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NATURAL TRANSFORMATIONS OF AFFINE CONNECTIONS ON
MANIFOLDS TO METRICS ON GOTANGENT BUNDLES

Masami Sekizawa

Dedicated to Professor Shun-ichi Tachibana on the
occasion of his 60th birthday

Let M be a smooth manifold and T*M 1its cotangent bundle.
There is a well-known "natural® construction which yields, for any
affine connection ¥ on M, a pseudo-Riemannian metric g on
™M, the so called Riemann extension of Vv (see [61 - [10]). If
a local coordinate system is given in M then the components of
the metric g at each point (x,w) € T*M depend only on the
symmetrized components of the connection V and the components of
the given co-vector w. The more detailed analysis shows that this
construction involves the geometry of the second order, and thus we
can consider the Riemann extension as an example of "natural trans-
formation of the second order". )

The aim of this paper is to describe explicitly all second
order natural transformations of a symmetric affine connection on
a manifold into a metric(not necessarily regular) on its cotangent
bundle. To solve this problem, we shall use the precise definitions
as well as the general method established by D.Krupkal[2]1 - [4],
which reduces our geometric problem to the classification of corre-
sponding "differential invariants" and then to solving a system of
partial differential equations. The main result of this paper is
the following A

Theorem 1. A pseudo-Riemannian metric G (not necessarily
regular) on T™M comes from a second order natural transformation
of a symmetric connection V on M if and only if G = ag + b92,
where g 1is the Riemann extension of ¥, 92 is the tensor
square of the canonical l1-form of T*M, and a, b are constants,
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Let us notice that the.metric G = ag + b@% 1is regular (of
the signature (n,n)) if and only if a # O.

0.Kowalski and the present author[l] have recently classified
all second order natural transformations of a Riemannian metric g
given on a base manifold M into a pseudo-Riemannian metric G
given on the tangent bundle TM. Since the cotangent bundle ™*M
over (M,g) is dual to TM, the analogous problem for ™M is
automatically settled through this duality.

Acknowledgements, I wouid like to thank to Professor
0.Kowalski (Charles University in Prague) and Professor D.Krupka
(Purkyne University in Brno) for their helpful discussions. I
also thank to the Department of Mathematical Analysis, Charles
University in Prague which provided convenience for my research
stay in Prague.

1. Canonical 1-form and Riemann extension

We shall adopt the Einstein summation convention in sections
1 and 2.

Let (U;x},x°,...,x") and (7;%%,%%,...,5%) be two systems
of local coordinates in a smooth manifold M of dimension n
such that the domain U/ \TU is not empty. The coordinate vector
fields E, = a/3xt and Ei =2/xl (151 n) are related by
the transformation formulas

1

(1.1) E; = AJE, or E, =BJE, (1<i%n)

-a a
where (Ag) =[x and (B?) o x are the (mutually
oxt it '

1nverse) Jacobi matrices, If w = whdxh = whd;ch is a 1-form on
UNT then we get by (1.1)

(1.2) W, =Bw, (1 <h<n).

Further if V 1s an affine connection on M then its components
- . e 7 =
r‘i‘j and 7y (1 €h,i,j £n)(i.e., inxj = Xao viixj =

=a
=l~1jza) are related by
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(1.3) r"‘i‘:j = AE(B;’B‘J‘:rﬁc +Bf;) (1 sn,1,5=n),
where we put B}ilj = /bxfl'bxJ (1 €h,i,j <n).

Now let us denote .T*M-—>M the natural projection of the
cotangent bundle., Let (p_IU xl,x2,...,xn, WisWoyeoo W ) and
(p 1U xl,xz,...,xn,wl,wz,...,w ) be two systems of local coordinates
in T*M 1induced from (U; x1 X%, e.e,x") and (T; xl,x yeee X)),
respectively. Then, whenever UNU # ¢, the transformation law
on p-l(U/\U) is given by A

-1 _ = 2

%t = xi(xl,x ,...,xn),

w, =Biw_, (1S1i%=n).
i"a?

We set X, = B/axi, xi = 3/3w; and ii /%t , zi =B/aw7:1 for
1< 1< n; then the two bases {x XoyeeesX X, 2,...,xn} and

- 1
{xl,)'{z,...,xn,xl,xz,...,x } are related to each other by

= a c,b d
%, = B3x, + BSAD Blw.x?,
(1.4)

t=alx®, asis0),

where we put Arilj ) 230 /oxiaxd (1= h,i,jEn). )

Let now G5 = 6(X;,XJ), o = a(xy, ¥, 69 =axlx9) be
the local components of a symmetric (0,2)-tensor field G on
T¥M, We shall always write such components in the block matrix

form

(1.5) G = .

