable. Let P'eP1 and 

g ,g : B —•P1 be functions such that g f = g f. Then for every 

PeP and for every h: P' —• P we have hg f = hg f and therefore 
ng1 - ngp- Since P'eQP, the class of all continuous functions from 

P' whose range is in P distinguishis the points (see [10], 3.3).'It 

follows that g = g . 

Similar arguments can be used to prove the proposition when 
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the function is cancellable rel X. 

From now on we denote by X an arbitrary topological space and by 

A an arbitrary subspace of X. 

P 
2.4 DEFINITION. By E (A) we denote the largest subspace Y of X 

X 
such that A cY and the inclusion of A into Y is P-cancellable. 

P 
2.5 DEFINITION. By K (A) we denote the largest subspace Y of X 

A 

such that A cY and the inclusion of A into Y is P-cancellable 

rel X. 

P P 
It can be easily proved that the operators E and K are Moore 

X X 

closures and that if f: X —*Y is a continuous function we have: 

2.6 E*{A)CZK*(A) ; 

2.7 K*(A) = X 4=* E^(A) = X ; 
A A 

2.8 f(E^(A)) CEy(f(A)) ; f (K*(A) ) CK*(f (A) ) ; 

2.9 the followings are equivalent: 

(i) f is P-cancellable; 

(ii) E^(f(X)) = Y ; 
(iii) Ky(f(X)) = Y . 

P 
The operator K was introduced in [12] and studied in [4], The 

P
 X 

operator E coincides with the epiclosure defined in [2] when P is 
X 

productive, hereditary and XeP. 

When there is no confusion about the class P, we indicate the 

introduced operators only by E and by K . 

X X 

2.10 PROPOSITION. If P' is a class of spaces such that PcP'cQP, 

we have 
P pi P Pi 

Ex = Ex : Kx = Kx • 
PROOF. It follows immediately from 2.3. 
2.11 PROPOSITION. Let xeX. We have: 

P 
(a) Ex({x}) is the P- component of x in X; 

P 
(b) K ({x}) is the P-quasicomponent of x in X. 

X 

PROOF, (a) It follows immediately from the fact that if V is a subspace of X such that xeX, the inclusion j: {x} —*V is P-cancel-
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lable iff for each PeP the functions from V to P are all constant, 

(b) It can be proved in a similar way as (a). 

2.12 COROLLARY, (a) UP is the class of all spaces X whose points 
P 

are E -closed. 
* P 
(b) QP is the class of all spaces X whose points are K -closed. 

x 

PROOF. It follows from 2.11. 

2.13 PROPOSITION. The followings are equivalent: 

(a) P CT 2 ; 

(b) ACEv(A) ; 
x 

(c) ACK^(A) . 

PROOF, (a) => (b) It follows from the fact that the inclusion 

j: A ^ A is T -cancellable and therefore P-cancellable. 

(b) => (c) It follows from 2.6. 

(c) => (a) See [12] (p.555). 
2.14 LEMMA. A space X belongs to QP iff the diagonal A is 

x 
p 

K -closed. 
XxX 

PROOF. If XeQP, the projections p ,p : XxX —• X coincide exactly 

on A , and therefore, (see 2.3) K (A ) = A 
X XXX X X 
Conversely, suppose K (A ) = A . Then there are two functions 

^ XXX X X 
f,g: XxX — P , with PeQP, such that f|A = g|A and f(x,y) ?- g(x,y) 

X X 

whenever x -- y. If z is. an arbitrary point of X, we consider the 

embedding j: X —•XxX defined by j(x) = (x,z). We have: fj(z) = gj(z) 

and fj(t) ?- gj(t) for every teX-(z}. Hence K^({z}) = {z}, and from 

2.12 XeQP. 

2.15 PROPOSITION. The followings are equivalent: 

(a) QPCQP* ; 

(b) KJAOKJ'(A). 

PROOF, (a) => (b) It follows easily from the definitions and 

2.3. 
(b) => (a) If (b) holds for each space X we have 

K X X X ( A X ) C K X X X ( V ' 
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P P' 
If XeQP, by 2.14 we have K X x X(

A
x) =

 A
x
 a n d s o A

x
 i s Kxxx" C l O S e d # B y 

2.14 again we have XeQP1. 

2.16 COROLLARY. The followings are equivalent: 

(a) P CT Q ; 

(b) bx(A)CE^(A) ; 

(c) bx(A)CK^(A) . 

PROOF, (a) --=> (b) It follows from the fact that the inclusion 
j: A —*-b (A) is T -cancellable (see [13]) and therefore P-cancel-

X o 

lable. 

(b) =» (c) It follows from 2.6. 

(c) =* (a) It follows from 2.15 and [12] (p.557). 

Examples. 

Let S be a singleton, C the two-points indiscrete space, D the 

Sierpinski dyad, I the real interval [0,1]. 

If P = {S} then QP = UP = Sing and EV(A) = KV(A) = X. 
X X 

If P = {C} then QP = UP = T and EV(A) = KV(A) = A. 
X X 

If P = {D} then QP = UP = T and EV(A) = KV(A) = bv(A), where 
0 X X X 

bx(A) is the b-closure of A in X (see [13] , 2.5; [12], p.557). 

