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PROLONGATIONS OF CONNECTIONS AND SPRAYS WITH RESPECT
TO WEIL FUNCTORS

Jan Slovék

Recently, the concepts of Weil algebras and Weil functors have
become actual for several reasons. One of them is that any product
preserving functor with values and domain in manifolds coincides
with a Weil functor on connected manifolds, which has been proved
independently by [1], [2] , [6]. Moreover, there is a natural equi-
valence between the category of Weil functors and the category of
Weil algebras, so that natural transformations betweén product pre-
serving functors are completely determined by corresponding homo-
morphisms of Weil algebras. The present paper deals with prolonga-
tion of some geometrical objects with respect to Weil functors and
[7] can be considered as our starting point. In particular, genera-
lized or linear connections on fibred manifolds or vector bundles
are prolonged canonically into generalized or linear connections,
respectively, and sprays are prolonged into sprays. Moreover, the
geodetic spray of a linear connection is prolonged to the geodetic
spray of the prolonged connection. All considerations are in the
category C *°.

The author is greatful to Prof. I. Kold¥ for suggesting some
ideas, valuable remarks and useful discussions.

1. PRELIMINARIES

In the sequel, R will denote real numbers only. Let M be the
category of smooth manifolds and mappings and let FM be the cate-
gory of fibred manifolds. A covariant functor F: M— FM is called
a prolongation functor if the following two conditions hold:
BoF = 1dm, where B: Tm— M 1is the base functor, and having an
open submanifold i: U— M, the map Fi is an embedding onto =1,

This paper is in final form and no version of it will be submitted
for publication elsewhere. »
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where J3r : FM— M is the image of M. A Weil algebra A is a real, fi-
nite dimensional, commutative, associative, unitary algebra of the
form A = R®N, where N is the nilradical of A. Any Weil algebra A
gives rise to a prolongation functor which will also be denoted by
A: AM = Hom(C*°M,A), M€ ObM, and its value on morphisms is given
by composition, see [9], [7]. In the special case of the tangent
functor T corresponding to the algebra D of dual numbers we shall
keep the traditional notation. The natural transformation of T into
id,y, (defining the fibre structure) will be denoted by T . For any
Weil functor A there is the following identification. Having a vec-
tor space V, any homomorphism i € Hom(C*® V,A) is determined by its
values on-V* . On the other hand, any n-tuple of values '-f(v ) =
ipa € A on a base of V¥ determines a homomorphism ', so that
Hom(C*® V,A) 5 V ® A. For more details see [9]. Using this identifi-
cation we obtaine easily the following lemma by direct computations.

Lemma 1.

(a) If V, W are vector spaces and 'y € Hom(V,W), then
Ay : VO®A —+ WOA 18 of the form Ay = \r®1dA.

(b) Let i: B — A be a homomorphism of Weil algebras and let C be a
Weil functor. The corresponding natural transformation i of
Weil functors satisfies :an = ian ®1, iCRn = 1an® 1d,4 ®4,

(c) Let Ci: C°B — CeA be the natural transformation defined by app-
lying a Weil functor C on all morphisms of a natural transfor-
mation i: B - A of Weil functors. Then the corresponding homo-
morphism of algebras is i®id,: B®C — A®C.

We shall also use another expression of Weil functors introdu-
ced by A. Morimoto. Let us consider a Weil algebra A. This can be
obtained as a quotient algebra of the algebra E(k) of germs of smo-
oth functions on Rk at O by an ideal Q of finite codimension for
some integer k. Two germs at zero of mapps f,gec”(Rk,M) are said
to be A-equivalent if for any YE€C™M (yef - Y+g)€EQ. The cla-
sses of this equivalence are called A-velocities on the manifold M
and A-velocity with a representative f will be denoted by ;]Af. This
glves rise to a manifold TAM of all A-velocities on M end to a map
mn: My — 85, 1 n(3A2) = jA(he£) for any map h: M — N. One can
show that for any Weil algebra the functor 'J.'A is naturally equiva-
lent to the Weil functor A. (JA2(y) = (pef mod@) €4, p<c®M) In
the sequel TA will also be denoted by A.
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2. T-NATURAL TRANSFORMATIONS OF WEIL FUNCTORS

