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HORIZONTAL LIFT OF TENSOR FIEDS OF TYPE (1,1) FROM A MANIFOLD TO ITS
TANGENT BUNDLE OF HIGHER ORDER

Jacek GANCARZEWICZ, Salima MAHI, Noureddine RAHMANT

INTRODUCTIQN
Let M be a manifold of digension m, P(M,G) be a prmc:l.pal fibre

bundle and " be a connection im P(M,G). Let E = E(M,F, G,P) the. fibre
bundle associated with P(M,G) and with a standantard fibre F.

The connection ' defines a horizontal 1ift of vector fidts from M
to E. If X is a vector field an M, then we denote by XH the horizomtal
1lift of X to E with respect to I" .

Let F be a tensor field of type (1,1) on M. We can define a tenmsar
field ¥ of type (1,1) on E such that '

Fa) = ol

far every vector field X aon M. We will look for such a constructiom
that the mapping F — F has 'mice!" algebraic properties which permit
us ta prolong geametric structures. from M to E.

This problem has bheen studied for severél fibre bundles associated
with the principal fibre bundle of linear frames - in these cases the
the given connection has been a linear connection om M. In particular,
K. Yano, S. Ishihara and E. M. Patterson studied this problem in the
case of tangent and cotangent bundle [12], [13], J. Gancarzewicz and
N. Rabmani im the case E = TN ® TM [5] and N. Rahmani in the case.

’I’pM = T'M® ...@ T™M® TM® ...®@ T [17] . The abave problem gas '

also studied by M. de Leon and M. Salgada [7] in the case of the fibre

bundle of frames of order 2. (It is the unique case with a connection
of higher order.)

' In this paper we propose a solution of this problem in the case of

the tangent oumdle af arder r. The tangent bundle of aoarder r will be

denoted by TTM.

This paper is in fimal form and mo versiom of it will be submitted
for publication elsewhere.
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In Section I we recall main results about A-1ifts of functions and -
vector fields wo tle taugent buadle of arder r.

In Sections II amnd III we study the horizomtal 1ift of vector
fields to T'M and we characterize the brackets of vertical and
horizontal vector fields — these results will be used in the next
seciion.

A definition of a horizontal 1ifts of tensor fields of type (1,1)
from M to TTH will be propused im Section IV. Also its algebraic
praoperties will e studied. In the case of the taageal bundle TH = TIM
our definiticn coincides with the definition due to XK. Yano and S.
Ishihara [12]. Hext we use aur constructicn fa prolong sowe geometric
giructures (for example, almost couplex, alwost product, f-gtuctures)

s

frow M to T and we study the integrability of these prolonged

LR S

structures. Cur thecrems gemeralive results of . Tano aad 3. Isnihara
obtained i the case of the langent bundle [12] .

I. PRELTMINARITS

Let M be a manifold arnd leb » be a ncn-pmegative integer. We denote
by T the set of &ll r-jets at O of cuirves ou M and let o :TTM —s M
be the target projection defined by

"n'(jgr) = y()

Row 7™M —> M is a lacally trivial fibre bundle associated with
the principal fibre buadle F'M of fraues of order r aad with the
standard ﬁ:_hre Rm:,, winere n = dim .

If (U,x*) is a chart on M we denote by

{""--.(-'J)’.‘.&:L,k :'i= ."--'!h" l = O,...,I'}

the induced chart on TYH defiuned by

K4 a .1 \ -~ K .
(. AUEY) = Ay ey .
ue
Far every A = Cyee.yr and eterx fuuctioia f of class C* on M we
define the function £ om TTM by the formula (see [10])

vS
Mgy = A St

The function f0) is called A-Lift of £ frow ¥ to T'H. It is of
class C® oun TFM. The 0-1ift £0) = few 1is also called the
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vertical 1ift. We set fo‘) = 0 if A is negative.

If (,U,xi) is a chart on M, them for the imduced chart defined by
.(1.1) we have

(1.2) 2 - () o) ,
far i = 1,.e0,n and X = O,e..or. It is easy to verify (see Lemma 1.2
[10]) that
(1.3) (af + bg) ™) = a4 ) 4y g™
(1.4) () - io £ g =)

for all functions f, g on M and all real numbers a, b.

