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ON SHAPE GROUPS AND CECH HOMOLOGY GROUPS OF A COMPACT SPACE 

Davide Carlo Demaria - Rosanna Garbaccio Bogin 

Given a pretopological space S=(X,P), we associate to any interior covering X 

of S a symmetrical pf-space S on the set X (see [2], [3]). Precisely, to obtain 
X | 1 

the pretopology of S , we take for each point x of X the principal filter St(x,X). 
Then we associate to S the inverse system S=(SV, pvv,, Cov(S)), where 

X XX 
pvvl:Sy,"*"S is the identity in X and Cov(S) is the collection of all interior 
coverings of S. 

For each dimension n, we associate to S an inverse system of prehomotopy groups 

IT (S , a) and an inverse system of singular homology groups H (Sv) . Taking the n X n X 
inverse limits lim II (S.., a) and lim H (S..), we obtain the shape groups II (S, a) 

* n X v
 < n X n 

and the Uech homology groups H (S) of the pretopological space S. n 

In this way, if S is a topological space, instead to approximate it by means 

of polyhedra, we reduce the more the set of admissible functions into S, in such 

a way to obtain the set of continuous maps. 

Here we prove that our shape groups and tlech homology groups of a connected 

compact topological space S are isomorphic to the classical ones.( ) 

In [2] we proved that, if the covering X={X.}(i€J) is finite, then Ŝ  belongs 

to the same homotopy type of a finite symmetrical pf-space (i.e. an undirected 

graph) Gf(X), that we obtain in the following way. The vertices vj_ # £ of Gf(X) 
n 1 • • • n 

correspond to the maximal subsets {i.j,...,in} of J such that Q X. ±0, and there 

is the edge v ^ . . . ^ ... j m iff U],.. . ,in}H{j ],. . .,jm}#. * 

Here (§2, §3) we consider a suitable collection Gov1(S) of open coverings of S 

which is cofinal in Cov(S), and for any XeCov'(S) we construct ai\ open covering Z 

such that the nerve N(X) of X is'isomorphic to the complex K of the graph 
» / 7 \ • • ^ 

G (Z). This is possible if the covering X is independent and non singular. In feet, 
if X is independent, we obtain Z such that the graph G /V/N of the edges of N(X) is 

N(X) 

This paper is in final form and no version of it will be submitted for publication 
elsewhere. 

(- ) Any compact topological space is supposed to be Hausdorff. Moreover we consider 

only infinite spaces, since any finite connected compact space is a singleton. 
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isomorphic to Gf(Z). Moreover, if X is also non singular, the complex N(X) is 

complete and therefore isomorphic to the complex KGNrtW 

Afterwards, given X={xi}(i€I) and X'H.XJ.KheH) in Cov
f(S) such that X<X' and 

Z<Z' and a suitable function (j):H->J such that X.^CX,,^ for each h€H, we show that 

the following diagram over pretopological spaces: 

PZZ' c_. LL _ c_ 

Л 
G

f
(Z')-

f
f 

G
N(X')~ 
л 

ľ 
->G'(Z) 

!• 
->GN(X) 

where (j) and $ are precontinuous maps induced by <j), is such that (J)ff=f$ and 

$pf^Ppzz,. 

Hence (§4) we obtain the following commutative diagrams: 

p 2 2 , 
П
n
.<Şz.,a)_ 

h'*l 
П

П
(|N(X')|,X*)_ 

-^П
n
(S

z
,a) 

| h* 

_
>
П

n
(|N(X)|,X

1
) 

Һ
*„ 

H_(N(X'))_ 

n
Z Z
' 

P* ->н_(s
z
) 

Г* 
-*H-.(N(X)) 

where h
f
 , h*, h£, h* are isomorphisms. 

Since also the collection Cov"(S) of the coverings Z is cofinal in Cov(S), we 

obtain: 

lim IT (S ,a) 2_;limn C JNCX) | ,X-|) 5 

linf H-^S--) 2 l | i E _ H (N(X))« 

F i n a l l y we give some examples. 