Using (1.4), we obtain the following transformation formulas:

r

T = b .d
Gij = iB G + BchaBb dBJGS
cgb pd, t
* BiBaButhve * Bi caBb dBaAus tve
(1.6) 9

sh _ ,hp.s hou, t as
Gy ASBJGS + AaBgAuthve

. as .
Léia = AaAgG , (1 €£n,i,j<n).




132 MASAMI SEKIZAWA

(In section 2, we shall show that the formulas (1.2), (1.3) and
(1.6) define actions of the second order differential group Ln
on some vector spaces).

Let p*:T(T*ND——e TM Dbe the differential of the natural projec-
tion p:T*M—M and let q be the natural projection of T(T*M)
to T*M, where "T" stands for the tangent bundle. Then the
canonical . l1-form @ on T*M 4is defined by

0(X) = qX) (p,X)

for all X € T(T*M). The exterior derivative dg of @ is called
the canonical 2-form on T*M. In terms of the induced system of
local coordinates in T*M, 0 and dO6 are expressed as

S widxi and d@ = dwi/\ dxi.

Let ¥V be an affine connection on the base manifold M. This
induces a unique connection in the vector bundle T*M, and thus
each tangent space (T’(M)(x w) splits into the horizontal and the

’

vertical subspace:

(T*M)(x,w) N H(x9w)® V(wi).

Let ¥ =hnX + v¥ be the decomposition of a vector field X on
T*M 1into the horizontal and the vertical part. The Riemann
extension g of the affine connection ¥ on M to ™V is a
pseudo-Riemannian metric defined by

zX,¥) = (@6) (v¥,n¥) + (da0)(v¥,nX)

for all vector fields X and ¥ on T'M. If ¥ = gx, + 3xi,
then we obtain easily

~ ~n
nX = glx, + w,r2 8%t ana WX = (g - w2 P)xi.

Thus the components of g with respect to the induced system of
local coordinates are

'wa(reiij + rgi) 8:?

i
8:j ‘o
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where 8; denotes the Kronecker-s symbol. This shows that the
components of g depend only on the symmetrized components of the
affine connection and on the components of the co-vector w, and
they do not depend on the local coordinates (x ,x2,...,x ) in M.
In case of a symmetric connection we get

-zwar?j 82

1)
n

83 0

Obviously, é is a pseudo-Riemannian metric with the signature
(n,n).(See [6]1 - [10] for more information about Riemann extensions).

2, Differential invariants

Let us now recall the general theory of natural transformations
due to D.Krupka. We refer to [2] - [4] for more details, and to
[5] for the general philosophy of naturality.

Let Lg be the r-th order differential group'of the n-dimen-
sional Euclidean space Rn, that is, the Lie group of all r-jets

of local diffeomorphisms of R® with source and target at the
origin o € Rn here r 1is any non-negative integer. Let P, Q
be smooth manifolds on which the group L ~acts to ‘the left. An

th_gzdgz_difﬁgzgg&igl_inz_zlgn; f: P—<>Q is an L -equivariant
map of the left LT n-Space P .to the left LY -space Q, i.e, a map
satisfying f£(j% p p) J u.f(p) for all 3 T € L and all pé€EP.
Here the dot . denotes the action of L on P (or on Q,
respectively).

Further let F'M denote the bundle of all frames of r-th
order over M which carries a natural structure.of a principal
Lr-bundle F'M(M,L7,% ). We get a natural functor F' from the
category Dn of n-manifolds and injective immersions into the
category of principal Lr-bundles and L;-bundle morphisms. Here,
for a given morphism o M ->M2 of Dn the corresponding morphism
Fg :F Ml——>Fr 5 1s given in a familiar way(see [51).

Finally, for a left LT n-Space P, let FPM denote the fibre
bundle with fibre P, associeted to the principal L, T-bundle FTM,
We obtain a natural functor FP from the category Dn into the
category of fibre bundles and their morphisms. Here, for any
morphism Q:MI—waz of Dn the corresponding morphism F?@:F;Ml
-—>F;M2 is given by
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Fe9(Cy,pD = [F9(y),p]

for any [y,p] € FPMl ([y,p] is the equivalence class of a pair
(y,p) € F Mle with respect to the equivalence relation defined
by the right action (¥,p).J( T = (yoj &3, To .p) of L on
F'M XP).