The family of functioas £(&) is important because vector fields on
T™ are characterized by their action om functions of type £O'). More
precisely, we hauve:

PROPOSITICN 1.2 (see [10]) If X and ¥ are two vector fields on
T™ such that X(f =%s?)) for every function f on M and A= Q,.
essry then X::_L
Proof. If (U,x") is a chart on M, them by (1.2) we have

i(xi’)‘) - ‘f(xi’)')
for the induced chart, i = 1,000yt and A = Ogeeeyle Thus X = ¥ on
T (u). ‘

A. Morimoto defined in [10] the A-1ift of X to T'M for amy wectar
field X on M and A = Oyeeeyr. These lifts were defined by the
following proposition:

PROPOSITION 1,2. (see [10]) If X is a vector field on. M and A = 0,
eeeyr, then there exists one and anly one vector field X on T™M
such that

(1.5) X)Wy o xp@* -1

for all functions £ on M and p = 0s00esTe
This unique vector field X(x) is called the A-lift of X to T'M.
For X < 0 we defime X = 0.

A vector field ¥ on TM is vertical if and only if %(£0)) = 0 for

every function f an M. By virtue of this remark amd by Proposition 1.2
) is a vertical vector field on T™M for each vector field X an M
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and x = O,...,r"].
" According to Propositions 1.1 and 1.2 it is easy to check

(1.6) p=0
[X()') ’I(M)] - [X,Y] >+ W - r)

where X, Y are vector fields and f is a function on M (see [10]).
I1f (U,x") is a chart on U and we denote by

: 7 } . { 2 } |
T (. i Iy (. .
gx l:1’o..’n ax J.::'l,...,n,)’zo,_...,r

the canonical frames associated with (U,x) and with the induced
chart (o~ () »*”) respectively, then using ( 1.5), (1.2) and
Proposition 1.1 ‘we obtain

L) 7\ (r=a)
(1.7) m = (ﬁ)
By using (1.7) and Proposition 1.2 we obtaim:

PROPOSITION i.3. (see Lemma 1.4 [IO]) If X is a vector field om M

and X = ¥ -2+ on U, then
5 >

r .
e ¢ L T
)l.:r-k aX e
an wN(U). .
CONNECTIONS OF QO r AN IZ0NTAL LIFTS OF VECTOR D
Let M be a manifold of dimension n. We denote hy FFil the set of

all r-jets ét g€ Rn of local, diffeomorphisms of neighbourhoods inta
M. Let w:F'M —+ I be the target projection defined hy

TGESY) = @) .

F'M is a principal fibre bumdle with the structural group L;, where
Lfl is the Lie group of all r—-jets at O of local diffeamorphisms 3 of

R" such that }(0) = 0. The action of L on F'M is glven by the formula
e it = et -

For a £ r we define w‘E:FrM — F°M by mﬁ(jrso) = is“? « The projection
'n'g is a homomorphism of primcipal fibre bundles.
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We denote. by J‘CE‘(R,Rn)Q the set of all r-jets at 0 of mappings
h:R —> B such that h(0) = Q. The group Ly acts om I (R,&"), on the
;e,ft as fallows: .

ik = agtgew .

Let E = F'M x Jg(n,,a“) o/~ be the associated fibre bumdle, that is,
E iz the quotiemt set af F'M » J_(R,R")_ by the equivalence relatiom
~ o where ~ is defined inm the following way:

(psz) ~ (p',2") <= 3 361‘11;_ : p! 22'2 s 2! = %-1-2 .

‘We denote hy Q;FrM x J':(R,Rm) o —> E the canomical praojection, i.e.
@(p,z) is the equivalence class of (psz). Let W;iE —> M be the
projection given by ‘rl'E@(p,z)) = T(p). The associated fibre bundle E
is isomorphic ta T*M — the isomorphism A:E —> T°M is de fimed by:

W(PUTPIgn)) = Gleem .
’ﬁle camposition ‘)1.047 will be also denoted by ‘f .

Let 1; be the Lie algebra af L]‘;. l; is a space af r-jets at Q af
nappings X:R™ == B such that X(0) = O amd the bracket is given by:

[ii%,307] = iS(Xe¥-Ten .
ij..ed Ieeel
We set eil 5 - jé: 1&1 8y . where
1 8¢ 1 n 1 s
X.L (U. seecegll ) = (O,...,,O,u cesoll ,O’...’O) 3
) .

{ i"...is .
ej_ te i::]’oo.’n;\ 1<i1£ sece <:L-s<n-; S?—I’o..o’r}

is a base of ]11;. .