1. On some finite open coverings of S. 

Let X={X1,...,X } be a covering of a nonempty set S. For any positive integer 

n<p and any n-tuple (i<|,...,i ) such that Kij<i2<.. ̂ i ^ p , we put: 

xi, \ = xi,n ...riXi ; 
1 \ . . . in 1 \ i n 

xid * _• =xiin...nx1- nx.- n...nx- . 
x1 • • ,:Lr'* •1n M lr-1 lr+1 --n 

1.1 Definition The covering X is independent if: 
Xi<|...i^ te=^xi1...intf

 U{Xj/j^{i!,. -., in>> for any n-tuple (i^...,^) 

with 1<n<p. 
1.2 Definition Let N be an integer such that 3<n<p. {X- ,...,X_- } is a 

M --n 
singularity of X with degree n and indices i«|,...,in, if the following conditions 
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hold: 
xn • = 0; 
xil...ir...in * $ f o r r=1,2,...,n. 

Then X is non singular, if there are no singularities of X. 

1.3 Proposition Let S be a connected compact topological space. Any open covering 

X={X1,.. . ,Xp} of S has an independent open refinement ^{Y-j,.. . ,Yp}. 

Proof: First we construct a finite set X of distinct points of S, taking a point 

xi i in each Xi i ̂ 0 for n=1,...,p. (This is possible since any nonempty 

open subset of S is infinite). Then we put: 

Yi = Xi-X(i) where X(i) = {x^ _ ^ £ X/itfU..,. .. ,in}}. 

1.4 Remark. xi« #i
 €Yj< ; iff {j-j,... ,jm}-= (ij,... ,in}; so V is minimal. 

Moreover Y- • --0 iff X-:, • ?0. The point x{ will be called characteristical 
J- 1 . . • j-n i •.. j. n 

point of Yi$ since Yi is the only element of V containing xi# 

1.5 Proposition Let S be a connected compact topological space. Any independent 

open covering K={x<\,.. . ,Xp} of S has an independent shrinking 1/={Y1,... ,Yp} such 

that Yi1>>#i £0 iff Xi, #i ?-0 for any n-tuple of indices. 

Proof: Construct a finite set X of distinct points of S, taking a point x ^ 
in Xi-i...i ~ Ufxj/J^tii,...,in}} whenever X i l > # i n ^ , for n=1 p. Then 

consider the closed subset: 

Y*1* = X(i)U(S-.y.Xj) where XUMxj^ # _ i^X/ie{i},... , in}} . 

Finally take an open subset Yi of S such that : 

Y(i)^ YiCY^CXi. 

U6 Remark. --^...^gY] for j^i,,... ,in}, since YjCXj. 

1.7 Lemma Let S be a connected compact topological space and X={X1,...,Xp} an 

independent open covering of S. If {X1, X2,..., Xn} is the singularity of X 

relative to (1,2,...,n), we can construct an independent open refinement X' = 

= {Uf, Vf, Xj,..., Xn} of X such that: 

(i) U'jgX^ VfCXi, X[gXi for i=2,...,p; 

(ii) {Uf, Vf, XJ,..., Xn}, {U
f, XJ,..., X^} and {Vf, Xj,..., X^} are not 

singularities; 

(iii) given m indices i1,i2,...,im such that 1<il<i2<...<im£p and ir>n for some 

r, we have: 

a) {Uf, Vf, X}.,..., X' } is not a singularity; 
•H m 

b) if {Uf, Xj. ,..., X? } or {Vf, X' ,..., X\ } is a singularity of X', 
-T m --1 m 

then {X19 Xi ,..., Xi } is a singularity of X. 

Proof: Construct a shrinking !/={Y1,... ,Yp} of X with the process from 

Proposition 1.5, and put: 

Yj = Y in...nY i_ 1OY i + 1 n...nYn for i=2,3,...,n; 

U = Yin(S-.Urt); 

V = YjfKS-Yj); 

r - {U, V, Y2,..., Yp}. 
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Clearly V1 is an open covering of S and {U, V, Y2,..., Y n}, {U, Y2,..., Y n}, 

{V, Yo,..., Yn} are not singularities of V . 

Now consider m indices i-|,i2,...,im such that 1 <i-|<i2<• • «<im£P
 anc- ir>n I o r 

some r, and distinguish two cases. 