For each manifold M and each differential invariant f:P—>Q
we can define a morphism fM:F;M——>FSM over the identity map
id:M—M by

fy(Cy,p1) = Ly, f(p)]

for all (y,p] € FEM. This morphism fM is called the realization
of a differential invariant f on the manifold M. Further, an
r-th order natural transformation T of the functor F; into the
functor Fg is a collection of bundle morphisms TM over the
identity map, where M is an object of Dn’ such that the follow-
ing diagram is commutative

T
u,

—> Fgml

T, r
FP? FQ@

b ¢/
FpM,y

T
¥,

r .
FpM, Foo
for every morphism 9:M1-_’M2 of Dn'
The following theorem due to Krupka[2] says that a problem to
find all r-th order natural transformations of F; to FS is

equivalent to a problem to find all r-th order differential
invariants f from P to Q. '

Theorem A, Let f:P—>Q be an r-th order differential
invariant. Then the correspondence Tf:M-—>fM, where M 1is an
object of D is a natural transformation of the functor F;
to the functor FL. Moreover, the correspondence f——>Tf is a
bijection between the set of all r-th order differential invariants
from Pto Q and the set of all r-th order natural transformations

r r
of FP to Fq.
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Remark, Often P and Q are vector spaces and thus FIM

and FéM are vector bundles. Yet, a morphism TM.FPM-—>FQM need
not be a morphism in the category of vector bundles because it may

be non-linear on fibres.

In order to apply the method b& Krupka to our problem, we
shall restrict ourselves to'second order differential invariants,

We define functions A%, AiJ (1Sh$n, 1S1<j<n) on 12 by

h,.2 _ h h .2 =
Af(3%) = Do), AfL(35) = DiDjoch(o)
for any local diffeomorphism o= (ocl,u?,...,oc") with 0fo) = 0o €
Rn, here Di denotes the partial derivative with respect to the
i-th variable in R™., The system of the canonical lobal) coordi-

nates of Lﬁ is a system of coordinates {B?, B}.lljs(lg h<n, 1<
i€ j<n) of Li which are defined by

h,.2 ~ ahp.2 =1 - 2 -~
By (35x) = AL (32D, BL (350 ="a0; (33
(1<hgn, 1 S1<js<n).

The multiplication law jix»ji@ = jﬁ(«»p) in Lﬁ is described in
terms of the canonical coordinates as

BY (35 35p) = Ba(eBi(sle),
By (52 358) = BD, (350085 (3%)B3(52p) + BR(35) B 5(3%0),
(1=hsEn,181<j=sn).

stnce BJ(32(1a) = 87, B*i‘j(ji(id)) =0(1<h<n, 121i<j<n)
for the identity map id of Rn, we obtain that

(2.1) BR(Z)A3(5%x)= 8" (1 <n,1=n),
(2.2) AL, (359BY(330B3(35%) + Aa(350BE;(35w)= 0,
(L=h<€n,1gi<j=n)

for all jJ q,eIL These formulas will be used in section 3.
Let us consider the vector space P = R”ﬁD(RWg(R n*)) (of
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dimension n+n2(n+1)/2) where R™ 1is the dual space to R? and

© denotes the symmetric product. We denote by [wh} (1=h<n)
and !I”?}(l <hsSn,1sisj = n) the canonical coordinates on
n¥x nk ., 1k h

R and R®(R™oR™), respectively. Then lwh, ‘"1;13 (1€h<n,
1sis3) __S_n) form a canonical system of coordinates on P. We
define an action of Lg on P by the formulas

-
"h = Bp¥a»

r'*i‘j = Ag(a';sgr’;c +B{) (1<hsn, 181€j5n),

(2.3)

which are modelled according to (1.2)and (1.3).

Further, consider the vector space Q = R™® ((R"OR™)ORWOR™)
(of dimension 2n(n+1)). Here we can define a canonical system of
coordinates on Q in the form {z,, Gy 4 Gtil, o9y cngn, 1=
1 23 =n). Then we define an action of Ly on Q by

.
- - a
Zp = BpZgs

= _ p8Rs a,b .d s,a

au,t v s cpb od u,t v as

(2.4) + ByBJA,By2,Gq + ByB Bz BiA, Byz G°°,
=h _ ,h.s.a hou,t v as
Gy = AgBiGg + AgBiA;BZ,G )

h513 =alade®®, (1sngn,131gign),
which is in the agreement with (1.2) and (1.6).

