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ON A FUZZY TOPOLOGICAL STRUCTURE 

A. P. Sostak 

Om Introduction 

Fuzzy topological spaces where defined in 1968 by C.Chang [2J 
and later redefined in a somewhat different way by R.Lowen [8] and 
by B.Hutton [7]. These definitions are based on the fundamental con
cept of a fuzzy set introduced by L.Zadeh [17]. In the last fifteen 
years a vast literature devoted to various kinds of fuzzy topologi
cal spaces has appeared (see e.g. [5] - [16] and others). However 
so far as we know in all the works of this area fuzzy are only sets 
(sometimes they are fuzzy even of higher orders as e.g. in [12]). 
But the so called fuzzy topology is always crisp - we mean it is a 
crisp subfamily of some family of fuzzy sets. The aim of this pa
per is to define and to begin the study of fuzzy structures of to
pological type. 

To formulate our program and general ideas more precisely, 

recall first that the objects of the category Top of topological 

spaces are pairs (X, {T) where X is a set and ST is a family 

of its subsets, i.e. :/<£. 2 , satisfying the well-known axioms. 

The objects of the category Fuz of "usual" fuzzy topological 

spaces are pairs (X,T) where X is a set and T essentially is 

IX 

a family of its fuzzy subsets, i.e. T€ 2 , satisfying some natu
ral axioms (see e.g. [ 2 ] , [ 8 ] , [ 7 3 ) . Therefore both in Top and 
in Fuz for every subset (in the second case also for every fuzzy 
subset) of a space it is precisely known whether it is open or 
not. The idea of this paper is to allow fuzzy subsets (specifical
ly also usual subsets) to be open to some degree, and this degree 
may range from 1 ("completely open sets") to 0 ("completely 
non-open sets"). Thus, a fuzzy topological space will be understood 

jX 
here as a pair (X,T) where X is a set and T e i , i.e. 
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a fuzzy topology is a function T : I —*- I (satisfying some axioms) 
which assigns to every fuzzy subset of X the real number, which 
shows "to what extent" this set is open (definition (2.1)). This 
idea seems to be rather natural also because for a fuzzy set, i.e. 
for a set without distinct boundaries, it is not always suitable 
to ask whether it is "completely" open. 

This approach will lead us to a category FT , the objects of 
which are fuzzy topological spaces as they are sketched above and 
morphisms are appropriately defined (see definition (2.9) )• 

Since our principal interest in this paper is the category 
FT , the terms "a fuzzy topological space" and " a fuzzy continuo
us mapping" will always mean respectively an object and a morphism 
of this category. In the case when working with fuzzy topological 
spaces and fuzzy continuous mappings in the sense of CChang, i.e. 
objects and morphisms of the category Fuz , this will b e always 
explicitly stated. 

The structure of the paper is as follows. 

In the first section we "fuzzify" such notions of set theory 
as "inclusion", "equality", "intersection" and "union". In section 
2 the category FT of fuzzy topological spaces and fuzzy continuo
us mappings is defined. The products and coproducts of this catego
ry are studied in section 3. 

The forth section is devoted to the so called induced fuzzy 
topological spaces. They form a subcategory IFT of FT which 
appears to be isomorphic in a natural way to the category Top . 

In section 5 we discuss the role of the category Fuz of 
"classical" fuzzy topological spaces as a full subcategory of FT. 

The last, sixth section is devoted to the notion of the com
pactness degree of a fuzzy subset of a fuzzy topological space. 

The following notations will be used in the paper. If X is 

a set and ACX then Ac « X\A . Analogously, if JL is a fuzzy 

subset of X , i.e. /* : X —* I , then A c « 1 -A . As usual, 

I =[0,1] and 2 ={ 0,1 } . The set of all fuzzy subsets (all sub-

sets) of a given set X will be denoted I (respectively, 2 ). 

The symbols V and A will be used respectively for the supremum 

and the infimum of a family of fuzzy sets .The category of topolo

gical spaces is denoted Top . 