I) If Y ^ Y ; , n- =0, then {U, V, Y• ,. . ., Y: } is not a singularity of V* . 
1 1 • • • --m 1 m 

Moreover, if {U, Yi 9 Y i } or {V, Yi(1,..., Y- } is a singularity of V 9 then 
• m 1 -Lm 

{Y-|, Y i ,..., Y i } is a singularity of V9 and hence {X-j, X.̂  ,. .., X^ 1 is a 

singularity of X. 

II) If Y1 OY-,- ; 4 0, put I={2,3,... ,n} and distinguish three possibilities. 
1 J- 1 . • • j - m 

1) I - U ^ . . . , ^ } = {2}. 
Since YiHY-r. * C Y - C u C y ^ we ob ta in YiOY,- ,• = UnY i ( 1 ,• ± 0 ; therefore 

1*,,:Lm~" 2 ' ' •L1----Lm 1 , , , J-m 
{u> I i 1 > '«»> Y i } i s not a s i n g u l a r i t y of y . 1 m 

Moreover V n Y i ^ CY-CS-V; hence both {V, Y; , . . . , Y i } and {U, V, Yi , . . . , YjJ 

a re not s i n g u l a r i t i e s of V1. 

2) I - U - j , . . . , ^ } = { j} with j > 2 . 

Both {U, Yi.,..., Yi } and {U, V, Y • Y,- } are not singularities of Vf, since 
1 nil --1 m 

UHY: ,• CY-CS-U. 
M •• 'ha" J "" 

Moreover {V, Y L Y-; } i s not a s i n g u l a r i t y of V , because VDYi. ,• 
x - j- m x -j .. . j- m 

= Y1nYil...i +*' 
1 xm 

3) I-{i-i,...,im} 2{h,k} with h<k. 
The point z=x1• • , we fixed to construct the shrinking V of X, is such that 

' -T • 2_J n-
z £ Y h U Y k . So z^Y- for i = 2 , 3 , . . . , n ; hence z 6 U H V n Y i ^ . Therefore 

{U, Y i l Y i m } , {V, Y i l , . . . , Y i m } , {U, V, Y ^ , . . . , Y ^ } a r e not s i n g u l a r i t i e s 

of V1. 

Finally, construct an independent open refinement X'={U', V1, X^,..., Xp} of V 

applying Proposition 1.3. 

1.8 Remark. To construct X' we replace the element X-j of X with two subsets U1 and 

V1 of X<|, that we can associate again to the index 1. Instead each element of X 

with index greater than 1 is replaced with one subset with the same index. From 

each singularity of X containing X-j and different from {X-j, X^,..., Xn} we obtain 

at least one singularity of X' with the same indices, where X-j is replaced by one 

of the sets U1, V1. So, if X has q singularities of index 1, then X' has at least 

q-1 and at most 2(q-1) singularities containing either U1 or Vf, that we call 

again of index 1. Instead each singularity of X non containing X* determines a 

singularity of X' with the same indices. 

1.9 Proposition Let S be a connected compact topological space and X={X,,...,X_} 

an independent open covering with q singularities containing X*. We can construct 

an independent open refinement X--{U<| 1,..., U<| n, X2,..., Xp} of X which has no 
singularities containing some U< „. 

1 >r 

Proof: Let Sl={X,, X i 2 j X ^ ) , s2={Xl, Xi2>2 Xim2,2> 
s q={X1, Xĵ  ,..., Xi q) be the singularities of X with index 1. Applying 
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Lemma 1.7, we eliminate s-j and we obtain an independent open covering X^ ' = 

= {u!j1), U^1\ X^1),..., X^1)}, which has at most 2(q-1) singularities of index 1, 

i.e. containing one of the subsets U!j , Uv ' and generated from s2,...,sq. 

For the singularities generated from s2 we have two possibilities: 

(i) only one of the collections {u!>1\ X^\\,..., x£1' 9} and 
1 --2--- --m2»--

{U<1), X^o,..., x\]) 9} is a singularity of X(1); 
z 12'z Lm2 m 
(ii) both of them are singularities of XKU. 

Applying Lemma 1.7 once in case (i) and twice in case (ii), we obtain an 

independent open covering X^ ' of form: 

{U(2>, 4 2 \ U(2>, X(2>,..., X(2>} in case (i); 

{Up>, U(2>, U(2>, u£2>, X(2>,..., X(2>} in case (ii). 