Lot M) Lo a connection in FXM. Such a connection is called a
connection of arder r om M. We denote by o the connection form a'i
l"(l:). The form e is an ];;--Valued 1-form on F'M. If (Ty¢)s ¢ = (=),
is a chart on M, then we demate by §, the wection of F|T deffned by

S = I Ty) s

where 'rf(x) :R* — R® is the translation. Now therc exists cne amd
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cnly one family of functions.

i coy s
{rm-’tcnjs H ..L,A,»;&:J,...,n; &:1,....,3; 5:1,-..,1‘}

Ky
L]
&
e
)
n

'y
SN HE L e

1.'.js
(&= 1\ Py
\Cel) ‘Z . -
B ‘ 1 2 el“oooJS
- -_| " x4

g1 ST Eipeeedg 1

i‘il"'ti_s are symmetric with respe,zfrh to (i‘-”““is)' These
functious are called cuvordinates of M%) yith respect to (Upp) e

A connection F(I) of order r on M determines & decompositicn

and I

T(THH) = VM) ®H

ihere V(Trl\i) denotes the fibre hundle of vertical vectors on T M.
Hence, far auy point y of b dy'rrlL’:yH& —_— T'rr(y)M is au isoworphism.
If Xis a vector field aom !, then we define the hurizoatallift .{H of
X to T by the following formula:
3 Lo \‘1 - \

(2.2) o= CaplE) T Gy

If (U,xi) is a chart on M, then we can prove by the slraightforward
calculation that xh has tiie followin coordinates

Xi’o = Xl
a - }L > ioxdopb Sk ek

=1 ,‘1+'0°+f‘k=v K Jll...lk

(2.3)

(Y = 15eeeyar) with respect to the induced chart, where

x = & 2% , g gy 2

N ax:“ x>

The following praposition is an immediade caonsequence of (2.2).
PROPOSITICOH 2,1. If X, ¥ are vector fields on M ard f is a functian
on !, then

G+DFogHeyE | (mF o 0 4
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. IIT. A CHARACTERTZATION OF BRACKETS OF VERTICAL AND HORIZONTAL VECTOR
© FIELD .

At first, we characterize the bracket . [XH,YH], where X and Y are
vectar fields on M. K
Let p be a point of F'M and x = 7(p). The mapping

p:J;:(R,Rn)Q 3 2 —— (P(p,a) € T)I;M = T {x)

(which will be also denoted by p) gives a diffeomorphism between
Jg(R,Rn)O and ‘I";}l. For any y = (P(,p_,z,) we. de fine

Y(P’y):.Li 2} — p(,’yp'1 (¥)) € THM .
If X, ¥ are vector ﬁ.elds,‘on M and y is a point of TrM, we set
o r.r
(3.1) RGO E) = -2 dgy Q1))

where p is a point of F*M such that m(p) = m(y), QL -is the curvature
farm of T‘(r) and Xr, ‘IP are the horizomtal 1ifts of X, Y to F'M with
respect to P(r). We have: '

LEMMA 3.1. RD(X,Y) (y) is a vector of T_(T™™) which is independent
of the choice of p such that w(p) = w(¥). '
PROOF. Let p' be another point of F'M such that m(p') = Mp) and let
z,2' be two elements of ch(ﬂ,ﬁn)o satysfying the formula y = $(p,2z)
<P(p','z.'). Now, there is # € L:‘; such that p!' = p-rz, z! = f[]-z. ‘Phus

i

[

Yor,7) 3 p G 7N@))
= Pi(ff1~p—1(y))
= P(Yé'f]'p“(y))
o (Y(p.y)"adz)('%) .
We know that{l is a tensorial form of type Ad L , that is,
(R)XQ = ad _;'Q .

3 }

On the other h::u].d,,xrI and YF are invariant. vector fields an FTM, ioe.

r r 2 AN o
dR_?(Kp) = X th(xp) = Y,
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According to the above remarks we have
de‘r(p'.y)(Qp'(i;"Y;')) = de‘f(p'.y)(ﬂp'(dni(x;)’dsz;))
= (g¥(p,y)* A4 (R (10D
= (de¥(p,y)° Ad )(Ad (Qp(x ,Y )))

Ge¥(p.y) & (5T )) .

Qur proof is coupleted.
Now we can formulate tue following proposition:
PROPOSITION 3,2. If X and Y are vector fields on li, then

[, v8] = [xy]® + R%x,%) .

PROQF. Since XH is a projectable vector fields and X is its projectiam
it is sufficient to show that

(3.2) w([&,ED) = &%z,

where v([XH,YH]) denotes the vertical component of [XH,YH]. At first,
we abserve

Q& ) = da(z,T)

(3.3) Hi o) - v wx™) - wz5:"D }

-% w(v[XP,YP])) .