ON A FUZZY TOPOLOGICAL STRUCTURE 91 

1« Preliminaries 
The aim of this section is to "fuzzify" such basic set-theore

tic notions as inclusion, equality, intersection and union. Here we 
essentially use the ideas of Z.Diskin f5]* 

Let X be a set and let A C X . Then A can be identified 
with its characteristic function. We shall use the same notation . 
for this function, i.e. A: X—*{0,1} « 2 where A(x) « 1 iff xc A. 

The inclusion A C B for subsets of X can be written as 
A ̂  B and generalizing this Tact for fuzzy subsets M and P of X 
the inclusion Jl c i) is usually understood as the inequality A£ P • 
Our approach however is different. The inclusion A c B can also 
be written as ACUB = X or (AcVB)(x) = 1 for all xeX and hen
ce as igf (AcVB)(x) = 1. On the other hand igf (AcVB)(x) = 0 

iff A <£. B . "Fuzzifying" this observation we come to the following 
(1.1) Definition (Fuzzy inclusion). For fuzzy subsets M and 

P of a set X let (^ c )) ) =. igf (y*cVv> )(x) . 

(1.2) Remark. Thus the fuzzy inclusion may be considered as a 
function C I x I —*• I . The real number /*- C v shows "to what 
extent" the fuzzy set A is contained in the fuzzy set P • Noti
ce also that the restriction of C to 2^ x r , i.e. to the fa«* 
mily of pairs of crisp subsets of the set X is just the usual in
clusion. More precisely, A C B = 1 iff A c B and A c B = 0 
iff A <£ B . 

(1.3) Remark. It may look strange at first that for a proper 
fuzzy set J** the number /*> cy* is never equal to 1 . However this 
will not seem unnatural if one thinks of /*• as of a relation be
tween fuzzy sets and not just as of a relation between functions. 
Thus, JL being a fuzzy set may "contain some points of X only 
partly" and therefore we cannot require thaty* should be comple
tely contained in itself. 

Recalling that A = B iff A C B and B C A we propose to 
"fuzzify" the relation of equality in the following way: 

(1.4) Definition (Fuzzy equality). For fuzzy subsets M> and 
$ of a set X let ( JJL = $ ) = (y" c i> ) A ( P C/C ) # 

(1»5) Remark. The fuzzy equality can be considered as a func
tion * I x r —*- I extending the usual equality - : 2T* 2^->2, 
which is defined in the natural way. 

A crisp family OC of crisp subsets of a given set X can be 
realized as a function fit: 2X —*• 2 indicating which subsets belong 
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to it. The intersection of all subsets from OL can be realized as 
a function A OL : X -> 2 defined by the equality A OL (x) • 1 iff 
X G A for all A€ OL • .Formally this can be written as follows 

(A<%) 00 = inf (( Ot(A))°VA(x)). 
A€2X 

Generalizing this formula to the case of a fuzzy family of fuzzy 

subsets of X we obtain the following 
X (1.6) Definition. Let OL : I —>• I . (Such a mapping will be 

understood as a fuzzy family of fuzzy subsets of X). The intersec
tion of this fuzzy family is a function A0t: X —> I defined by the 
equality 

d A 01) (x) « inf ((0£(/O)° V/i(x) ). 
/€I X r r 

For a crisp family OL of crisp subsets of X the union of 
all elements of OL can be defined by the equality 

( VOt ) (x) - supY( OL(k) A A(x) ). 
A€2A 

Generalizing this approach for the fuzzy case we get the following 

(1.7) Definition. Let OL : IX —> I. The union of this 
family is a function V0£ : X —>I defined by the equality 

- si 

/ « 

(1.7) Definition. Let OL : IX —> I. The union of this fuzzy 
>tion \/0C : X —>I defined by the ec 

(VOL) (x) -* supx(0C(/O AyU(x) ), 

2. Fuzzy topological spaces and fuzzy continuous mappings 
(2.1) Definition. Let X be a set. By a fuzzy topology on X 

we call a function X : I —-• I satisfying the following three 
axioms: 

(1) if / t f l? € IX , then X (yuA^ ) ^ T ( / 0 A T ( P ) . 
(2) i f / ( i e i X for a l l i c j f , then X ( V / ^ ) > /NTC>Wi); 

C3) r ( 0 ) - T ( D = 1 . 
The real number X (At) will be called the degree of openess 

of the fuzzy set yW- • 
(2.2) Definition. A fuzzy topological space is a pair (X,t) 

where X is a set and X is a fuzzy topology on it. 
(To shorten the expression we shall often omit the word "topo

logical" and say just "a fuzzy space".) 