The covering X^2) has at most 4(q-2) singularities with index 1, i.e. containing 

one of the sets Û L ' and generated from s«a,...,sa. The other singularities of 
(2) Xv ' have the same indices of those of X. 

Afterwards we eliminate successively the singularities generated from ŝ , from 

ŝ ,..., from s applying an. analogous process. So we obtain the independent open 

covering X we were looking for. 

1.10 Theorem Let S be a connected compact topological space. Any finite open 

covering has a finite open refinement which is independent and non singular. 

Proof: Given an open covering A={A^,...,Ap} of S, we take an independent open 

refinement X={X-|,...,X } of A. 

We denote by S^, S2,..., S 2 the sets of the singularities of X whose lowest 

index is 1,2,...,p-2 respectively. 

If S-j7-Qi, applying Proposition 1.9, we obtain a refinement X^ ' = 

= {U}'{,..., Ui n , xi ,..., X„ } of X whose singularities are generated from 
'-»' 'i»ll1 z p ~(1} 

S2,...,S 2- Instead, if S-|=0, we take XV =X. 
Then, similarly, we construct a refinement 

X(2) . {g(2) g(2) 0(2) C(2) x(2> X(2>} 
1,1 1,V 2,1 U2,h2'

 X3 '•••' *P ' 
of X^' whose singularities are generated from So,...,Sp_2-

In this way, after p-2 steps, we obtain an open refinement of X which is non 

singular and independent. 

2. Isomorphism between the pretopological spaces GM(V\ and G*(Z). 

Let S be a connected compact space and X={X1,...,Xp} an independent open covering 

of S, such that Xi?-0 for i=1,2,...,p. Then let V={Y1,... ,Yp} be an independent 

shrinking of X (see Proposition 1.5). 

For each positive integer n<p and any n-tuple (ij,...,^) of indices of X such 

that i1<i2<...<in and X-J # £ ±0, we put: 

A(il...in) " Xil...in-^{YT/^{il,...,in»; 
B[i!...g S=U{A(Jl-..Jm)/{J1 im^M,...,^}}. 
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2.1 Lemma X i l # - - i n = U ^ A ( j !... j m) / tj \, • •., j m }
2 U : , . . . , i n H . 

2.2 Lemma Under the assumption Brrt"i--0, we have Bf- i -iOBp • • " i = B r n i n i, 

where {h l f...,h s} = {i 1,. .. 9ij} fl{j 1,. .., j m} . 

2.3 Definition We denote by A x the collection of all subsets of S of form 

A/. . N and by BY the collection of the Br. . i with maximal sets of 
V.J-1 • • • --n' [--1 • • • --nj 

indices. 

2.4 Lemma Any A/- i \£ A*/ is nonempty. Moreover Av is an open covering of S 

and refines X. 

2.5 Lemma Bv is an open covering of S. 

2.6 Lemma Let Xj^X and B r i ^ . . ^ € B X . We have Xj O B r ^ _ .y-<0 if and only if 

j€{i 1,...,i n}. Moreover, if j € { i . -,... , i n } , then Xj C s t ( B r i # i -i , BX) and 

B[i1...in]SSt(Xj,X). _ ' " n 

2.7 Definition For each i£{l ,2,... ,p}, let Z^ = Y^- U Y-. We put Z = 

= 8xV{Zl,...,Zp}.
 J ^ 

2.8 Lemma Z^0 for each i€{l,2,...,p}. Moreover Z ^ A Z : ^ whenever i^ j . 

Now let us consider the pf-space S2 and the graph G f(Z) that we obtain from Z 

(see [2], §6). 

2.9 Theorem Given an open covering X={X-j,... ,Xp} of S, let Z be the open covering 

of S associated to X with the foregoing process. Then the graph G^(v\ of the edges 

of the nerve N(X) of X is isomorphic to the graph G f ( Z ) . 

Proof: Each vertex of G f(Z) corresponds to a maximal collection of elements of Z 

with a nonempty intersection. Since in each of such collections we find exactly 

one element Z ^ Z , the set of the vertices of G f(Z) is bijective to the collection 

{Zi}(i=1,2,...,p), and we denote by w i the vertex corresponding to Zi» 

Clearly {w 1, W2,..., w p} is bijective to the set {X-j, X2,..., X p} of the vertices 

of N(X). Moreover, given two distinct indices i,j, in G f(Z) there is the edge 

wiwj iff there is some B|"il### i I^Z such that {i, j } £{i<|,..., i n } , and hence 

iff X-jTlXj^. 

