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EXTENSIONS OF CYCLICALLY MONOTONE MAPPINGS 

Oan Pelant and Svatopluk Poljak 

The paper deals with cyclically monotone mappings and their 

subclass called strongly cyclically monotone mappings. We abbrevi­

ate them as c#m# and s#c#m#, respectively. The c#m# mappings were 

introduced by R#T# Rockafellar [7] to characterize subgradients of 

convex functions. The s#c#m# mappings were obtained in [4] as a 

class of mappings having an interesting "periodical property" (see 

Theorems 5 and 6 below) when used as a part of a transition mapping 

of a discrete system* It was shown in [5] that some reasonable de­

cision procedures when the decision depends on the impact of sur-

rouding may be formulated as s#c#m# mappings. This application sug­

gests a question whether each partial list of internally consistent 

decisions can be extended to some rule applicable to all impacts* 

We answer the question positively in Theorem 13 (of course only for 

the decisions identified with some s#c#m# mapping). This theorem 

is based Qn a statement which concerns the structure of subgradients 

and may be of some interest itself: 

If 2(y)nrel int 0(x) is non-empty, then ^(x)C^(y) 

where ^(x) and ^(y) are sets of all subgradients of a convex 

function u on Rn at points x and y , respectively. 

We also survey other results on extensions of cm, mappings. 

We give full proof to those which were only mentioned before. 

Definition (Rockafellar [7]): Let SCR n and s : S -*Rn be a 

multivalued mapping. Then s is called cm. on S , if 

k 
U) XZ(x - x )y >0 

for every 1<^2 , every xlf.,,,X| » x , and every choice of 

y ^ s ^ ) , i=l,###,l< . 
It follows from the definition immediately that every restric­

tion of a cm # mapping is cm # as well# 
Let u : R n—^R be a convex function. The set of all sub-
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g r a d i e n t s of u at x i s denoted by ^ u ( x ) * i # e * 

# u ( x > = { y Є R П | V x ' u ( x ' ) - u ( x ) ^ ( x ' - x ) y } . 

(We will omit the subscript u in ^(x) when it cannot make any 

confusion
#
) 

Theoгem 1 (Rockafellar [7]). 

(i) The multivalued mapping x i—» ^
u
(

x
) is c

#
m

#
 for every 

convex function u : R —> R
 # 

(ii) If a (multivalued) mapping s : R
n
—*• R

n
 is c

#
m

#
, then 

there is a convex function u such that s(x)Ç?(x) 

for every x # 
(iii) The function u in (ii) is unique (up to additive con-

stant) provided s is maximal c#m# mapping# 
As we deal with single-valued mappings only, we restrict the 

notion of c#m# as follows. We say that a mapping f : S —*• Rn , 
S C R

П
 , is c

#
m

#
 on S , if 

k 

(2) TH*± -
 x

i в l
)f(

x
i)^o 

i«l 

for all k ^ 2 and xll#ł#,X|. «
 X

0 C S # 

Let us say a mapping u : S —* R is a potential of f , if 

(3) u(x) - u(y)^(x-y)f(y) 

for all x,yЄS
 # 

Parts (i) and (ii) of Theorem 1 remain true of we replace R
n 

by arbitrary (єvєn finite) subset S C R 

Theorem 2 {\A\ )
#
 Let S C R

П

 #
 A mapping f : S —* R

n
 is c

#
m

#
 if and 

only if it has some potential
# 

Sketch of the proof
#
 If the mapping f has a potential, one can 

simply check that f is c
#
m

#
 On the other hand, there are morє 

possible ways of defining a potential for a given c
#
m

#
 mapping. 

Rockafellar [7] used the forrnula 

(4) 
------7 -*±-, 

u(x) = sup ( Z Z ' X i + 1 f ( x . ) - ^ M t x J ) 
is-0 І=0

 X 

where x^ is a fixed element and the supremum is taken over all 
0
 r

 . 

finite sequences
 x

0
'

x
i "

 #
 •'

x
k+i

 B
 'b^

S # A P u l t r
 |_

6
J
 o b s e r v e d tn

a< 

a potential can bp defined also by 
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k+1 k 
(5) u(x) - inf ( ZZx^fJ,^) - & f(x )) , 

i=l 1 1 i=0 x 1+± 

where again x G S is fixed and the infimum is over the same set 
as above. Let us mention that the potentials defined by (4) and 

(5) may differ, (E#g. S * {(0,0).(1.1)} . f(O.O) - (0,-1) , f(l.l) -

- (1.0). ) 

The next theorem says that every potential can be extended to 
a convex function* 
Theorem 3 ([2]). Let f : S -*- R

n , SC Rn , be c#m# and let u be 
a potential of f # Then there exists a convex function u : 
conv S —^R such that u L » u and f (x) G ^-(x) for all x E S # 