• (2.3) Remark. The intuitive motivation for these definition 
is as follows. Speaking informally, the axiom (1) states that the 
intersection of two fuzzy sets is not "less open" than the minimum 
of"openess" of these sets. The axiom (2) requires that the degree 
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of openess of the union of any crisp family of fuzzy sets should be 
not less than the "smallest" degree of openess of these sets. The 
last,axiom (3) .just states, that the empty set and the whole space 
are "absolutely open". 

The main examples of fuzzy spaces considered in this paper are 
the so called induced fuzzy spaces (section 4) and fuzzy topologi
cal spaces in the sense of CChang and in the sense of R.Lowen 
(section 5)» We hope that these special but important kinds of fuz
zy spaces will also help to justify our definitions. 

(2.4) Definition. If there are. two fuzzy topologies T^ and 
T~ on the same set X ,we say that T^ is stronger than T 2 if 
T/)(yU) > r

2
( / 0 f°r ^ery / e i X

# 

(2.5) Definition. Let (X,T) be a fuzzy topological space. 
We define the mapping T X : IX-* I by the equality T *(/«.) - T (f?) 
for every yU€ix

 # The number T ^ O O will be called the degree of 
closedness of a fuzzy set A> • 

ta the definitions (2.1) and (2.5) one easily gets the 
following 

(2.7) Proposition. The mapping T K : Jr —*- I has the follow
ing properties: 

(1)* if /-,\>€IX , then TK</tVp) 2rT*(/OATx(v>) , 

(2)K if /l± €. I* for all ie J , then T*( A / ± ) » ^ T ^ j ) * 

(3)* Tx(0) « T*(D - 1 . 
(2»6) Remark. It is clear that a fuzzy topological space can 

be equivalently defined as a pair (X,XK) where X K : I—-> I sati
sfies the properties (1)K, (2)X,(3)K and is understood as the de
gree of closedness of fuzzy subsets. The corresponding fuzzy topolo
gy is to be defined by the equality T (JUL) « TK(/*.C) . 

(2.9) Definition. Let (X,T) and (Y,C) be fuzzy spaces 
and J : X — • Y is a mapping. This mapping is called fuzzy conti
nuous if T( f"1(9)) ? ^ ( ^ ) for every p € IY. 

Speaking informally, fuzzy continuous mappings are the ones 
which do not diminish the degree of openess of fuzzy subsets in the 
direction of preimage. 

(2.10) Proposition. A mapping f : X —*• Y of fuzzy spaces 
(X,T) and (Y,<D) is fuzzy continuous iff T K( f~1( i> ) ) ^ 6 K(p)< 
for every ? € I . 

^ e Proof is direct and therefore omitted. 
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(2.11) Proposition. Let (X,T), (Y,d), (Z, f ) be fuzzy spa
ces and f: X -» Y, g: Y -> Z fuzzy continuous mappings. Then the 
composition g»f: X -*Z is also fuzzy continuous. 

The proof is obvious. 
Since the composition is associative and the identity mapping 

e: X—*X is fuzzy continuous with respect to any fuzzy topology 
on X the following definition is justified. 

(2.12) Definition. By FT we denote the category the objects 
of which are fuzzy topological spaces and the morphisms are fuzzy 
continuous mappings between them. 

Some properties of this category will be considered in the 
next section. 

3. Products and coproducts of fuzzy topological spaces 

The main aim of this section is to show that there exist pro
ducts and coproducts in the category FT and to construct them 
explicitly. 

(3.1) The initial fuzzy topology for a mapping. 
Let X be a set, (Y,^) a fuzzy topological space and 

f: X —r Y is a mapping. By the initial fuzzy topology for this 
mapping we understand the weakest fuzzy topology X on X such 
that the mapping f: (X,T) —> (Y, <-> ) is fuzzy continuous. 