2.10 Corollary Under the same assumptions, if the covering X is non singular, 

then the nerve N(X) of X is isomorphic to the complex KQI(£) of t n e graph G f ( Z ) . 

Proof: Since X is non singular, N(X) is a complete complex (see [1], §3). 

3. Isomorphism between the inverse systems (S^, lP v vtI, Cov(S)) and 
X XX 

i?N(X)jt_|?xX' l> Cov(S)). 

Let R={Ai}(i€J) and R
f={An}(h£H) be finite open coverings such that R<R', and 

let (f):H-M be a function such that A n CAA( n) for any h€H. 

3.1 Definition We denote by (j> the function from G M ( R ' ) to GN/o\ given by 

3J"(An) =A(j)(h) for any h6H. 

3.2 Lemma ^ • G N ( R , ) " > G N ( R ) *S a precoritinuous map. Moreover, if <J)f :H-M is another 

function such that A n C A A i ( n ) for any h€H, then 0
1" and (J) are homotopic. 

Proof: Clearly ^ is precontinuous, and the function H:G*T/«I \xi ->- Gvt£\ given by: 
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(\<h) if t 6t°. I/-] 
H(An, t) = 1 

lV(h) if t€[l/2,. 1] 
is a prehomotopy of "$" to ())? . 

3.3 Definition A function $:G? (R') + G? (R) is called induced by (j):H+J, if, for 

any vertex v n i # # # h n of G
?(R'), we have $(vni # # .hn)=vi1 .. . im with {i1,...,im}2 

2*({h1,...,hn}). 

3.4 Lemma Under the foregoing assumptions, we have: 

(i) any function $:G? (R' ) •> G? (R) induced by (() is precontinuous; 

(ii) any two functions $ and $? from G?(R') to G? (R) induced by (J) are nomotopic; 

(iii) if \|KH-M is another function such that A nCA^( h) for any h€H, and if 

$:G? (R') -*G? (R) is a function induced by ip, then ip and (£ are nomotopic. 

Proof: Since the pretopological spaces Sĵ  and G?(R) belong to the same homotopy 

type, we find two precontinuous maps p:S«->G? (R) and q:G?(R) +Sj-» such that qpMg 

and Pqr°lG?(R) *-n t n e following way (see [2], §6). 

For any vertex vi-j# ti^ of G ?(R), we put q(vi1 # # # i n)=xi 1. .. in where xi - . i 

belongs to A i 1 # # # i n - U { A j j j € j - { i 1 , . . . , i n } } . 

V 
IT:SJ-,->-G (R) is the canonical projection and a:G (R)+G?(R) is a function such that 

a ( vi 1...i n) is a vertex v ^ . . . ^ of G
? (R) with {i1,. .. ,im} 2 {i1,.. . ,in} . 

Similarly we obtain p? :SR» ->G
? (R') and q? :G? (R' ) •> SRi. 

Now we construct a finite open covering R={Ai}(iej) of S such that R<_ R < R', 

putting: 

*i - Ai - { ^ . . . h ^ q ' K ^ ^ ) / ^ ( { h ^ . , . , 1 ^ } ) } , 
where vn..###hn denotes a vertex of G

?(R'). 

Clearly xh-| . # # h n € A i iff i€(()({h1,. .. ,hn}) ; moreover the point x ^ ^ ^ e ^ iff 

i6{i1,...,im}. 

Afterwards we define p:S~+G?(R) and q:G?(R)+S~ like p and q respectively, and 
K K 

we consider the precontinuous maps p^ r :S f ->• Sg and p ~:S~->S^ given by the 
the identity in S. 

Now we define a precontinuous map $:G?(R')+G?(R) in the following way: 

,GU(R) 

G ' ( R » ) — з _ — > S ß , pŘR' , s ~ - ^ P > G ' ( Ř ) _ ś L > s г _ Ł s _ _ a _ t . G , ( ю 

To define p:S
p
-> G

?
 (R), we consider the graph G (R) ( ), and we put p=a7T where 

( ) The vertices of G^R) are the classes of the equivalence relation a in S, 

given by xo*y iff I
x
=I

y
, where I

x
={i6J/xgA

i
} and J is the set of the indices of R. 