( conv S denotes the convex hull of S #) 
Sketch of the proof# For every y G S consider a linear mapping 
f : R n-^R defined by r 

(6) fy(x) » u(y) + (x-y)f(y) , 

and set u(x) = sup \fv(x) | y £ s } # The function u is convex as 
it is the supremum of convex functions f , and as f (x)^f ,(x) 
according (3), we get u(x) = u(x) , for all x G S # Clearly u(x) 
must be finite on conv S # 
Corollary 4# Every c#m# mapping f defined on S C R can be ex­
tended to some c#m# mapping f defined on conv S # 
Proof, Let- u be the convex function defined in Theorem 3 (for 
arbitrary potential u ), and f(x) be arbitrary subgradient of 
u at xGconv S \S # 

The c#m# mappings have certain interesting "periodical" pro­
perties which lead us to study them, E#g, the following holds. 
Theorem 5 ([2j)# Let A be a real symmetric matrix of size n and 
f • Rn—-»• Rn be continuous c#m# Define a sequence IYA by 

(?) y i + 1 - f(Ay.) 

for some initial y # Then lim |j yi+2~yi'|
 = ° P r o v i d e d the 

sequence is bounded. 
In case the c#m# mapping is defined only on a subset of Rn , 

the assumption on continuity must be replaced by another 
property. 

We soy that a c#m# mapping f : S —* Rn is strongly c#m# on 
S , if 
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k 
(8) 2 Z ( x . - x.^1)f(xi) = 0-=>-f(x1) = ### = f(xk) 

for all k-^2 and every x1####,Xj< -= x Q G S . 
Theorem 6 ([4J)# Let A be a real symmetric matrix of size n 
and f be a s#c#m# mapping of finite range#Then the sequence (7) 
has period at most 2, i#e# Y|<+2

 = V\* ^or a-^ ^ sufficiently 
large* 

Theorem 6 has a very short proof, but it can be also derived from 
the more difficult Theorem 5# The reduction is based on the follow­
ing extension result* 

Theorem 7 ([2])* Let S be a finite subset of Rn and f : S—>*Rn 

be c#m# Then f can be extended to some continuous mapping f : 
R n—>R n if and only if f is s#c#m# 

The additional condition (8) on c#m# mappings might look a 
bit restrictive, but we show that it is not the case# We can 
produce sufficiently many s#c#m# mappings due to Propositions 11, 
12 and Theorem 13# Moreover, all the mappings with period at most 2 
studied in [lj and [3j were s#c#m# 

Lemma 8# Let u : S—>R be a convex function* If s G^(y) and 
u(x) - u(y) s (x-y)s , then s G ^ ( x ) . 
Proof. Let z G S be arbitrary. As sG /9(y) , we have. u(z)-u(y)^ 
^(z-y)s . Thus u(z)-u(x) * (u(z')-u(y)) - (u(y)-u(x))^ 

- (2-y)s - (x-y)s == (z-x)s . 
This proves that s is a subgradient of u at x . 
Lemma 9. Let f : S—*Rn be c#m# and u be a potential of f . 
Then the three following conditions are equivalent for every choice 
of x1,###,xJ< = x Q G S , k-^2 # 

k 
(i) H {*< - x )f(x ) -= 0 

i-=l x x x x 

(ii) u(Xi) - u(xi-:L) -= (xt - xi-1)f(xJL-1) 

for all i=l,# . .,k 
( i i i ) f ( x . ) / f ( x i - 1 ) e ^ ( x . ) 

for all 1=1, . . ., k . 
Proof. Conditions (ii) and (iii) are equivalent due to Lemma 8# 
If (ii) holds, then 

0 = E ( u ( * O - "(x^)) -E(Xi - x1-1)f(xi-1) 

which gives (i)# If (ii) does not hold, then u(x±) - u(xi-rl)> 
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> (x± -
 xi_i) f (xi_i) for some -1 * while u(x±) - u(x±aml)^ 

~( xi ~ xi-l^f(xi~l) for a 1 1 the r e m a i n i n 9 i's • Summing up 
These inequalities we get a contradiction to (i)# 

Proposition 1Q# Let •< be a good ordering of Rn , and u be a 
convex function on Rn

 # Then a mapping f defined by 

(9) f(x) =- min^ (y | y<E'?(x)} 

is strongly c#m# 

Proof# Assume f is not s#c#m# Then there are some k-^2 and 
xlt000tx^ = x such that at least two f(xi)'s are distinct and 

k 
^ < x i - xi-i)f"(x±) " ° ' i=l x 1"-L x 

Let y = minx (f (x 1), # # #, f (x. )) , and j be such that f(x.^1)s= 
= y / f(x.) # Using Lemma 9 (iii) we get y -= f(x. J G ^(x.*) • 
This is a contradiction with the choice of f(x.) as the minimum 
of ^(xj) by (9)# 