Consider an arbitrary prolongation functor F: M — FM .
Having a vector field %: M — TIM, we obtain F§¢ : FM - FTM. On the
other hand, we can prolong the flow of ‘.f to obtain a flow on FMN,
which defines a vector field F ¢ ¢+ FM— TFM. In other words,

expt(F¢ ) = F(expt§ ). The following general definition is due to
Kolé¥, [3]. ' '

Definition l. A natural transformation i: FT — TF is called

T-natural if the following diagram commutes for all manifolds M
and vector fields ¥

JT
M —FM . FM

E?I ‘N ] Fary
M FTM
Fe
The aim of this section is to show that the canonical exchan-
ge homomorphism i: D® A— A® D determines a T-natural equivalen-

ce. We remark that this assertion is stated without proof in [7].
We shall use the following identifications : A & TAR, D= J%(R,R),

(31(r,R)) ¥ J1(R,R) ® TR, T(*R) ¥ TR ® J}(R,R). Heving a map
$: R —» JO(R.M), there 1s a map p: REx R M satisfying

J%( i,”(x,-)) = P (x). Hence any element ;]A\'fe TMY is of the form
b ®)

R(\,P(x,.))) end we can define 1,: TATM — 17y,
1, (R3O (x,-)))) = 53R (P (=,1))). Obviously, the mep i, form

a natural equivalence. TA(J%(R,R)), considered as a quotient
algebra of functions, is generated by elements with representati-
ves g = f.c: R*L, R where f: R*— R, c: R— R, but under the
above identification this are the elements jéc ® ;jAf € TATR and
it follows that 1R is the canonical exchange homomorphism.

To prove the T-naturality of i, consider a vector field ?
on M end its flow vy (t,x). We have %(x) = j%('f(-,x)),
TA? UAS) = JA(S'G) = JA(J%(?(-,S(x)))). On the other hand,

(?(t.-))(:l‘s) = JA(?(t,-)-g), which implies

EAS(JAs) = J%(:)A(*f(t,-%g)). Hence :I.M"TA'S = g_Ag . The commta-
tivity of the upper triangle in Definition 1 is obvious, so that
we have proved

Proposition 1. For any Weil functor A, the natural transformation
i: A°T — TeA determined by the canonical exchange homomorphism of
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D ®A is a T-natural equivalence.

Remark 1. According to a recent result by Kold¥ (private communi-
cation), a prolongation functor F admits a T-natural equivalence if
and only if F is product preserving, which implies by [1], [2], [6]
that F is a Weil functor. Since the transformation i from Proposi-
tion 1 is essential for all following considerations, this fact
shows that our way of prolongation of some geometrical objects is
applicable to Weil functors only.

The next lemma shows that our T-natural equivalence behaves
well with respect to the linear structure on tangent bundles.
Having a vector bundle E, the multiplication by a scalar
o € R or the addition E®E — E will be denoted by °‘E or GE
respectively.

Lemma 2. For any manifold M the following diagrams commute.

AG Ax
ATM ® ATM ™, Amm ATM — M amy
lim @ 1y liM Jim lim

o
TAM ® TAM —CTAM puy TAM TAM,  pau

Proof. We may restrict ourselves to M = R? and in this case the
commutativity is easily computed directly by Lemma 1.

3. APPLICATIONS TO SPRAYS

In the special case T = A, the T-natural equivalence from
Proposition 1 is the canonical involution j: TT — TT. Let us recall
the definition of a spray, [4]).

Definition 2. A spray on a manifold M is a vector field
¢ : TM — TTM satisfying
(1) Tyoexptf o oty = vrMoexp(oct)?

(11) g = §-

Consider a Weil functor A.