We will write v
i l # # # i n

 to denote the equivalence class [x] such that I
x
= {i^ ..., ij, 

We recall that in G
U
(R) there is the edge v- • vi, ; if and only if 

1
1
. .. i

n
 J i • • • j m 

{i
1 in}

n
{Jl,...,W * t-
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We easily see that $(v^1 # ..hn)=vil. .. ̂  with U],..., im} 2 ^{h-,. .. ,hn}) , i.e. 

$ is induced by <f>. 

Then $ is unique up to homotopies, since $^ppp ,q
f, where Pppi :Sp» "* s p is the 

identity in S. 

Finally, also $ is nomotopic to pp fq
f; and hence $ and $ are nomotopic. 

3.5 Remark. For any precontinuous map $:Gf (Rf) -*- Gf (R) induced by <J>:H+J, we obtain 

the following homotopy commutative diagram: 

SR| >SR 

P' P 

Gf(R') $ >Gf(R) 

3.6 Definition Let Covf(S) denote the collection of the finite independent non 

singular coverings of S, whose elements are nonempty open sets. 

3.7 Proposition Covf(S) is cofinal in Cov(S). 

Proof: Observe that any A€Cov(S) has a refinement R which is a finite open 

covering of S; then recall Theorem 1.10. 

3.8 Definition Let Cov"(S) denote the collection of all finite open coverings Z 

associated to some X€Covf(S) (see §2). 

3.9 Proposition Cov"(S) is cofinal in Cov(S). 

Proof: Given ReCov(S)-, take a finite open star-refinement Rf of R and X,6Covf(S) 

such that Rf-£Xf. It is easy to see that any covering Zf associated to X' refines 

3.10 Proposition Let X={Xi}(i€J) €Cov
f(S) and let Z€Cov"(S) be associated to X. 

If we take X'-={Xn}(h€H) in Cov
f(S) such that Xf star-refines A%9 then any covering 

I1 associated to X' refines Z. Moreover, if A is the set of the indices of A% and 

X-H+A is any function such that St(Xn,X') C A^ h) for each h£H, then, taking <j)(h)£ 

£X(h), we can define a function (j):H-M such that: 

(I) XnCX(j)(h) for any h£H; 

(II) for any B J ^ . ^ Z ' there is B ^ ^ t f such that B ^ . . - h j C 

£B[iu..im] and {il,...,im}2(j)({h1,...,hn}); 

(III) the function $77, :Gf (Z')+Gf (Z) , that we obtain putting ?7 7» (wh)
=w
(i)ch) for 

any h£H, is induced by (j). 

Proof: Ad (I). Observe that X nCA)((h )cxi for any i6x(h). 

A d (II)- B[hi...h„] SSt(X£r>X») S A ) ( ( M C H { X j /j€X(hr)} for r=-1,2,...,n. 

Therefore B U ^ j C H{XJ / j ̂ x O - r ) } . Hence B r ^ x ( h )1 is nonempty; so 

there is ̂ . . . i ^ Z such that {ij,... ,im} J ^ X O ^ ) 2 (Kft-j,... ,hn}) and 

*[!,... ij 2 ^ ( ^ , 2 Bf[hi> #hn]. . 
0 

Ad (III). Let wh be a vertex of G
f(Z'). wh corresponds to the nonempty 

intersection of Zn and of all Bph , -î Z1 such that h€{h^9.. . 9hn}. By (II), for 
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each of "such B rv 
rrh1...hJ

 tnere is Bfi 1...i]
€ Z such that U1 , . . .-im}2<()({h1 , . .- , .hn})3 

3(j)(h) and Bf, u 1 -= Br- • - • Moreover each of such Bl , -, contains 

Lh1-"hnJ ^l-'-Vl [h1---hn] 
1 } . Hence the vertex w^-^il* (wh) °^ G f(Z) must correspond to a maximal nonempty 
intersection of a collection of elements of Z containing all the B r . . - we 

[H.-.-m] 
just mentioned. For example w^ may correspond to the collection containing Z(f)(h) 
and all B-. . «, <=Z such that (b(h)€{i1 i }. 