Corollary 11 ([4J)# Let u be a convex differentiable function 
on Rn

 # Then the gradient V u is s#c#m# 

Proof # If u is dif ferentiable, then ^ ( x ) ! = 1 for every x # 
Though Proposition 10 proves existence of at least one s#c#m# map­
ping for every convex function, it does not give any explicit de-. 
scription of it# 
Proposition- 12. Let u be a convex function on Rn , and A be 
the lexicographic order on Rn

 # Then the mapping f defined by 
formula (9) is s#c#m# 

Proof# As the sets 2(x) are convex and compact, each of them 
contains the minimum element with respect A . The proof then 
proceeds as in Proposition 10# 
Example# Consider the convex function u(x) =- u(x1,###,x ) « max x. 
and define a mapping f(x 1 # # # #,x n) =- (0, # # # ,0,1,0, # # # ,0) so that 
1 is in the j-th position if x. ̂ xjL for i-^j and x. > x. 
for i > j « Then f is s#c#m# as it is the lexicographic minimal 
subgradient of u # 

The main result of the paper is the following theorem# 
Theorem 13# Let f : S-^ Rn , S C R n , be s#c#m# Then f can be 
extended to some s#c#m# mapping f defined on conv S # 
Before proving Theorem 13 we need a lemma# 
Lemma 14# Let u be a convex function on a convex set S C R n , 
s,tG^(x) and tf,/;} be positive reals with <* + A = l 0 Then 
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for every y C S , cXs + /3t E #(y) implies s,tC?(y) , 

Proof,. As s,tG/?(x) , y must satisfy 

(10) u(y) - u(x)^(y-x)s , and 

(11) u(y) - u(x)^(y-x)t , 

We claim that (10) and (11) hold with the equality, i,e, 

(12) u(y) - u(x) = (y-x)s , and 

(13) u(y) - u(x) = (y-x)t , 

Assume that say (12) is not true, i,e, 

(14) u(y) - u(x)> (y-x)s 

(the opposite inequality is excluded by (10) ), 

Counting the linear combination of (14) and (11) with coefi-

cients <x and fh respectively, we obtain 

u(y) - u(x) > (y-x)(cA s + /3t) 

which contradicts to the assumption ex s + /5tG^(y) , It follows 

immediately from (12) and (13) that s,tC/3(y) # 

Corollary 15, Let u be a convex function on SCR n , If 2 (y)O 

Orel int 7) (x) j* 0 for some x and y , then ^(x)C^(y) , 

Proof, Let rC^(y)nrel int V (x) , Assume s E ^ ( x ) , s ^ r is 

given. As "3 (x) is convex, there is some t so that r is an 

interior point of the segment with the endpoints s and t , Thus 

s G ^ (y) by Lemma 14, 

Proof of Theorem 13, Let u : conv S—>R be a convex function 

which is a potential to f , (Such a function u exists due to 

Theorem 3, Consider an auxiliar mapping D and its extension D 

which are defined as follows, 

D : (2(x) | xGs}->R n where D(?(x)) -= f(x) , and 

D : (#(x) | xCconv s) -^ Rn where 

^ D( D ( x ) ) i f ^ ( x ) C d o m D 
DC?(x)) =- J 

^ a r b i t r a r y y C r e l in t ^ (x ) otherwise , 
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The mapping D is defined correctly, as if f(x) ̂  f(x') and 

Q (x) = ^(x') for some x,x'GS , then f would not be s.,c*m, 
by Lemma 9, Now, we can define f by f(x) = D( D (x)) 0 Assume f 

is not s#c,m#f and let x1 ,x2, •,, ,x. = x be the shortest sequence 

(with minimum k ) such that YZ{x^ ~ Xi.^ )f (x.*) ~ ° ^ut n o t a"^ 

f ( x . ) ' s are same* Using Lemma 9 (iii) we get 

(15) f(xjL)ff(xi-1)G ^(xi) for all i=l,..,,!< , 

We distinguish two cases a and b 0 

Case a , For every i=l,,,#,k there is some x! such that xf€S, 

^(x!) = ^ (x . ) „ Using (15) and the definition of f we get 

*(xi),f(x^1)G^(x£) for all i . 

Using Lemma 9 f is not s.c#m# which is a contradiction. 

Case b , If Case a does not occur, then, say, ^(x.)^dom D , 

Thus f(Xj<)Grel int ^(x^) , and as f(xk)G^?(x1) by (15), using 

Corollary 15 we set 'D (xk) C /?(x1) ., As f (*kaml) G ̂  (xk) by (15), 

it is f (xk-wl) E ̂ (x 1) , Thus
 xi"^'x\<mtl

 f ° r m a s m a l l e r counter­

example to (8), 
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