To construct such a fuzzy topology consider the set M « / A « 

- f~1( 9 ) : Y> € IY) of fuzzy subsets of X . Por a given JUL € M 
let ^ -* {?: 9€ IY ,/t -= f~1(P )} and define X (jl) * 

- sup {(>(*) : v> € VJJL } . It is obvious that U { Pa : A€I Xj » I 
and X (f~1( 0)) 3* tf ( J> ) for every p € IY . 

Let/^ , ̂ 2 € N , then /*. mJK^ A M g £ M and moreover, 

P^ D l ^ A ^ : V^P/4 , ̂ 2 € P/2} • Therefore f (yu ) -
- sup tflf(P ) : tfcP^} £ sup { ^ ( ^ A *2) : ̂ 6 P^ , V>2€l)i2} ̂  

* sup {6'(91)Afj(y?2) : ̂  € P^ , ̂ e p / 2 J m SUP l tf(?1> : V i * ^ } 
Asup{CS'(92) : 92€^i2} - X ^ ) AT(yu2) , and hence 

T ( / 0 >t(^) AT(yu2) for/^ ,/<26M (1). 
In a similar way we can show that 

for any subfamily {u± : i€ u] of M /p\ 

T ( V / I ± ) > A{sup6'(9i) : J^P/i-J- AT(^.) 

Moreover, it is obvious that 0 * £ (0) € M , 1 =- f ^ O ) ^ M and 

r(o) . T ( D . 1 (3) 
Thus X : M-*I satisfies the axioms of definition (2.1). 

Y 
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xr 

Now we extend X to a mapping T : I •—> I by letting X (M) m 0 
for all jx £ M . It is easy to check that the function X thus de
fined is indeed a fuzzy topology. Moreover, from the construction 
it is clear that T is the weakest fuzzy topology on X making-
the mapping f: (X,T) —*• (Y, ̂  ) fuzzy continuous. 

(3.2) Initial fuzzy topology for a family of mappings. 
Let now { (Y „ <-> ) • a e i j b e a family of fuzzy spaces and a a A X consider for each a€ A a mapping f : X —^ Y . Let T : I —>• I a a a 

be the initial fuzzy topology on X for f , and let the mapping 

T : IX —> I be defined by the equality X(u) =- inf T (f-) where 

feiX. Since TC/^A/g) =* ̂ f T ̂  A/t2) ̂  inf ( V / ^ A T ^ ) ) 

> igf Ta(/C,) A inf T J ^ ) -=T(yM1) A T ( ^ 2 ) and 

t ( V/i±) = l9fTa( \7i^ V *
 ra^P - A

± V
 TaW " J?W 

for any collection of fuzzy subsets A. of X , one can easily con
clude that X is a fuzzy topology on X . Moreover, it is clear 
from (3-1) and from the construction of T that it is the weakest 

fuzzy topology on X for which all mappings f : (X,T) —* (Y_.tf ) 
a a a 

are fuzzy continuous. This fuzzy topology X will be called the ini

tial fuzzy topology for the family of mappings ( f Q : X -* YQ f acjf/. 
a a J 

The existence of such a fuzzy topology allows us to state the fol
lowing theorem. 

(3.3) Theorem. FT is a complete category. In particular, .FT 
contains products and inverse limits. 

(3•4) Product of fuzzy topological spaces. 
To construct the product in FT explicitly consider a family 

{(XQ,T ) : a e.A} of fuzzy topological spaces. The product of this a a 
family can be defined as a pair (X,T) , where X denotes the pro
duct of all sets X and T is the initial fuzzy topology genera
ted on X by the family / p0 : X -* XQ , QLGAI of all projections. 

a a 
(3-5) Product of fuzzy subsets. 

Let (X^pT^) f (X2, T 2) be two fuzzy spaces and let (X,T) 

denote their product. If /^ € I l, /*2
€ ^z * t h e n for a fuzzy set 

/A - ^ */*2 € I
X (which is defined as/M(x1, x2) -=/<1(x1) A^2(x2) ) 

we have T (/L ) = T ( p 1 " Y i ) A P 2 " Y 2
) ) ^ T ( p l " 1 ( / l ) ) A T ( P 2 " V 2 ) ) 

^T>|(yU/|) A T2(>^2) • Hence the degree of openess of the product 

of two fuzzy sets in the product space is not less than the mini

mal degree of openess of thesq sets in the corresponding fuzzy 

spaces. 
Now let { (X ,T ) : a 6 AJ be a family of fuzzy spaces and 
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y 

let (X, f) denote their product. Take u € I a for every a and 
let y«€lX denote the product of all Ma ( i.e. /((x) = A Aa(xa) 

where xe X and xa denotes the a-est coordinate). Quite similar
ly as above one can show that TK(/c) > ^t^fta) * a n d h e n c e ^ e 

degree of closedness of the product of fulzy sets is not less than 
the degrees of the degrees of closedness of the factors. 