[_i1 . .. imj
 T i » > m 

3.11 Remark. Similarly, let X€Cov f(S) and let Z€Cov"(S) be associated to X. If we 

take Z'€Cov"(S) such that Z' star-refines Ax, then any X'£Cov f(S), to which we can 

associate Z', is a refinement of X. Moreover we obtain the statements analogous to 

the ones from Proposition 3.10. 

3.12 Proposition Under the foregoing assumptions, we obtain the following homotopy 

commutative diagram: 

H ^ , \l 

'I ,.. \> hz1 

^XX' 

ip 

->G'(Z) 

} 
->GN(X) 

p 

G'(Z')-

"I 
G N ( X ' ) -

where p, p f are the precontinuous maps from Lemma 3.4, and f, ff are the 

isomorphisms from Theorem 2.9. 

Proof: pp2z* r^$2Z' p l h y Remark 3.5, and Tf^'f* = f$2Z'* 

3.13 Theorem The inverse systems (Sx, [PXX']» Cov(S)) and (GN(X)> [^XX']» Cov(S)), 

where fPxx'] a n d f^XX'l a r e t h e h o m o t o P y c l a s s e s represented by Pyyr and fy,.,. 

respectively, are isomorphic. 

Proof: First we define a function $:Cov f ( S ) -> C o v " ( S ) , taking for each X£Cov f ( S ) 

an element Z=$(X) of C o v " ( S ) which is associated to X (see § 2 ) . 

Then, for each X€Cov f(S), we consider the precontinuous map h x : S X ^ G N ( X ) §--ven h y : 

N(X) 

where p and f are the precontinuous maps before mentioned. 

Given X<X' in C o v f ( S ) , take X"£Cov f(S) such that X" star-refines both Ax and Ax'-

Under this assumption, the following diagram is homotopy commutative: 

GN(X)< GN(X') 

Hence (h%9$) is a morphism from (S^, fP^Z'1 * C o v " ( s ) ) t0 (GN(X)> f^XX']' C o v l ( s ) ) * 

With a similar process we define a morphism ^ ^ from (GN(X)» D F X X ! ] ' C o v f ( s ) ) 

to (S2, [PZZ']> C o v " ( S ) ) . Precisely we define H,:Cov"(S)-> Covf (S), taking for each 
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ZCCov"(S) an element X-^Z) of Covf(S) such that Z is associated to X. Then we 

consider the precontinuous map k2 :GN(X) "*"
 SZ given by k^qf , where f :G' (Z) -*• GN(X) 

and q:Gf(Z)->S2 are the before mentioned functions. 

Afterwards, each of the morphisms (hx,$) and (k£,V) is the inverse of the other. 

Finally recall Propositions 3.7 and 3.9. 

4. Shape groups and Cech homology groups of a connected compact topological space S. 

To calculate the shape groups ITn(S,a) based at a point a€S, we have to fix, for 

each covering X, an open set X6X such that a£X. 

Therefore we have to consider some pointed open coverings of the pointed space 

(S,a), such that there exists exactly one element of each covering X containing a. 

We denote such an element by X-j, and we choose the characteristical point x-j of X<| 

taking x-|=a. So a is a point of the element A/^\€AX, and a belongs to the open set 

Zj€Z and to each Briio-.-.i ]6BX. Then, "mutatis mutandis", we obtain that the 

inverse systems ((Sx,a), [Pv^i] , Cov(S)) and ((%(X)>xl)> f ^ , ] , Cov(S)) are 

isomorphic. 

So, for each dimension n the inverse systems ( lTn(SX ,a), Pyyi , Cov(S)) and 

(Qn(GN(X)>Xl)> *XX" Cov(s)) a r e isomorphic. 

Afterwards, if X,. Xr 6 Cov(S) and X_<X', since X and X' are non singular and the 

complexes N(X) and N(Xr) are complete, the following diagram commutes: 

nn(|N(x')|, xp l ^ i l i ! >nn(|N(x)|, x.) 

y y 

i ^xx' * 
Qn(GN(X')' X1 ) > Qn ( GN( X), V 

where u and u1 are the isomorphisms given by the canonical projections from the 

polyhedron |N(X)| to the graph G ^ s of the edges of N(X) and from | N ( X ' ) | to 

GN/y,x respectively (see [1], §3). 

