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ON SHAPE GROUPS AND CECH HOMOLOGY GROUPS OF A COMPACT SPACE

Davide Carlo Demaria - Rosanna Garbaccio Bogin

Given a pretopological space S=(X,P), we associate to any interior covering X
of S a symmetrical pf-space SX on the set X (see [2], [3]). Precisely, to obtain
the pretopology of SX, we take for each point x of X the principal filter St(x,X).

0 Pxxr Cov(S)), where
pXX' SX,—*SX is the identity in X and Cov(S) is the collection of all interior

Then we associate to S the inverse system S=(s

coverings of S.

For each dimension n, we associate to § an inverse system of prehomotopy groups
I (SX, a) and an inverse system of singular homology groups H (S ). Taking the

inverse limits lim II (S, a) and 11m H (S,), we obtain the shape groups H (S, a)
— X n

and the Cech homology groups H (S) of thexpretopologlcal space S.

In this way, if S is a topologlcal space, instead to approximate it by means
of polyhedra, we reduce the more the set of admissible functions into S, in such
a way to obtain the set of continuous maps.

Here we prove that our shape groups and Gech homology groups of a connected
compact topological space S are isomorphic to the classical ones.(l)

In [2] we proved that, if the covering X={Xi}(iEJ) is finite, then Sy belongs
to the same homotopy type of a finite symmetrical pf-space (i.e. an undirected
graph) G'(X), that we obtain in the following way. The verticeg Vij...in of G'CO
correspond to the maximal subsets {i;,...,i;} of J such that g:1Xir#¢, and there
is the edge Vigeeiin¥i1.dm iff {iq,...,ig}NlGg,. 0,040,

Here (§2, §3) we consider a suitable collection Cov'(S) of open coverings of S
which is cofinal in Cov(S), and for any X€Cov'(S) we construct an open covering Z

such that the nerve N(X) of X is'isomorphic to the complex K of the graph

G'(D)

G'(Z). This is possible if the covering X is independent and non singular. In fact,

if X is independent, we obtain Z such that the graph GN(X) of the edges of N(X) is

This paper is in final form and no version of it will be submltted for publication
elsewhere.

(*) Any compact topological space is supposed to be Hausdorff. Moreover we consider

only infinite spaces, since any finite connected compact space is a singleton.
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isomorphic to G'(Z). Moreover, if X is also non singular, the complex N(X) is
complete and therefore isomorphic to the complex KGN(X)'

Afterwards, given X={X;}(i€I) and X'={X]}(h€H) in Cov'(S) such that X<X' and
I<7' and a suitable function ¢:H*J such that Xﬂ€;X¢(h) for each h€H, we show that

the following diagram over pretopological spaces:

P
Sy1 27! s
P'l lp
¢'@h ¢ 5G'(2)
£ B lf
Cyixh 2 > Oy (x)
where $'and ¢ are precontinuous maps induced by ¢, is such that 6f'=f$ and
$p'vppz71-
Hence (§4) we obtain the following commutative diagrams:
* )
P
Hn(SZ,,a) 7' Hn(SZ,a)
h'*l h*
I, (N e LX) lo]* T, (NGO LX)
7'
Py
H,(S71) H, (S7)
hy _ - hy
O

H (N(X")) Hy (N(X))

* . .
where h'", h*, h}, hy are isomorphisms.

Since also the collection Cov'"(S) of the coverings Z is cofinal in Cov(S), we

obtain:
41i_m Hn(sz’a) 2‘]1'2 Hn(lN(X)l,X1);
Lm By(s,) v lim H (N(O).

Finally we give some examples.

1. On some finite open coverings of S.

Let X={X1,...,Xp} be a covering of a nonempty set S. For any positive integer
n<p and any n-tuple (i1,...,in) such that 1<iy<is<...<ip<p, we put:

Kig.ig = XigNeeeNXys

= X;,N ...NX; : n
X11 Xlr_1f\X1r+1

1.1 Definition The covering X is independent if:
xi1...in#¢ = Xi1...in [ U{Xj/jﬁ{i1,...,in}} for any n-tuple (iq,...,ip)
with 1<n<p. )