The rest of this section is devoted to the concept of copro-
duct (or direct sum) of fuzzy topological spaces and to some close
ly related notions. 

(3.6) Final fuzzy topology for a mapping. 
Let (X,T) be a fuzzy space and Y is a set. Consider a 

mapping f: X~*Y and for every ))e IY let d (V> ) • T(f"1(V)). 
It is easy to check that 6* is a fuzzy topology on Y and more
over, it is the strongest fuzzy topology on Y for which the map
ping f: (X,T) •—*> (Y, tf) is fuzzy continuous. 

(3.7) Final fuzzy topology for a family of mappings. 
Let {(X. T ) : as j | be a family of fuzzy, topological spa-a a 

ces and for every a consider a mapping fQ: XQ -—> Y where Y is 
a a 

a set. Let 6* denote the final topology on Y for f . Define 
6 : IY — * I by the equality tf ( v> ) » igf tfa(-P ) for $€. IY . 

Quite similarly as in (3.2) one can show that ^ is a fuzzy topo
logy on Y . Moreover, it is easy to notice, that it is the stron
gest fuzzy topology on Y for which all the mappings f : X_—*• Y 

a a 
are fuzzy continuous. 

-From (3.7) immediately follows such a theorem-

(3.8) Theorem. The category FT is cocomplete^Specifically, 

it contains coproducts and direct limits. 

(3.9) Coproduct in FT . 
To construct the coproduct in FT explicitly consider a fami

ly {(XQ» l O i a€Jl} of fuzzy spaces and let X » ® X Q denote 
a a * "̂"̂  a 

the direct sum of the corresponding sets. The space (X,T) where 

t is the final topology for the family of all inclusions 

ia: X&—*>Z is just the coproduct of these fuzzy spaces. Moreover, 

it is easy to notice, that T (/O - igf Ta(/*a) and TK(/*0 -

« infTa(/{ ) where A denotes the restriction of /^€IX to X&. 
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4. The induced fuzzy topology 
Let (X, IT) be a (usual) topological space. In this section 

we show how the topology tT induces a fuzzy topology on the same 
cr" X 

set. More precisely, a topology U : 2 —*• 2 will be extended in 
a definite way to a fuzzy topology X : I —=* I • 

Thus, let ST: 2 X -** 2 be a topology on X and let^*^-*--2 
be the corresponding closed topology (i.e. *7-3€(A) = &~ (Ac) for JkSZr) 
The closure of the set A in (X, JT) can be defined by the equali
ty X - { x : ^ U 6 ^ x * -3yeAfiu} where £T^ denotes the family 
of all neighbourhoods of x in (X,£T). Observing A as a functi
on, we can write also 5(x) « inf sup A(y) . Analogously, the in-

U€Jx y6U 
t e r i o r of A can be defined as A°(x) « sup inf A(y) . This ob-

ve!Tx y € U 
servation -justifies the following 

(4.1) Denotation. For every /*€.! let 
/T(x)« inf sup /t(y) and A°(x) - sup inf /*(y) , 

y U67VyeU y y U€j" y€U 
x x 

where £T denotes the family of all neighbourhoods of x in (X,£T). 
Since *T can be ordered by inclusion,we can rewrite the pre

vious formulae as follows: 
(4.1)' i!(x) « lim sup /(y) , M °(x) -* lim inf /t(y) . 7 uer xy€U

y / US-TycU' 
Applying a well-known theorem (see e.g. f 1 J , Chapter 4- , §6 

or [4-J , Chapter 2 , p. 153 ) one obtains 
X — 

(4-.2) Proposition. For every y«€l the function yc is upper 
semicontinuous and the function^0 is lower semicontinuous. More
over, a function Jl^J: is upper semicontinuous (lower semicontinu
ous) iff Ai » JZ (respectively M. ^Z**0 )• 