Hence the inverse systems (nn(Sx,a), p*x,, Cov(S)) and (nn( |N(X) | ,X:), l ^ . l * , Cov(S)) 

are isomorphic. Therefore: 

U m (nn(Sx,a), p * ^ , Cov(S)) % J-n(S,a) ̂  lim(IIn( [N(X) | ,XJ ) , |*XX'I*, Cov(S)). 

In the case of Cech homology groups, €or any X£Cov(S) and each dimension n, we 

consider the homology group Hn(N(X)) of the simplicial complex N(X) and the 

singular homology group 1-n(GN(X)) of the graph G ^ x ) (see [5]). 

Given X, Xr € Cov(S) such that X_< X' , we obtain the following commutative diagram: 

xXXf 

Hn(N(X')) — * >Hn(N(X)) 

-j-XX1 

H n ( % ( X i ) ) S »H n(GN ( X)) 
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where V and V1 are the isomorphisms considered in [5], §5. 

Hence: 

lim (Rn(Sx), P £ * \ Cov(S)) ̂  H^S) ^ Urn (Hn(N(X))> ~$™', Cov(S)). 

5. Examples. 

5.1 Let S be the polyhedron |K| of a finite simplicial complex K of dimension m. 

In this case we can calculate the groups IT (S,a) and Hn(S) more simply in the 

following way. 

For any î N, we take the derived K^1' of K, and we denote by v'1' the vertex set 

of K'1' and by Op a p-dimensional simplex whatever of K^1'. Then we put: 

r i = J- inf{d(x
(i), x^i))}, where x ^ \ x^i)^V(i); 

Ri = {V(a(i), ri)}(a
(i)6 K(i); 0<p<m), where V(a(i), ri) ={y€S /d(y, a(i))<ri}; 

r = {Ri}(i€N). 

It is easy to see that each R^ is an open covering of S, and that the graph G'tR̂ ) 

is the graph of the edges of the complex K'1'. 

The set T is cofinal in Cov(S); so we have: 

V S - a ) = lim (nn(SR., a), p* , r); 
v -1 ]? 2 *- J 

Hn(S) = Urn (Hn(S^.)), p^i J, D. 

ince, for i>0, lln(SR.,a) ^ lln( |K| ,a), -^(S^.) ̂ H n(K), and all functions P*>.£. 

nd p L J are isomorphisms, we obtain: 
nn(S,a) = nn(S,a); 
Hn(S) = Hn(K). 

5.2 Let (S,d) be a compact metric space. 

For any £>0 we consider the symmetrical pf-space Se=(S,Pg:) where P ={V(x,e)'Kx€S) 

and V(x,c)={y€S / d(x,y)<e}. If ef<£, we consider the precontinuous map.p ,;S,+fi 

given by pe£i(x)=x for any x€S. 

Then we easily see that, for each dimension n, we have: 

ITn(S,a) -lira ain(S£,a), p*e,, E), 

M S ) = Urn (Hn(Se), p
£ £ \ E), 

where E is the directed set that we obtain taking the set R+ of all positive real 

numbers with the inverted order. 

5.3 Let S be the Warsaw circle, i.e. the following subspace of R^. 

Given the points a=(0,1), b=(0,-2), c=(i,-1), d=(i,0), we take the segments ab, 
be, cd and all points (x,y)£R2 such that x6J0,i] and y=sin(7i/2x). 

Let $: [i, l]->ab Ubc Ucd be an homeomorphism such that $(1)=a and ^(D^d, and let 

f:]o,l]->-S be the continuous surjection given by: 

((x, sin(7i/2x)) if 0<x£i; 

$(x) if J<x<1. 

Then for any e>0 we consider the pretopological space S£ from 5.2 and the 

S 

and 



36 D.C. DEMARIA - R. GARBACCIO BOGIN 

precontinuous loop ̂ e:[o,l]->S£ based at a, given by: 

( a if 0 < x < A 

*£<*> = { 
I <£>(x) if A £ x < 1 

where A=1/(4n+1) and n is the lowest positive integer such that 1/(4n+1) <€. 

The group II<|(S,a) is isomorphic to (Z, + ), and we observe that its generator can 

be associated to the sequence of the prehomotopy classes represented by the loops 

^e of Se. 
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