One can see easily that, for the corresponding associated
Lﬁ-bundles F%M and F%M over a manifold M, we always have

2.0 _ m¥ 2 _ m¥% ’
(2.5) FPM-TM@PB’A, FQ—TMGQM,

where Py end @y are some vector bundles over M. (Here Py 1is
an associated bundle to F°M  but Qn;l is not, as we see from the
transformation rules (2,3) and (2.4)).
Now, we define the problem to find all second order natural
a ations of a symmetric affine connection on a manifold to

0 otang problem o find s nose

el 019, 2 898 2
natural transformations of FP to F which, with respect to the
splittings (2,5), induce the identity map 1d:T*M—>T*M for each M.
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According to Theorem A, our main Theorem 1 is reduced to the
following

Ihﬁgrgm_z‘ All differential invariants f :(w hﬂ (z
Gy 40 cBcld) from P s RTFORGE™OR™)) into Q= e((a”aaR"*)
O(R%Rn*)) such that z, =wy (1€h< n) are given, in the
canonical coordinates, by '
G

+ bw (11 =3j<n),

15 = " 2awgly 4 13

o = af! (Qsh,15n),

old=0 @At <j=n),

where a and b are constants.

3, Proof of Theorem 2
The method of the proof is that we attach to each equivariant

map P—>Q the corresponding Lie algebra homomorphism for the
fundamental vector fields. These Lie algebra homomorphisms are
then characterized by a system of differential equations to solve.
We find all solutions and decide which of them really represent
differential invariants. )

First of all, it will be useful to extend the symbols F?j,
Aia’ B?J, Gij' G13 also for the case i = j by putting ng = 310
?j = Ah 4o and so on. Thus the range of all indices will ve {1,2,

...,n}, and all indices will be independent. We note that, under
this notation, we have to use the following conventions (cf. Krupka

[31):

h
BL?J'. = 1 Shcsqsr +8q8r) a._ﬁ.l =1 Sh(sqsr + Sq 1‘)
arp. - 2 5p(bi8y *85810s bt 7 7 8p(006; * 85810
qr qr
9Gy 4 ij i}

i -1 r qer -1t
Cqr 2(8353' * S;jsi)’ 5aaT

l/ciad icdy.
(685 * 61863)
for 1<h,i,j,p,q,r <n.
The fundamental vector fields on P relative to the action
(2.3) are
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ol AW, D
q - bc 2a 9
EED I NN ¢ L
be q
= E :- d 9
9, ,c( c * Sgrgc * Sg bp)ar§c+ wpawq’
A

Eqr be a 2 ’ (1 =p,q,r §-n)v

where e denotes the identity element ji(id) of Lﬁ. Here we
also used the formula

h h

A B

-BT:)(e) = a—;(e) = Shsq (1<h,i,p,q<n)
q q

which is derived from (2.1) by differentiation with respect to BP.
The corresponding fundamental vector fields on Q relative
to the action (2.4) are given by

- b -
9G 0 oG L) b 020
—q - z i ab . a, Ef
—1 = (e + 2 e) +
=P &b omP 7oGgy, aBg\ YL g b) aap?’z
- o) ay ad aqgy o
—22((; + 629 _-g99  -g%2_ )+ z ©
a ap bGa pa a ab P d ap) paz ’
q Gq Ga G q
b
oG be) ab
z3r - 2 : ( bie)2— + 28 (glp + 26

(e)—%
p p ab
aB 3Gy, aBgr 3G, aaqr G )

-z, > (c32— + 62 __+ TS+ gPTO_),
a G

P
ar oGy C 15

(1 = pyq,Tr gn)'

Here we also used the formula

h

Al OBy

.b—B‘i—,l() = -bB—;;@: - %‘82(‘5%8; + 838{) (1 £ h,i,j,p,q,r <n)
qr
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which is derived from (2.2) by Qifferentiation with respect to Bpf.
Since any Lﬁ-equivariant map f of P to Q satisfies

*(‘é ) =3, S and &(Eqr)' el 6 B P,q,r = 1),
we get

¥a@or) = Zl(z¥) end gU(2%f) = 17(2%), (1 <p,q,r 2n),
where 2% denotes any canonical coordinate on Q. We have to use

also the conditions zhof = Wy (1 €«h €n). Hence we obtain an
explicit system of partial differential equations:

dG; G, =
a a g2 ij ij _ q
(3‘1) a:w(- &)rgc + Sgrpc +Scrbp)ara + wpawq - Gipsj + GjpS?_’
’ , bc