Again, applying the well-known facts (see e.g. ClJ, Chapter 4, 
§§5»6) one can easily prove the following 

(4.3) Proposition. Let A, p€I and let <*€IX be a constant. 
Then 

(2) /1V? = i?V? ; (2)' (/<Ai))0 - ^ A p 0 ; 

(3) y& -/I ; (3)' (/C0)0 » ^ ° ; 
(4) £ * oC . (4)' oC° =-. 06 # 
Summing up, from (4.3) and (4.2) we get the "following state-

ment: 
(4.4) Proposition. The family T -« if- i J*- - /t*° ,yM€IX} is 

a fuzzy topology in the sense of R.Lowen f8j — C'lOj ( and hence 
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also in the sense of CChang [2 ] ). Thus (X-T) is an object of 
the category Fuz-̂  and therefore also of the category Fuz. More
over, (X,.ff) =- <o(Xf T) where cO : Top —^Puz L is R.Lowen's 
embedding functor [9 ] ,flOJ • 

(In this connection see also (5.4) belov/.) 
(4.5) Definition (cf. [3 J ). Let (X,!T) be a topological 

space and define the mapping X : * —> * by the equality X CM) m 

« (>U <ZA?) for xi € I • The mapping X wil1 De called the fuzzy 
topology induced by the (crisp) topology tT . 

The correctedness of this definition is assured by the follow
ing 

(4-.6) Theorem The mapping X is really a fuzzy topology. 
Moreover, the restriction of T to 2^ coincides with U~ . 

Proof. 0 ) Let ytt, p e I X . Then X (/< A p ) = igf((/c/ip)c V 
V (/MAV>)°)(x) - igf ( ( / I C V ) ) C ) V ( / O A K 0 ) ) ( X ) £ -UtfCC/t0^0) 
A(P cVP°))(x) > igfCxi0 V/t°)(x) A i5f( P°Vp°)(x) « 
-TC/O AT(p). 

(2) Let M± € I
X for all i€ 3 . Then r ( V/^) * 

i5f (( V / * . )
c V (V^.)°)(X) -= igf (( Ay<?) V( V/t?))(x) ^ 

i5f A^Vy*0) -= A i5f (/i?^?) = A T ( ^ ) . 

(3) The equality T (0) » T (1) « 1 is obvious. 

The second part of the theorem follows directly from the de
finitions. 

(4.7) Denotation. Let IFT denote the full subcategory of 
FT consisting of all fuzzy topological spaces (X,T) the fuzzy 
topology T of which is induced by some topology T on x • 

(4.8) Lemma. For every fuzzy subset At of a topological 
space (X,JT) it holds (yUCM) - (/tc o ytc)°). 

Proof. From (4-.4-) one can easily conclude that^t0 » (/6°)c 

for every yU€lX. Therefore (yfcc C (/*.c)°) = igf((/^C)CV ( >«c)0)(x) 
igf (/< V (/tc)°)(x) = igf (/iV^°) -= (^ c/< ). 7 

From the above Lemma and the definition (2.5) we immediately 
obtain the following statement, the intuitive sense of which seems 
to be clear: 

(4.9) Proposition. For any fuzzy subset^ of a topological 
space (Xf9~) the equality T

K(/0 -= ( u C/t ) holds. 
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(4.10) Remark, It is worth noting that for every proper fuzzy 
set X ( A ) < 1 and TK(yuJ < 1 . 

(4.11) Theorem (cf. f 3 j ). Let (X,!T) , (Y,./) be topologi
cal spaces and let X and C be fuzzy topologies induced by ST 
and y respectively. If a mapping f: (X-.iT) —> (Y, if ) is conti
nuous, then the mapping f: (X,T ) —> (Y, 6 ) is fuzzy continuous. 