If P = {D }, where D is the two-points discrete space, then QP 

is the class of all totally separated spaces and UP is the class of 

all totally disconnected spaces. Moreover 
P 

K (A) = n IB | A C B C X , B i s c lopen i n X}. 
A 

If P = {1} then QP is the class of all functionally Hausdorff 

spaces. Moreover 

P 
K (A) = 0{B| ACBcCX, B is a zeroset in X} . 
X 

We observe that when P = {1} and in many other cases it is not easy 
p 

to know how the operator Ev works and how the class UP is. 
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§3. Disconnectednesses and relative disconnectednesses. 

UP and QP are subcategories of T closed under products and 

injective functions. Therefore they are extremal epireflective in 

T (see [8]). 

»We indicate by R: T —"UP, S: T —•QP the corresponding epire-

flectors and by r : X —• RX and s : X —• SX the epireflection maps 
X X 

associated to R and S respectively. We remind that r is the quo-
X 

tient map which identifies the points of each P-component (see [1], 
Th.3.7) and s is the quotient map which identifies the points of 

X 

each P-quasicomponent (see [10], p.304). 

3.1. PROPOSITION. A function f: X — Y is P-cancellable iff 

Sf: SX —•SY is an epimorphism in QP. 

PROOF. Let f: X — Y be P-cancellable, PeQP and f-.fp? SY — P 

such that f,(Sf) = f_(Sf). Then f (Sf)sv = f_(Sf)sv . Since 
1 <_ 1 A __ A 

(Sf)s = s f we have f s f = f s f. By 2.3 f is QP-cancellable, 
A Y i Y __ i 

hence f sv = fps . Since s is an epimorphism in T, we obtain 

Conversely, let Sf be an epimorphism in QP. If PeP and 

f ,f : Y -*P are functions such that f f = f f, there exist two 

functions g^g.: SY — P such that g ^ = f. , g-S__ = f_. Thus 

g syf = g-syf , and therefore g1(Sf)s}_ = g_(Sf)sx- Since sx is an 

epimorphism in T and Sf is an epimorphism in QP, we obtain g = g . 

3.2 PROPOSITION. K^(A) = s^1(K^ (sx(A))). 

PROOF. By 2.8 we have K (A) cs" (K (s (A))). Suppose there 
X X X X 

exists a point yes" (K (sv(A))) - K (A). Then we can find two fun-
X X X X 

ctions f ,f :X — P , with PeP, such that f |A = f |A and 

f (y) ± f (y). If we consider the functions g , g : SX -»-P, such that 

g.ŝ . = f1 , g_sx = f_ , we obtain g ^ t y ) 4 g-Sx(y) . Since 

g |sx(A) = g_|sx(A) we deduce that sx(y) ̂
K
SX(

S
X(

A))> a n d t h i s i s 

absurd. 

REMARK. We do not know whether an analogous proposition for the 
P 

operator E and the epireflection map r holds. By 2.13 it could 
X X 

only be proved that such equality holds when PcT . 
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We remind that if P is productive and hereditary and XeP, for 

each AtTX the inclusion j: A —"X is an extremal monomorphism iff 
P P 
E (A) = A , and j is a regular monomorphism iff K (A) = A (see [2]). 
X X 

As a consequence of this fact and of corollaries 3.5, 3.6 in 

[3], we obtain the following 

3.3 PROPOSITION. If P if a disconnectedness contained in T and 
1 

different from Sing we have 

EX(A) = Kx(A) = A . 

3.4 PROPOSITION. The following conditions, are equivalent: 

(a) UP = QP ; 

(b) E^ = K^ for each XeT ; 
X X 

(c) E^({x}) =K^({x}) for each XeT and xeX ; 
X X 

(d) K^(A) = K^(A) f o r each X,A,B such t h a t ACBCX and 
X B 
Kx(B) = B . 

PROOF, (a) => (b) If QP coincides with T, T or QIS}, then 
P P 

QP = UP and E = K (see examples in §2). 
X X 

Moreover the only disconnectednesses which are not contained in 

T are T and T (see [l], Prop. 2.10). Thus we have only to consi­

der the case QP = UPcT , with QP / Q S . If X is a space and ACX, 

by 3.3 we have K
SX(

S
X(A)) = sx(A) and by 3.2 

KX(A) =
 s

x
1(Ksx(sx(A))) = sx

1(sx(A)) . 

It follows 

KX(A) = sx
1(sx(A)) = -^(r^A)) = U(EX( {x} ) | xeA} CE^A) , 

hence, by 2.6, KX(A) = EX(A). 

(b) => (c) Obvious. 

(c) => (a) It follows immediately from 2.12. 

(c) 4=> (d) It can be proved in a similar way as in Prop.1.8 

in [2], even though the present assertion is more general. 

REMARKS, (a) If P is a class of Hausdorff spaces, the operators 
P P P P 
E and K coincide if and only if QP = Sing. For if Ev = K X X X X -
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and QP ^ Sing, for every XEP and AcX we have by 2.13 and 3.3: 

AcE^(A) = K£(A) = A . 

This would imply that every XeP is discrete and this is not 

possible. As a consequence we get again that in T there are no 

disconnectednesses different from Sing (see [1]). 

(b) The notions given in this paper can be introduced in a to­

pological category. In particular PreuB introduced and studied the 

relative disconnectednesses in this more general setting ([10]). 

The situation seems to be a little more complicated for the discon­

nectednesses. A reason is that in T the quotient space obtained by 

identifying the points of each P-component is P-totally discon­

nected and this fact is not always true in a topological category. 

For instance this is not true in the bireflective hull in T of the 

Hausdorff spaces. 
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