Proposition 2. For any spray ‘f on M the mapping

¢ = T1M°Ag°iil is a spray on AM,
Proof. According to (i) we have
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Aoy o1}l coxptAceiTli, sAn, o1l = Adr,e1=31 cexp(x t)Aq o471
ATy Ly iy texXpthg o iyt iyt A Xyt iy M iy iy® exp Afciy
Since we have AerM"iil = Wy by T-naturality and

iM'Aosmﬁil = Oty by Lemma 2, the latter condition implies
A, = ° A
TpuoeXPt ¢ Xppy = Wyycexp(xt) ¢
The condition (ii) for & yields Ajy+A%§ = A§. Hence
A °o ° -1 o ° L 1
AL SRS WY TYRT Rl SRR TR AV SR o
By local considerations using Lemma 1 we easily obtain

-1 -1 _
TiyoimyAdy 1oy ® (Tiy) Iam

which completes the proof.

4. PROLONGATIONS OF GENERALIZED CONNECTIONS
We shall deal with generalized connections introduced by
P. Libermann, [5], in the form of the lifting mappings.

Definition 3. A generalized connection on a fibred manifold
P: Y—~ X is a mapping [": TX® Y — TY satisfying
(1) (Tp ®Ty) M = 1dpy oy

(i1) [(-,y) is linear for all y€Y.

Consider a Weil functor A and a fibred manifold p: Y — X.
Since A preserves products, Ap: AY — AX also is a fibred manifold. -
For the same reason the morphisms of fibred manifolds are trans-
formed into morphisms of fibred manifolds. Local considerations
show, that the fibred products of manifolds and mappings are also
preserved.

Let " be a generalized connection on a fibred manifold
p: Y — X. Using the T-natural equivalence i, we can construct the
composed map

17 @ 14,y

Al iy

TAX @ AY ATX @ AY ATY TAY .

Proposition 3. The map A" = 1Yoar'-(1§1® 1d,y) is a generalized
connection on the fibred manifold Ap: AY — AX.
Proof. Since " is a generalized connection, we have

(ATp @ Amy)*Al = 1d,00 o4y -
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To prove ('J‘.‘Ap @ '"AY)'AP = idp,x @ AY® e need
1y°ATpeigl = ap, Amye1jl = w,y, but this is obvious, since 1
is a T-natural equivalence. '

The linearity condition (1i) is computed directly. Let Nps

M5 €TAX, ¥ €AY, Tr,53("M;) = Tx(m,) = Ap(y). Choose g;, &, b

in such a way that ixl('ll) e g1 ixl("lz) = A &> ¥ = Ay ana

Ty8) = Nye8y = peh. Using Pemme. 2 we obtain (%,8 € R)

175 atmy + Any) = AGp(Aang(ite)), A agg(itey) = A (xey+ B8)-
Then

Ar (it (g, +6ey),5%n) = M (xg) +4g,,n0) =

= M gym) + A M (gyuh) =

= AG py(AocgyoAl (3hg),3%), Adppear (she,, 5%0)).

By Lemma 2
Ar(xm, + 87,,5) = AC(7,,¥) + BAT (75,3) . Q.E.D.

Let us consider a generalized connection [~ on a fibred mani-
fold p: Y - X and a vector field ¢ . This is lifted to a vector
field ¢ on Y defined by [§(y) = F(fg-p(y),y) and called the

r-1ift of 4.

Proposition 4. Let A be a Weil functor, [- a generalized connection
on a fibred manifold p: Y — X. For any vector field ¢ on X it
holds Ar‘(yf) = A("g).

Proof. We have f¢= Fe(fep ® idY)' so that

A(lCg) = AP°(A?°AP ® idAY). On the other hand,

Ar(Ag) = Ale(AqeAp @ 1d,y) = 1y°”'°(1x ® 1dy)e (AcfoAp @ 1dy) =

= 1y°Ar (A Ap @ 1d,y) = 1,°A(C ). Q.E.D.

The covariant differentiation 7/ defined by a generalized
connection [ on a fibred manifold p: Y — X can be expressed as

Vgs = Taef - [o(§ ®8): XV,
where VY is the vertical tangent bundle of Y.
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Lemma 3., The restriction of the/map iY to AVY has its values in
the vertical tangent bundle VAY.