Proof. Let p€lY, then 6 ( 9 ) = inf ((1 -P)(y)Vsup inf P(y')) 
y V€y yy €v 

( y denotes the family of open neighbourhoods of y in (Y,-50). 
On the other hand T(f~1(v>)) - igf ((1 - f~1(P))(x) V 
Vsup inf f~1(V>)(x') - inf ( 1 -i>f(x))V sup inf pf(x') . 
U€^T x'€U x U e ^ x*€U 

Fix x€ X and let y «• f(x). To prove the theorem,i.e. the inequa
lity T (f~1( 9 )) ^ 6(9 ) it suffices to show that 
sup inf P(y') £ sup inf f~1(>> )(x»). But this follows from 
V€:Tyy'€V U€:TX X>€ U 

the obvious inequality inf ))(y*) ̂  inf ̂ ^(x*) and the fact 
y'€V x»6r'(V) 

f~1(V) € <T. for every V€ <T . 
-x. y 

(4-.12) Functor <P : Top -—» FT . 
For every topological space (X,IT) let <P(X,(T) - (X,T) 

where T is the fuzzy topology induced by ^ . The theorem (4.11) 
ensures that, if f: (X,<!T) —* (Y, y) is a morphism in Top then 
Cp(f) - f: <-J->(X,!T) —-><P(Y,y) is a morphism in FT . Thus we get 
a functor <p : Top-** FT. It is clear that Cp is an embedding func
tor and the image <p (Top) is just the category IFT as defined in 

(4.15) Functor V ; FT -» Top . 
For a fuzzy topological space (X,T) let «!T - £u: U€2^ , 

f(U) =- 1 } . It is easy to notice that ^ is a topology on X . 
Let Y(X fT) « (X,5~) . If f: (X, X) -— (Y, 6 ) is a fuzzy conti
nuous mapping then one can easily check, that f: (X,IT) —* (Y, ,50 
where (Y,y) « yr(Y,6') is a continuous mapping of the correspon
ding topological spaces. Thus by letting y(f) « f for every mor
phism of FT we obtain a functor Y: ^ —* Top . Moreover, it is 
clear that *\f/ocj3 : Top —*• Top is the identity functor. 

(4.14) Proposition Functors <P and \J/* are isotone. 
Proof follows immediately from thedefinitions. 
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5.PUZ as a subcategory of PT . 
Let Puz denote the category of fuzzy topological spaces in 

the sense of CChang C2l and let Puz-r denote its subcategory con
sisting of all fuzzy topological spaces in the sense of R.Lowen f8j. 

If (X,T) is an object of Puz , then T can be considered as a 
X X 

mapping T: I —-> 2 and hence also as a mapping T: I —> I. More
over, from Chang's definition [2] it immediately follows that T 
satisfies the axioms of the definition (2.1)• It is easy to check 
also that if f:(X,T) —•» (Y,S) is a morphism in Puz , then 
f: (X,T) r—**(Y,S) is also fuzzy continuous in our sense (see defi
nition (2.9)) and therefore it is a morphism of PT . Summing up 
we obtain the following statement: 

(5«1) Proposition. The category Puz and hence also the cate
gory Puz-r are full subcategories of PT . 

The next theorem strengthens;this result. 
(5.2) Theorem. Puz is an epireflective subcategory of PT . 
Proof. Let 0 denote the inclusion functor of Puz into PT. 

To construct the functor P : PT —*• Puz which is a left ajoint for 
0 , take an object (X,T) from PT and let T »//*: /ieT^ , 

T(M-) -= 1 } <Z r% It is easy to notice, that (X,T) is an ob
ject of Puz . Let P(X,T) « (X,T). One can easily check that if 
f: (X,T) —> (Y, 6) is a morphism in PT then f:. (X,T) —> (Y,S) 
is also a morphism in Puz where (X,T) « p(X,T) and (Y,S) -
P(Y, 6 ) . Therefore, by letting,, p (f) « f we obtain a functor 
P : PT —> Puz. The composition P*Q : Puz —•> Puz is obviously 
the identical functor. 

It is easy to notice that for every fuzzy topological space 
(X, X) the identical mapping f : (X, Z) —>(X,T) where (X,T) -
P (X, T ) is a morphism in PT . .Furthermore, for any object (Y,S) 
of Puz and any morphism f: (X,T) — > (Y,S) there exists a 
morphism g: (X,T)—*>(Y,S) in PT such that f = f o g . Thus 
we can conclude, that p is an epireflector in PT and hence 
Puz is indeed an epireflective subcategory of PT . 