On the other hand, if V is a vertical vector of Tp(FrM), then
(3.4) o) = (4e)7'(M
where gp is the mapping defined by
Sap:Lr 9} —— p'% € Fi .
Let y = $(p,2). By using (3.1), (3.3) and (3.4) we have

RN (y) = =2 deT(p,y)(Qp(x;"Yg))
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= (4a¥(p,q) ° (Gegp) ([T @) .
N.’éxt, by using the formula

Yo" f2 = 4’z,lFf34 s x=7m(p) ,
where § :FM — T7H, §,(0)

1]

§(_,Z) and F;M = 7 '(x), we obtain

1l

RGO G = 4, ([x e @)
“‘(dp‘Pz( [XP.YP](p))
v([x2, 21§, (p)))

v [, ] ()

"

hecause the vector fields XP (resp. YP) and xHB (resp. YH) are
-canjugate, that is, dpq)z(xr'(p)) H(§ (p)) (resp. dp@ (Y () =
r?‘(cfz(pn ).

REMARK. It is easy to ohserve that Proposition 3.2 is true for amy
fibkre bundle associated with any principal fibre bundle with a
connection. In the general case we use exactely the same arguments,

In order to calculate [)(H YO)] for A= Oyeeeyr=i, we Introduce
the following notations.

If x is a point of I, then we denote by J‘ (™M) the space of all
A=jets at x of vectar fields oun M, Let

*
J7(mi) = ij J-‘;(‘I'M)
be the A-jet prolongatiown of the tangent bundle. e demote by
B J)'(”M) —> M the projection defined by g(gal{) = x. uou,
9:d MTM) -=> M is a vector bundle associated with g, I (Tyx ) is
a chart om M, then the induced chart
{9-'(07)”‘1"”1""%.1-..,1 tolsiiseeesl miseeeyns 5="’""7"}

an J"'\ (M) is givewm by the following formulas:

xi(x)

Ii (ixﬂ)

Wi(ixW) ()
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X, S
'T:- o..l (JKW) = ( l,l? a )\){) e
oo x
(The functions "ﬁ,...i are symwetric witih respect to 11,...,1_,.)
1

If %4; , then we uZIi_ne g.“l:Jx(m) — JU{TM) by g"}z(jz'.'() = _1‘7 W, The
mapping 9‘1 is a h;)momorph:.;m of vector buudles. If X is a vector

ficld ux 1, we doumowte by §°X the section of JX(TM) siven by the
formulec:

(3.6) @@ = Ax .

X, . . v . .
Let J (TH) Le the space of all sectiovns of J’a(TIvI). L 6is an
eicuent of g"gzz-:‘,, A < r, then we coasider the vector r[ield "o'(") on
T, R
T"M defined by
2 ()

(507) (.Y) ’

where 2 is a vector fleld ou M such that Sr(y)) = j"r({'i

Oﬂu.‘[ o J,n_l N (bee PL‘OlJUA:\.LhJ.Uu I.J}. It is ciear that 5’\ 8 a

vector field 8¢ is well-defined because b A-1ift 2

vertical \rec»or field ou T <), IT (U,x"‘) is a chart on M and

we denote
i ek i .
= o . . = - . ’?
C " G 4 Gl‘voo.l_ w-quo.l.
. 1 D ] I~1
for the luduced cuart ou J’A(Tin), then for Ltue vectar fleia
s giw 2
3-;*"’

we have the followiung local expression

0 if v L =2
(3.0) gt = c- ifi v = r-A
VA=

Using (3.7) aud {(l.4) it is easy to prove the followlug
proposition:

PROFPOSITION 3.4+ If 6, ' are sectlons of J (TM), f is a function
on M aud a, a' are real uumbers, thnen
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(a© + a's")()") = a G(x) + at G"(l) ’
" .

o™ - 5 m) G
,u.:O

Since 'n :TM — F1 M is a homomorphism of principal fibre bundles
for A £ ry, a g,:.ven connection f‘( ) of aorder r an M iuduces a
connzctlon px in F M (a connection aof order A on M). The
bundle J™(TM) is associated with F"“M, thus for A < r, re+1)
defines the covariant derivation V of sections of JA(TM) (see [1])

(A+1 (A+1)

)
V X0 x M@ 3 (x,8) — V€ € gA@)

*x+1) 5
(3.9) ( V®)x) = y((XPe6 - aFex)(x))

Ie(x
where XH denotes the horizontal 1ift of a vector field X to Jf\(TM)
with respect to (,V” and I o(x is the natural isomorphism between
the vector spaces T¢ s (x )(dc ('I'I"l)) and J’K(TM) (we must observe that
(X 06 - d6o X)(x) is a vertical vector).