Proof. The subbundle VYC TY ie characterized by TplVY = 0.
Consider an arbitrary z = J ;]og(-,x) € AVY. We may assume
pog(=,x) = const = h(x) for all x&Rk. Then we have
Tapeiy(z) = MAp(iiite(t,-)) = y3itn . | Q.E.D.

Proposition 5., Let p: Y — X be a fibred manifold, I~ & generalized
connection on Y. The covariant differentiation determined by the
generalized connection A satisfies

VA-&?F As = 1Y-A( Vg 8)

for all vector fields ‘f on X and all local sections s of Y.
Proof. We have

Ar
As = TAsoA - Alo(A¢e ® As) =
<f A A
= ThsoipeAq - 1Y»Aro(1;1@ 1d,,)* (igsAy ® 48) .

Hence Lemma 2 implies
S As = Gquyo(iy°AT8°AF @ (-1)p,y°iy°Al (A4 @ A8)) =

= 1y°AG py(ATE°AY @ A(-l)TY"M"o(Af ® A8)) =

= iY°A('1‘8°g - F‘O(‘f ®s)). "Q.E.D.

An interesting question is, whether a gemeralized connection
on Ap: AY — AX is determined by its values on prolonged vector

fields and local sections. An answer is given by'the following
considerations.

Lemma 4, Let p: Y— X be a fibred manifold, dimX >k and Ty be the
functor of r-th order k-velocities. There is a dense subset
UCTEX such that for any jJfe U the fibre of T,Y over Jif is of
the form

'Bi![:’rf -{jg(ati’); s is a local section of Y. /
Proof. We may restrict ourselves to the case X = R®, Let n>k.
There is a dense set UCJI'(Rk R®) each element of which has a left
1nverse. Consider an arbitrary element jngU and let

jo ;jof - Jgidnk. Choose an arbitrary ;]ogG-TkY over dof.
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Using local coordinates on a neighbourhood of g(0), we have

;jog = (;]of ;jog), where g: R~ R® and m is the dimension of the
fibres of Y. Then we set s = (id n,é-f), which is the coordinate
R .

expression of a local section of Y. Moreover

Jg(e=) = (3gt,35(&-E-2)) = J3e. Q.E.D.

mma 5. Let A = E(k)/Q® and let p: Y — X be a fibred manifold.
Iif dimx >k, then AY = {As(u); s is a local section of Y} for
a dense set U of elementa u of_.the base AX.
Proof. Any Weil algebra is a quotient of some JO(R »R). Hence the-
re is a surjective natural transformation j: Tk—- A for some inte-
gers r and k. First of all we show that the restriction of J to
a fibre over veTkX is a map onto the fibre AY, over u = jx(v)EAx.
Consider an arbitrary homomorphism u, € Hom(C®™® Y A) over u. This
homomorphism depends only on r-jets of functions in a point yeY.
Using local coordinates, we have y € (R®x R®), u, = (u,u) € AR%AR".
Since j is surjective, there is vy = (v,¥) emrnﬁx TLR" satisfying
JRm(;) =u, i.e.

ij+n(v1) = u;. Hence we have proved JY((T;Y)V = AYJX(V) .

Further, it is clear that a surjection transforms dense sets into

dense sets. Let VCT;X be the dense set from Lemma 4. We set
U= Jx(v) and we have

AYu = {;on’l‘is(v); s is a local section of Y} =

= {As(u); s 1is a local section of Y]
for any u = jx(v)e u. Q.E.D.

Proposition 6. Let A = E(k)/Q be a Weil algebra and let

p: Y— X be a fibred manifold. If dimX » k, then any generalized
connection /™ on AY is determined by its values on prolonged vec-
tor fields and local sections.

Proof. This is a direct consequence of Lemma 5.

Remark 2. Consider A = T and teke Tz TR— R for p: Y —X.