BGU

>ai L
(.2) ; ;(— Sarfe * Silpe *8§F§p)g‘%‘ "y 018 * op8is
9Dy . be

]

) i3
(3.3) Cgord + R agire 0. 2. glagd, gdagt
¢ < 2 Sp be b! pe Schp bra pawq sp’
1 bc

96, 4

- 1 r r roq T
(3-4) —a—rgl— - s (ess + adsy + aied + 6Isl),
qr
ac) L . .
P Jagr Jreq
qr
13
(3.6) g‘[{—p =0, (1=1,3,p,a,r=n).
qr

We shall solve the system (3.1) - (3.6) step by step. To
avoid confusion, we do not use the Einstein summation convention
up to the end of this section.

(3.6) implies that Gia Q= € n) do not depend on rp
(1< p,q,r =n). Hence ot J\..J(wl, Woyees,w ) for l<i,3<n.
Then we get from (3.3)

(3.1) waReug = -2%63 - W% s 1,3,p050).
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Now, if n = 3, we can always choose p #1,J end we get, at any
generic point (for WiWoeooeeW # 0), 2.3/3w = 0 for all 1i,j,q.

:"n
Then (3.7) reduces to 29gd + a3%g! = 0, and contracting with

respect to i=p, we get (n+1)2ﬁq = 0, i.e.,
(3.8) 6id = atd=g

for all 1,j €{1,2,...,n}.
Let now n = 2, Putting i=j=p=q 1in (3.7), we get, at a
generic point

A= twp? @ =1,2),

where c11 does not depend on Wy Further, putting 1i=1, j=2,

p=q in (3.7), we obtain the equations
v R X2 oWy = w2 dw, = - AL2,
By an elementary calculation we get
12 _ 12,
xS =c ANCY

where cl? is a constant. Summarizing, we get, at a generic point,

otd = ctww, (1,3 =1,2)

where clJ (i, = 1,2) are constants, But 6ty and w, must

satisfy the transfqrmation laws (2.3) and (2.4). This is possible
if and only if dd=o (1, = 1,2). Thus we get again
(3.9) 6l =0 (1,5=1,2)

at a generic point, and hence at any point by continuity.
Substitution of (3.8) into (3.5) implies

%J/3r2. = 0 (1<1,5,p,q,r S 1),

hence G:j (1= 1i,j<=n) do not depend on r’p (1 € pyq,r <n),
Put Gi )Ji(wl’ 2'.oo'w )o Then we 8et from (3 2)

(3.20) waplow, = - pifs] + plsl < 1,3,p,0 5 0.
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Using (3. 10) for i= :j p=q and also for i=j#p=q, we see that, at
a generic point, )‘i (1<sis n) are constants. Putting i=j=q#p
in (3.10), we obtain }AJ 0. Thus M =0 for 1s 1 j_s_n, i#3.
Putting i=q#j=p in (3.10), we get immediately }1 =0 Qs
i,j=n, 1 # j). This can be written in the form }.L = a‘z;:J Qs
i,j =n) for some constant a, i.e., at a generic point,

(3.12) ¢f = a8} Q s1,550),

where a 1is a constant. (3.11) then holds at any point.
Substituting (3.11) into (3.4), we get

(3.12) BGia/bF'gr = - awp(SgSi‘ + 8%85) ¢! =1i,3,pyq,r =n)

from which we get by integration wi*:h respect to \"gr,

(3.13) 644 = - ZeZs(wsr’ij + Yy Asi,3sn),

where ))i (1 =1i,j<=n) do not depend on [’p (@ = p,q,r =n).
Substituting (3.13) into (3.1) and using (3. 12), we obtain, after
some calculations,

(3.14) wpavij/awq = Sq 5q 1 =1,3ip,q <n).

By calculations similar to those for solving (3.7) in the case
n =2 we get from (3.14), at a generic point,

(3.15) %j = bijwiwj 1=1,j=n),

where b, (1 €£i,j<€ n) are constants.

Substitute (3.15) into (3.14) for i=q#j. We get by 4W4W,
= bjpwawp (1=<1i,j,p En, 1 # j) =and hence, at a generic point
bij = bjp whenever 1i#j, p arbitrary. Hence all bij are equal
to the same constant b. Thus we get

= - s .
Gy4 = Zagwsrij + bwiw:j (1=i,j=n)

at a generic point, and hence at any point.
This completes the proof of Theorem 2.
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