DS P SO 1Y ceeNXy e

1.2 Definition Let N be an integer such that 3<n<p. {Xi1""’xin} is a

singularity of X with degree n and indices i1,...,in, if the following conditions
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hold:
Xy T ?;
Xi1---£r---in # @ for r=1,2,...,n.
Then X is non singular, if there are no singularities of X.
1.3 Proposition Let S be a connected compact topological space. Any open covering
X={X1,...,Xp} of S has an independent open refinement V={Y1,...,Yp}.
Proof: First we construct a finite set X of distinct points of S, taking a point
Xig..ip in each Xi1‘_.in#¢ for n=1,...,p. (This is possible since any nonempty
open subset of S is infinite). Then we put:
Yi = X;-X(1) where X(1) = {xi1---%1€ X/i¢{11""’in}}'
1.4 Remark. xi1...ine Yiyiin iff {j1,...,jm}S {iqs+..5in}; so ¥ is minimal.
Moreover Yi1.. in#¢ iff Xi1 i #@. The point x; will be called characteristical
. S
point of Y;, since Yj is the only element of ¥ containing x;.
1.5 Proposition Let S be a connected compact topological space. Any independent
open covering X={X1,...,Xp} of S has an independent shrinking V={Y1,...,Yp} such
that Yig...in*¢ iff Xiy...i #8 for any n-tuple of indices.
Proof: Construct a finite set X of distinct points of S, taking a point x;

1

in Xi1...in— U{Xj/jé{i1,...,in}} whenever Xi1...in#¢’ for n=1,...,p. Then

1eeein

consider the closed subset:

y(1) - X() U (5=, 1 X;)  where X(D)=lxi,, ; €X/i€liy,...,in}}.
Finally take an open subset Y; of S such that:

(g YigYiQXi.

1.6 Remark. X4

ve.ip € ¥; for jeéliy,...,in}, since ¥j CXj.

1.7 Lemma Let S be a connected compact topological space and X={X1,...,Xp} an
independent open covering of S. If {Xy, X3,..., Xn} is the singularity of X
relative to (1,2,...,n), we can construct an independent open refinement X' =
= {u', v', x3,..., XA} of X such that:

(i) U'gxq, v'cxq, XI€X; for i=2,...,p;

(i) {u', v', x3,..., x5}, {uv', x5,..., X3} and {V', X},..., X1} are not

singularities;

(iii) given m indices iy,ij,...,iy such that 1<ij<ip<...<ip<p and iy>n for some

r, we have:

a) {u', v', Xil,..., X{m} is not a singularity;

b) if {u', Xi1,..., X{m} or {v', Xi1,..., X{m} is a singularity of X',
then {X,, Xjgoeees Xim} is a singularity of X.
Proof: Construct a shrinking V={Y1,...,Yp}‘of X with the process from
Proposition 1.5, and put:
Yi =Y1f\...nYi_1nYi+1(\...f\Y
= -UT).
LRRUICIPARE
vV =Y{N(s-T5);
y' = {u, v, Yp,..., Yp}.

n for i=2,3,...,n;
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Clearly Y' is an open covering of S and {U, V, Yp,..., Y5}, {U, ¥2,..., ¥},
{v, ¥5,..., Y} are not singularities of ¥'.

Now consider m indices i1,ip,...,iy such that 1<i{<iy<...<ip<p and iy>n for
some r, and distinguish two cases.

1) If Y1(\Yi1...im=¢, then {U, V, Yi1,..., Yim} is not a singulatrity of Y'.
Moreover, if {U, Yi,,..., Yim} or {v, Yi1s---’ Yim} is a singularity of Y', then
{Y1, Yi1""! Yim} is a singularity of Y, and hence {X1, Xii""’ xim} is a
singularity of X.

1I) If Y1(\Yi1...im # @, put 1={2,3,...,n} and distinguish three possibilities.

1 1-{i;,...,ig} = {2}.

Since Y1”Yi1...im§Y§SU €Yy, we obtain Y1“Yi1...im = U”Yi1...im # @; therefore
{u, Yi1,---, Yim} is not a singularity of Y'. )

Moreover vr1Yi1._.gngYi__s-v; hence both {V, Yijseees Yim} and {U,V;Y&1,.,;,Y%J
are not singularities of Y'. .

2) I-{iq,...,ip} = {j} with j>2.

Both {U, REPPRRRR Yim} and {U, V, Y;
Uf\Yii'”ingjgs—U.

Moreover {V, Yijsenes Yim} is not a singularity of Y', because VAYi, g =
= Y1nYi1...im # 0.

3) 1-{if,...,ip} 2 {h,k} with h<k.