The main proposition of this section is ithe following one:

PROPOSITION 3.5+ If X, ¥ are vector fields on M and A = Ojeeeyr=1,
then '

(a+1

(3.10) [,y ™] - (g, PD®

where J)Y is the section defined by (3.6).

PROOF. ie show the formula (3.10) for r = 2 (to simplify the
calculations).

At first, we agsume A = O, If X = X:L 9/91 andY—Yl /31 s then
using (2.3) and Proposition 1.3 we obtain

. 5
(3.11) [#E,x@] - [x %l: + Pk R0y 5z -

On the other hand, using (3.9) we can calculate the local express:Lon
of XY with respect to the induced chart on Jo(m) =

1) R .
Wi(VXYJ = ng';g+r'ijxk'f‘1 s

and next, by using (3.8) we obtain

(3.12) (%iz)(o) = {)&‘9-% + pka YOI O Q- axl'i

The formulas (3.11) and (3.12) prove our proposition for =0 and
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r=2=.
Secondly, 1f A = 1, then by using (2.3) and Proposition 1.3 we

ohtain:

[xx(V] - {E-Y:L.+ i **}_._T»f

dxJ
ATt 1) k 9 o1
(3.13) v { x‘l)\ -k a% 51 4
R R W R
dxSe

On the ather hand, us;Lne, (3.5) and (3.6) we can calculate the local
expression aof )(J Y with respect to the induced chart on J (™)

2) R
eFo - x {a:'a'*"i 3
Iy - ogd § 258 aYl i 8%, 4 :
Row, according ta (3.8) we have

2)
(&XJIY)(]) = Wl( VXJ T) --*-—’- + Wl(%i«f Y) Xk’ ——-—:Z
=X‘1{‘Q-L—l+[‘ 'fk} -—71-4—
5 3cyt s ay: i 7S
- ské—s‘“rasS;E
ERIE +F]iksY53xK’ 5._..__
. aY i T,
= {.X.J-é-;i-* r?j-k X‘] [k-_‘],—a-)—({-—]-l-
{od B - pg o
\ Il @) e xd pd o rs e
+ X (Y°) + }Bxl’

The formulas (3.13) and (3.14) show our praoposition for A= 1 and
r =_2. .

The proof is completed. (For simplicity we presented the
calculation only for r = 2.)

IV, HORTZONTAL LIFTING OF TENSOR FIELDS OF g
We propase the following definition:
DEFINITION 4.1. Let F be a temsor field of type (1.1) on M.
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A tensor field FH of type (1.1) on T'M is called a horizomtal 1ift of
Fto TOM if

(4o1) A = @f , Ba®) = W

for every vector field X on M and A = Ogeeegr-1.

We observe that according to Section I there is ome and only oie
tensor field F on T™M satisfying the formulas (4.1). Definition 4ol
implies immediately:

PROPOSITION 4,2. If Fy G are temsor fields of type (1.1) on M and
as b are real numbers, then

(aF + o) = a ™ + 5 gB
(Fom)T = Mogl

E _
)" = Tpry

ubere Tj; and I . are the identity temsor flelds of type (1.1) cu M
] M
and T°M respectively. In Particular, if P is & poiymomizl with

canstant real co,effi'cients, then for any temsor field F of tyre (1.1)
oz M we have

() = (P(F)T .

The following corvllary is an immediate consequence of Proposition
Lol

CORCLLARY 4,3+ If F is an aluwwst cowplex structure (resp. awr almast
product structure, an f-structure) on M, then FH is au alwost cowplex -
structure (resp. au alwost product stucture, an f-astructure) on M. .

To study the integrability of geowetrie stuctures of type FH we
D will compute the Nijenhuis tensor of F“". Before formulatiig our
proposition about Nijenhuis tensor of FH we introduce 'the following
notation, If F is a tensor field of type (1.1) on K and 6 is a

sectlon of JM(TH), we define a new section FS of JMTHM) by the
formuiy

(4a2) (F)(0) = (T,

where X is a vector field on M such that iX = &(x). It is clear
that F§ is a well-defined section of J (TM).
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Now we have:

PROPOSITION 4,h4. Let F be a tensor field of type (i.1) on M. If X,
Y are vector fields on } and }, 7= Oseceyr=1, then

(4e3) R g8 T0 = G 0)T + RUEGED) ¢ (FHAED) -

- F( R (FK,T) + RO(X,FY) )
(A+1)

~ A+1 A+1
(ipoly) NFH(XH,I\“> - Vid FT = F((\?F;cr*y)ﬁ FZ(HV))(J‘Y) -

(*+1) @)
- F( V&0 3

(4e3) “FH(X(”-Y(")> - W1 A7)

where HF and N .. denote the Nijenhuis tensors of F and FH
respectively.