(5»3) Remark. Since Top can be considered as a subcategory 
of Puz , restricting the functor 9 which is defined in (5.2) 
to Top , one gets an embedding functor 9 : Top —*--PT. Prom the 
definition of y (see (4.13)) it is clear, that Y°B^ Top —+ ToP 
is the identical functor. 

(5.4) Remark. Let a) : Top —-> PuzL be R.Lowen*s embedding 
functor [9] . Then the composition 0oa>: Top ->PT is again an 
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embedding of Top into .FT such that the functor Y°9° <* : Top—• FT 
is the identity. 

Thus there are at least 3 embeddings of Top into Fuz which 
seem to be natural: they are realized by functors *p , »Q and Q° <*) 
respectively. 

6. The degree of compactness of a fuzzy set 
In this section we introduce the notion of the degree of com

pactness for a fuzzy set in a fuzzy topological space. Some theo
rems concerning this notion are formulated. There are no proofs 
in this section: most of them are rather bulky and involve a spe
cial filter-type construction. The proofs as well as some details in 
this connection will be published elsewhere. 

Let (X,T) he a fuzzy topological space and %Pla crisp fa
mily of its subsets. Denote T (tO - inf { T ( M ) : M*U}. For 
a given 1L let %L denote an arbitrary finite subfamily of W . 

(6.1) Definition. Let A be a fuzzy subset of a fuzzy topo
logical space (X,f) and let ot€. (0,1 J . The degree of compact
ness with respect to oC-open sets is defined by the equality 

c^/i) - inf [t/LZ V W ) c V s u p { ( ^ C V U Q ) : UQCLU}: t (!{)-«>. 
(6.2) Definition. Let cQ(yit) - inf (c^(yu) : 4€ (0,1 J } . 
(6.3) Example. Let (X,JT) be a topological space and let the 

function *6 : 2 —*{o,1j be defined by the equality 
(6.1)* £(A) * inf ((ACfM)CVsup {(/I C UHQ): UQC U } : UC^i. 

It is easy to notice that fS (A) » 1 iff A is compact. On the 
other hand c^ (A) « £ (A) for any <*€fO,l] . (In the left side 
of this equality A is understood as a subset of the fuzzy space 
(X,T) - *(X,JT)). 

Therefore the definition (6.1) can be understood as a f,fuzzi-
fication" of the equality (6.1)'. 

(6.4) Proposition. If (X,T) is a fuzzy topological space, 
/*, v> € I1 and c*€[0,1] , then c^ (/*Vp ) ̂  c* (yO V c^ ( P ) . 

(6.5) Theorem Let f: (X,T) —* (Y, 6 ) be a fuzzy contiriuo-
us mapping. Then for every A€l and every del it holds 

C* (/O £ C^ (f(yU)). 

(6.6) Theorem.Let / (X„, XJ)i aejlf be a family of fuzzy topo-

logical spaces and for every a JL is a fuzzy subset of X . 

Then Cl( riyaa) m ACl(/<a) . 

Let (X, <T) be a topological space and (X,1T) -^(Xf!T) . 
The following result is obtained by Z.Diskin (see f 3 J )• 
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(6.7) Theorem. (1) If (X,:T) is Hausdorff and A £" IX then 
ci</>. * **</> ; 

(2) if (X,J") i s compact, then T^C/O ^ ^O"-) • 
(6.8) Corollary. If (X,JT) i s a compact Hausdorff space and 

^U£lX then T*( / l ) - ^ O t ] 

(̂ •9) Remark. The crisp prototypes of the statements (6.4) -
(6.8) are well-known. For example, the theorem (6.7) when restri
cted to Top just states that compact subsets of a Hausdorff space 
are closed,and closed subsets of a compact space are compact. 

There are some problems concerning the degree of compactness 
which we could not solve. Among them 

(6.10) Problem. Do the statements of theorems (6.6) and (6.7) 
remain true also for oC distinct from 1 ? 

The essential part of this work was accomplished during the 
author's stay in Charles University of Prague in January and Feb
ruary 1985* The author is thankful to the administration of the 
Mathematical department of the University for giving him such an 
opportunity and good conditions for a work. 
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