The Bf}“f_f=x1i1---im’ we fixed to construct the shrinking ¥ of X, is such that
z € Y UYy. So z¢¥; for i=2,3,...,n; hence zGUnVnYi_1___im.
{u, Yisenes Yim}, {v, v;

of Y'.

Finally, construct an independent open refinement X'={U', V', X},..., Xé} of V'

e Yim} are not singularities of Y', since

Therefore

greees Yim}’ {u, v, Yi1,..., Yim} are not singularities

applying Proposition 1.3.

1.8 Remark. To construct X' we replace the element Xy of X with two subsets U' and
V' of Xy, that we can associate again to the index 1. Instead each element of X
with index greater than 1 is replaced with one subset with the same index. From
each singularity of X containing X4 and different from {X1, Xgseees Xn} we obtain
at least one singularity of X' with the same indices, where X; is replaced by one
of the sets U', Vf. So, if X has q singularities of index 1, then X' has at least
q-1 and at most 2(q-1) singularities containing either U' or V', that we call
again of index 1. Instead each singularity of X non containing X, determines a
singularity of X' with the same indices.

1.9 Proposition Let S be a connected comﬁact topological space and X={X1,...,Xp}
an independent open covering with q singularities containing X4. We can construct
an independent open refinement~)2={ﬁ1,1,..., l~11’h, )~(2,..., ;(p} of X which has no
singularities containing some U1,r‘

Proof: Let sy={Xy, Xig, 1seees Xi, ’1}, so={xy, Xiy 200005 Xim2,2}’°"’

sq={x1, Xi, Qe X } be the singularities of X with index 1. Applying
, ‘

i
mq,q
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Lemma 1.7, we eliminate s; and we obtain an independent open covering X(1) =
= {U§1), U§1), X§1), (1)} which has at most 2(q-1) singularities of index 1,

i.e. containing one of the subsets U(1), U(1) and generated from SpyeeesS

q-
For the singularities generated from s, we have two possibilities:
(i) only one of the collections {U(1) (1>2,..., g;),z} and
{U(1), X§1) 2seens (1) ,2} is a singularity of X(1) 2
(ii) both of them gre singularities of ()
Applying Lemma 1.7 once in case (i) and twice in case (ii), we obtain an

independent open covering x(2) of form:
w§?, v, U(Z), x$2), ..., xéz)} in case (i);
w{?, vf?, v{?, v, x{?,..., xéZ)} in case (ii).
with index 1, i.e. containing
one of the sets U(2) and generated from $3s+4155q- The other singularities of
X(2 have the same indices of those of X.

The covering X(2) has at most 4(q-2) singularities

Afterwards we eliminate successively the singularities generated from s;, from

Sf4see+, frOm 8q applying an analogous process. So we obtain the independent open
covering X we were looking for.

1.10 Theorem Let S be a connected compact topological space. Any finite open
covering has a finite open refinement which is independent and non singular.

Proof: Given an open covering A={A1,...,Ap} of S, we take an independent open

ref inement X={x1,...,xp} of A,

We denote by Sq, Sp,..., Sp_2 the sets of the singularities of ‘X whose lowest

index is 1,2,...,p-2 respectively.

If S{#@, applying Proposition 1.9, we obtain a refinement 2(1) =
- 1 ~(1 (1)
= (" U3 & X§

1,100 geeey X(1)} of X whose singularities are generated from
Sz,...,S -2 Instead, if S4=¢, we take X(1)

Then, similarly, we construct a refinement

%(2) _ (2) 5(2)  $(2) 52)  (2) 7(2)
X = {6, ..., us by’ U2 e U) hy? X7 X }

of X(1) whose singularities are generated from S3,..., p-2+

In this way, after p-2 steps, we obtain an open refinement of X which is
singular and independent.

non

2. Isomorphism between the pretopological spaces GN(X) and G'(2Z).

Let S be a connected compact space and X={X1,...,XP} an independent open covering

of S, such that X;#¢ for i=1,2,...,p. Then let V={Y1,...,Yp} be an independent
shrinking of X (see Proposition 1.5).

For each positive integer n<p and any n-tuple (i1,...,in) of indices of X such
that iq<ip<...<ip and X3, i #9, we put:

A(i1...in) = 11...1 U{Y /J¢{11,'--’1n}}

B[i1...in] = {A(J1._- im) / {isecesint © C{ig,...,igh).
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2.0 Lemma Xy iy = VAL Al dnt 20,0000

2.2 Lemma Under the assumpt?on B£¢]=¢, we have B[i1...in]nB[j1...jm]=B[h1---hs]’
where {hy,...,hg} = {iy,...,igN{y,...,0nl.