PROOF. The formulas (4.3) and (4.5) are consequences af Proposition
3.2 and (1.6). The formula (4.4) follows Proposition 3.5 and from tbe
formula

(4o6) g™ o (5e) P

where § is a section of J}‘(‘I‘M).

To prove (4.6) we observe that if y is a point of ™™ and Z is a
vector field on M such that V(w(y)) = j;ky)z s then by using (4.2),
(3.7) and (4.1) we have

(F®) @) = s )

FEM )

(r2) M) ()

(re) M (y)

The proof is now completed.
Now we shall prove the following theorem:
THEOREM 4,5. Let I be a manifold and r(r) be a connection of order
r on M. If F is a complex structure on M such that
(rl
(4e7) WXJ““H = F( V™)
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(4.8) RY(FX,FT) = R(X,Y)

tfor all vector fields X and Y on M, then FH is a complex structure aon
™M .
To prove this theorem we will need the following lemma.
EMMA 4,6. If X is a vector field on Ii and 6 is a section of
J (TM), then for all » <X <r we have

by
A, (;71)&,_ _ (~1+1) x
97 X xS .
PROOF. Let x be a point of M. Then

(a+1)

(g}l V48) (%)

(g » Tg()) (& 0 6= a2 ) ()

(ae* (xH o 6 = a5 0 X) (x))
g () S *

A by v
because g.L" Is(x) = ° dg.l . We have also

Ig;(a(xn
dgi‘zaxH = )(H»gfz ,

where X.H on the left hand side of tie equality means the horizontal
1ift of X ta J’)‘(TM) and XH on the right hand side denotes the
horizontal 1ift to ﬂ(TM). Using the last formula we ouatain

x (1+1)

= Ho "\es - a 2 ° ;
"l V&G = I(g“ . b‘)(‘x)[(x (3 °%) u(g“t ) X)(x)]

(1)
( %X(g;ocmx) .

PROOF OF THEOREM Le5. Since F is a complex structure, NF(X,Y) =0
for all vector fields X and Y on M. Hence by (4e8), (4.3) and (4.5)
we get

NFH(X(“,Y("Z)) = NFH(XH,YH) = 0

for A, m = Oyeeepr-1. Next, using Lemma 4.6 and the formula (4.7) we
have

A1) (A+1)
V g@FD) = FC V @) = 0

for A = Oyeeor=1, and hence, by using (4.4) we obtain

NPy = o0 .
FH( )
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The equality Iz = O implies the imtegrability of .

In the case of the tangent uundle TM = T1M Theorem 4.5 implies the
results of K. Yano and S. Ishihara [12].

COROLLARY 4,7.(Ke.Yanao, S. Ishihara [12]) Let M be a manifold andy

be a linear commnection om M. If F is a complex structure onm M such
that

VF = 0 , R(FZTY) = R(X,Y)

for all vector fields X and Y.on M, then Flis a complex structure oun
™.

Using the same argumentation as in Tneorem 4.5 we can verify the
following proposiom:

PROPOSITION 4.8. Let F(r) be a connection of order r on a manifold
Me If F is a product structure on M such that

( (@)
(4.9) :l}iwr“m - RV = 0

(4+10) RP(FX,FY) + RI(X,7) = O

~~

for all vector fields X and Y on Ii, then F'PI is a product structure oun

™™,

Since in the case of tangemnt bundle T™ (r
is equivalent to the following one

1]

1) the equality (4.10)

(4e11) R(FX,FY) + R(,Y)

[}
(@]
-

we obtain:

COROLLARY 4,9. TV is a linear connection on a manifold ¥ and F
is a product structure om M such that

VF = 0 , =&(FX,FY) + RZ,Y) = ©
for all vector fields X and Y, then  ois a product structure on TM.

Ve REMARK
In the same way we can define the horizontal 1ift of tensor fields

of type (1.1) to the tangent Lundle bf pF-velocities and we can
obtain similar results.
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