2.3 Definition We denote by Ay the collection of all subsets of S of form

A . . and by By the collection of the B with maximal sets of
(ig...ip) [

i1...in
indices.
2.4 Lemma Any A(i1---in)€ AX is nonempty. Moreover AX is an open covering of S
and refines X.
2.5 Lemma By is an open covering of S.
2.6 Lemma Let XjEX and B[i1...in] €By. We have X nB[i1...in]*¢ if and only if
j€liq,...,i}. Moreover, if j€{i;,...,i }, then X; -St(B[i1...in]’ By) and
Br: : .
[11...1n]§3t(x3, X). .
2.7 Definition For each i€{1,2,...,p}, let Zj = Y; - ,g{in. We put Z =
= BYV{Zy,...,2p). J
2.8 Lemma Zi#(l for each i€{1,2,...,p}. Moreover zinzj=¢ whenever i#j.

Now let us consider the pf-space S7 and the graph G'(Z) that we obtain from Z
(see [2], '§6).
2.9 Theorem Given an open covering X={X1,...,Xp} of S, let Z be the open covering
of S associated to X with the foregoing process. Then the graph GN(X) of the edges

of the nerve N(X) of X is isomorphic to the graph G'(2).

Proof: Each vertex of G'(Z) corresponds to a maximal collection of elements of Z
with a nonempty intersection. Since in each of such collections we find exactly
one element Z;€EZ, the set of the vertices of G'(Z) is bijective to the collection
{Zi}(i=1,2,.—..,p), and we denote by w; the vertex corresponding to Zj.

Clearly {wy, wp,..., wp} is bijective to the set {Xq, Xp,..., xp} of the vertices
of N(X). Moreover, given two distinct indices i,j, in G'(Z) there is the edge
wiwj iff there is some B[i1--- i_n]éz such that {i,j}<{iy,...,iy}, and hence
iff X;N Xj#a.

2.10 Corollary Under the same assumptions, if the covering X is non ;ingular,
then the nerve N(X) of X is isomorphic to the complex Kgr(z) of the graph G'(2).

Proof: Since X is non singular, N(X) is a complete complex (see [1], §3).

3. Isomorphism between the inverse systems (SX’ IPXX"’ Cov(S)) and

oy |Fyyr s Cov(s)).
Let R={A;}(i€J) and R'={A}}(h€H) be finite open coverings such that R<R', and

let ¢:H*>J be a function such that A}'lsA(b(h) for any he€H.
3.1 Definition We denote by E the function from GN(RI) to GN(R) given by
a0 =Ay(n) for any heH.

3.2 Lemma $:Gy(r')*CGy(R) is a precontinuous map. Moreover, if ¢':H>J is another
function such that A}'lgAq)'(h) for any heH, then §' and ¢ are homotopic.

Proof: Clearly § is precontinuous, and the function H:GN(R’)XI"GN(R) given by:
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Ay ch) if t€fo, 1/2]
H(AY, t) =
Apr(py  if tef1/2,, 1]
is a prehomotopy of § to 9.
3.3 Definition A function $:G'(R') »G'(R) is called induced by ¢:H+J, if, for
any vertex Vl!l1---hn of G'(R'), we have é(vf””'hn):vh_“im with {iq,...,in} 2
2¢(hy,...,hp D).
3.4 Lemma Under the foregoing assumptions, we have:
(i) any function $:G'(R') +G'(R) induced by ¢ is precontinuous;
(ii) any two functions § and $' from G'(R') to G'(R) induced by ¢ are homotopic;
(iii) if Y:H*J is another function such that Al!lgAw(h) for any h€H, and if
P:G'(R'") >G'(R) is a function induced by ¥, then § and § are homotopic.
Proof: Since the pretopological spaces Sp and G'(R) belong to the same homotopy
type, we find two precontinuous maps p:Sp >G'(R) and q:G'(R) +Sp such that qp}b1sR
and pqVlgr(Ry in the following way (see [2], §6).
For any vertex Vig...ip of ‘G'(R), we put q(vi1...in)'=xi1...in where x
belongs to Aj, . i - U{Aj/jeJ—{i1,...,in}}.
To define p:SR+G'(R), we consider the graph GU(R) (2), and we put p=0T where

if...ip

1T:SR+GU(R) is the canonical projection and a:GYR) »G'(R) is a function such that
a(vi1...in) is a vertex Vig...ig of G'(R) with {i1,...,im}2{i1,...,in}.
Similarly we obtain p':Spr »G'(R') and q':G'(R') »Spr.
Now we construct a finite open covering ﬁ={§i}(ie.}) of S such that R< R <R,
putting:

K; = a5 - {xhy...ny=a" Vg, L hy) /i€0({hy,..., 0 D},
where V]!”.__hn denotes a vertex of G'(R').
Clearly th'_.hnE A; iff i€¢({hy,...,hy}); moreover the point Xige..ig €A
if{i1,...,im}.
Afterwards we define ﬁ:Sﬁ+C'(ﬁ) and ﬁ:G'(ﬁ)-»Sﬁ like p and q respectively, and

w id i PORR ~ ~:Sx>S i by th
e cc.m51 e'r tt.le precontinuous maps PRR’ SR' *SR and PRR SR R given by e
the identity in S.

Now we define a precontinuous map $:G'(R')+G'(R) in the following way:

/,Gu(ﬁ)\~|

7 3 .

¢'(R")—4' > Sgi PRR! >S5 B ¢'(R)_d ,sﬁ_ﬂm_,sk__ﬂ_,c'(k)
&

(*) The vertices of GU(R) are the classes of the equivalence relation 0 in S,
given by xoy iff I,=1y, where I1,={i€J/xeA;} and J is the set of the indices of R.

We will write Viq...ip to denote the equivalence class [x] such that I ={iq,...,1i3}.

We recall that in GU(R) there is the edge v;:

i ig...igVige.dim if and only if
{11’-..,in}ﬁ{j1’_..,jm} #¢.
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with {iq,...,ip} 2 ¢({hy,...,0p}), i.e.

We easily see that a(vt'q...hn):\’h

¢ is induced by ¢.

Then § is unique up to homotopies, since &wppRR,q', where pRR,:SR, +SR is the
identity in S.

Finally, also § is homotopic to ppRR,q'; and hence J and § are homotopic.

3.5 Remark. For any precontinuous map $:G'(R') >G'(R) induced by ¢:H+J, we obtain

the following homotopy commutative diagram:

P
Spr RR! Sp
p'l lp
GI(R)) 6 G'(R)

3.6 Definition Let Cov'(S) denote the collection of the finite independent non
singular cqverings of S, whose elements are nonempty open sets.
3.7 Proposition Cov'(S) is cofinal in Cov(S).
Proof: Observe that any A€Cov(S) has a refinement R which is a finite open
covering of .S; then recall Theorem 1.10.
3.8 Definition Let Cov'"(S) denote the collection of all finite open coverings Z
associated to some X€Cov'(S) (see §2).
3.9 Proposition Cov'"(S) is cofinal in Cov(S).
Proof: Given R€Cov(S), take a finite open star-refinement R' of R and X'€Cov(S)
such that R'< X', It is easy to see that any covering Z' associated to X' refines
R. - ’
3.10 Proposition Let X={X;}(i€J) €Cov'(S) and let Z€Cov"(S) be associated to X.
If we take X'={X]}(h€H) in Cov'(S) such that X' star-refines Ay, then any covering
7' associated to X' refines Z. Moreover, if A is the set of the indices of Ay and
X:H*\ is any function such that St(Xl'l,X')_C.AX(h) for each heéH, then, taking ¢(h)€
e€x(h), we can define a function ¢:H>J such that:
(1) X};gxzb(h) for any he¢H;
(1II) for any B'[h1 JéZ there is B iy...i ]eZ such that B[h1...hn] c
gB[i1,,,im] and {if,...,ig}2¢({hy,...,h});
(III) the function ézz,:c (2') +G'(Z), that we obtain putting 522'(“’}',)="’¢(h) for
any héH, is induced by ¢.

Proof: Ad (I). Observe that X}'ICAX(h) €X; for any iex(h).
Ad (II). B|':h1 . hg] c St(xh LX) CAX(h ) € NMX; /jex(hp)} for r=1,2,...,n.
Therefore [h1...h ] € € N{x; /JGU x(hy)}. Hence B[ U1X(hr)] is nonempty; so

there is B[l lez such that {iy,...,ig} D Qx(h ) 2 ¢({hq,...,h }) and

O

Blif.. in] 2 %) 2 Bln;...ng]"
L
Ad (III). Let wj be a vertex of G'(Z'). w{ corresponds to the nonempty
intersection of Z}} and of all B[h1__.hn]€Z' such that hé{hy,...,h }. By (11), for
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each of “such B'h1...hn] there is B[i,...inJez such that {11,...,im}2<b({h1,..“hnba
3¢(h) and B! < Br. . 1. Moreover each of such B!

E [h]. ] [11 ..1] [h1
ﬁ. Hence the vertex wg= 5zzl(wh) of G'(Z) must cérrespond to a max1mal nonempty

contains
by

intersection of a collection of elements of Z containing all the B we

ig]
just mentioned. For example w, may correspond to the collection containing Z¢(h)

and all B[i1...im]6z such that ¢(h)€{i1,...,im}.

3.11 Remark. Similarly, let X€Cov'(S) and let Z€Cov'"(S) be associated to X. If we
take Z'€Cov"(S) such that Z' star-refines Ay, then.any X'€Cov'(S), to which we can
associate Z', is a refinement of X. Moreover we obtain the statements analogous to
the ones from Proposition 3.10.

3.12 Proposition Under the foregoing assumptions, we obtain the following homotopy

commutative diagram:

Szr Pzz! 5 SZ
p'l P
¢'(Z" b2z 561 (2)
f! f
Py

GN(x") > BN (X)

where'p, p' are the precontinuous maps from Lemma 3.4, and £, £' are the

isomorphisms from Theorem 2.9.

Proof: ppzz1 “¥z7'p' by Remark 3.5, and Gzz:f' = £§771.

3.13 Theorem The inverse systems (Sy, [pXX’]’ Cov(s)) and (GN(X)» [$er], cov(8)),
where [pXX'] and [$XX1] are the homotopy classes represented by Pyy! and $XX'
respectively, are isomorphic.

Proof: First we define a function ®:Cov'(S) > Cov"(S), taking for each X€Cov'(S)

an element Z=3(X) of Cov'"(S) which is associated to X (see §2).

Then, for each X€Cov'(S), we consider the precontinuous map hy Sy > Gy (x) given by:
P f
SZ —f——aG' (2) _——’GN(X)
W
where p and f are the precontinuous maps before mentioned.
Given X<X' in Cov'(S), take X"€Cov'(S) such that X" star-refines both Ay and Ayr.

Under this assumption, the following diagram is homotopy commutative:

SZ hxn Szl
(X" . th
u////////// Qw
¢xx'
GN(X)< GN(X")

Hence (hx,®) is a morphism from (SZ, [pZZ']’ Cov"(S)) to (GN(X)’ {EXX']’ Cov'(sb)'
With a similar process we define a morphism (kZ,W) from (GN(X)’ [$XX']’ Cov'(S))
to (Sz, [PZZ']’ Cov'"(S)). Precisely we define ¥:Cov"(S) > Cov'(S), taking for each
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Z€Cov"(S) an element X=¥(Z) of Cov'(S) such that Z is associated to X. Then we
consider the precontinuous map kz:Gy(X) > Sz given by kz=qf'1, where £:G'(Z) »Gy(x)
and q:G'(Z)—*SZ are the before mentioned functions.

Afterwards, each of the morphisms (hy,?) and (kz,Y) is the inverse of the other.
Finally recall Propositions 3.7 and 3.9.

4. Shape groups and Cech homology groups of a connected compact topological space S

To calculate the shape groups I (S,a) based at a point a€S, we have to fix, for
each covering X, an open set X€X such that aeX.
Therefore we have to consider some pointed open coverings of the pointed space
(S,a), such that there exists exactly one element of each covering X containing a.
We denote such an element by X{, and we choose the characteristical point xq of Xj
taking xq=a. So a is .a .point of the element A(l)éAX’ and a belongs to the open set

Z1€Z and to each B[iiz...im]EBX' Then, "mutatis mutandis", we obtain that the

inverse systems ((Sy,a), [pXX']’ Cov(S)) and ((GN(X),X1), [$kX']’ Cov(S)) are
isomorphic. ‘

So, for each dimension n the inverse systems (I (Sy,a), P;X” Cov(S)) and
(Qn(GN(X),X1), sz,, Cov(S)) are isomorphic.

Afterwards, if X, X' € Cov(S) and X<X', since X and X' are non singular and the

complexes N(X) and N(X') are complete, the following diagram commutes:

*

I, (NCXDY |, XD x| >TL (NGO |, X9)
i u
(390
Qn(GN(XI)’ X;) LQn(GN(X)’ X1)

where u and y' are the isomorphisms given by the canonical projections from the
polyhedron |N(X)| to the graph GN(X) of the edges of N(X) and from |N(X')| to

Gy (x1) respectively (see [1], §3). ~

Hence the inverse systems (I,(Sy,a), p;x,, Cov(S)) and (Hn(|N(X)|,X1),I¢XX4ﬁ Cov(S))

are isomorphic. Therefore:

dim (T (sy,a), p;x,, Cov(S)) ﬁn(é,a) ﬁiiiﬁ(nn(lN(x)l’X1)’ |$Xxl|f, Cov(S)).

In the case of Eech homology groups, %pr any X€Cov(S) and each dimension n, we
consider the homology group H,(N(X)) of’ihe simplicial complex N(X) and the
singular homology group Hn(GN(X)) of thé graph GN(X) (see [5]).

Given X, X' €Cov(S) such that X< X', we obtain the following commutative diagram:

$XX'
H, (N(X")) — — H, (N(X))
v'l v
XX’
Hn(GN(Xt)\ L Hn(GN(X))
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where V and V' are the isomorphisms considered in [5],
Hence:

. X! h4 . ==X
Lim (H,(Sy), pi™ ', Cov(S)) ™ H,(S) v lim (H (N(X), ¢," , Cov(s)).

5. Examples. i
5.1 Let S be the polyhedron |K| of a finite simplicial complex K of dimension m.
In this case we can calculate the groups Hn(S,a) and H,(S) more simply in the
following way.

For any i¢N, we take the derived k(1) of K, and we denote by v(i) the vertex set

of k(1) and by 0(1) a p-dimensional simplex whatever of K(i). Then we put:

r; = E’lnf{d(xél)’ xéi))}, where xéi), xéi)e V(i);

{V(céi), ri)}(céi)e K(i); 0<p<m), where V(cgi), ri) ={yes / d(y, Oéi))<q};
= {R;}(ieN).

It is easy to see that each Ri is an open covering of S, and that the graph G'(Ri)
is the graph of the edges of the complex K(i).
The set ' is cofinal in Cov(S); so we have:

Hn(S a) = lim (I (SR , a), PR R I;

H (s) = = lim (H (SR )), P, i7j, T)
Smce],Z for i>0, Hn(SR »a) v I (Ix],a), Hn(SR ) v H (K), and all functions pR R
and p*l i are isomorphisms, we obtain:

n(S,a) = I,(5,a);

Hy(S) = Hy(K).
5.2 Let (S,d) be a compact metric space.
For any €>0 we consider the symmetrical pf-space S.=(S,P.) where P€=f;?;:ETKxfs)
and V(x,e)={y€S /d(x,y)<e}. If €'<e, we consider the precontinuous map .penSa+g

given by p .1 (x)=x for any xeS.
Then we easily see that, for each dimension n, we have:
H (S,a) = 11m (I, (S¢»a), pseg, E),

Hy(s) = lim (Hn(Ss) pE¥', B,
where E is the directed set that we obtain taking the set R* of all positive real

numbers with the inverted order.

5.3 Let S be the Wérsaw circle, i.e. the following subspace of R2.
Given the points a=(0,1), b=(0,-2), c=(4,-1), d=(4,0), we take the segments ab,
be, cd and all points (x,y)éR2 such that xé]O,i] and y=sin(m/2x).

Let @:[i,1]->abljbc Ucd be an homeomorphism such that ®(1)=a and ®(4)=d, and let
f:]O,1]-+S be the continuous surjection given by:

(x, sin(m/2x)) if 0<x< 43
f(x) =
®(x) if $<x<1.

Then for any €>0 we consider the pretopological space Sg from 5.2 and the
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precontinuous loop wE:[O,1]<->SE based at a, given by:

a if 0<x <A
Ye(x) = {

o(x)  if A< x <1
where A =1/(4n+1) and n is the lowest positive integer such that 1/(4n+1) <e.

The group II;(S,a) is isomorphic to (Z,+), and we observe that its generator can
be associated to the sequence of the prehomotopy classes represented by the loops
we of SE'
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