We have galy(x,‘q y© ) = (x,,0,%,4¢/dxv ,d%/dx-0), s0
that the assumption dimX 3k in Proposition 6 is essential.
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Remark 3. Let A = E(k)/Q be a Weil algebra. The equality in
Proposition 5 can be used for an equivalent definition of a pro-
longation of covariant differentiation, if the dimension of the
base is greater then k.

Remark 4. Another approach to prolongations of connections was
introduced by Z. Pogoda, [8]. He prolongs connections on principal
fibre bundles using the canonical form of a principal connection.

5. THE LINEAR CASE

Consider a vector bundle p: E — X. There are operations
ABE, ANE on the fibred bundle Ap: AE — AX. Since the properties
of vector bundles can be expressed by commutative diagrams,

Ap: AE — AX is a vector bundle with operations GAE = AG‘E,

&,p = AXg, S0 that O(AE(:I g) = A (w g°8). If (52 gl,:I g )€AE®AE,
then we may assume peg, = p°g, and then g = (gl,gz)e C°°(R ,E®E).
In this way we identify AE ® AE = A(E ® E) and we have
GAE(jAgl.JAgZ) = JA(GE'g). In particular, for A = T we obtain
the well known linear structure on Tp: TE — TX. The functoriality
also implies that the morphisms of vector bundles are transformed
into morphisms of vector bundles.

Let us recall the well known concept of a linear connection,
which is defined as a linear section M: E — JlE. One can easily
see, that in our setting this is equivalent to the lirearity of
a generalized comnection M: TX ® E— TE on E with respect to the
linear structure on Tp: TE — TX. In other words, the ["-1lift of
any vector field on X is linear.

Proposition 7. If [~ is a linear connection on p: E— X, then A"
is a linear connection on Ap: AE — AX.

Proof. Consider any elements m € TAX, Yy» yzeAE,

Ap(yy) = AP(yy) = m, (7). Let y; = JAi’l, Yo = § f2, ix n = A P
P°fy = Pofy = myeq and let &,3 € R. We can find

Ar(M,xy; + L’»yz) by the following computation.

177 ® 14,
(75 %3y +8y,) = (oz.:] (x2y + 6£y)) w2 E,

— (34 X e (xty +/sf2)._—. 3 (F’('x,o(fl + R2,)) =
= j (TSE(TO(E‘,P(X"fl)’TAEor‘(x’rz))

1
—Ee 1pehT G (AT acgoar (SR o 340100 oAl (g, 3he)) -
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= TAG oo (AT oAl (3hy ,she ), am mpear (hy ,3%2)) =
= TGAE(To(lug._F("].yl),T/sMiAF'(oz,ya)) , Q.E.D.

Having a vector bundle p: E — X, there is a canonical identi-
fication of any VyE with E (y)* 8° that there is a canonical mor-
phism of vector bundles ap: VE — E. Let us consider a covariant
differentiation ¥ on p: E —»X. We define ¥ by

V,fs = Ag° V.:fe: X ~»E.

We remark that for a linear connection [, '5‘—' is the usual cova-
riant differentiation determined by [.

lemma 6. For any vector bundle p: E—X it holds

MAEoiE = Aqu
Proof. We may restrict ourselves to E = R®x R®, In this case

e R%x R®x {0} x R®— R® x R™ is the projection to the first
and the last factor. Hence

Aseg: (R°®A) x (R"®A) x {0} x (R"®4) —» (R'®4) x (R"®A)

is also such a projection. On the other hand, we can similarly
locally write VAE = (RP®A) x (R"®A) x {0} x (R®"®A), where ¥E
is also the above projection, and the corresponding coordinate
expression of iE is the identity. Q.E.D.

Using this lemma and Proposition 5 we obtain

Proposition 8. For any linear connection " on a vector bundle
p: E— X, any vector field ¢ on X and any section s of E

we have %AAPAB = A(e{' 8).

2%

6. APPLICATIONS TO THE CLASSICAL LINEAR CONNECTIONS

A linear connection [ : TM ® TM — TTM on the tangent bundle
TM of a manifold M is called a linear connection on M.
By Proposition 7, there is a linear connection
Al: TAM @ ATM —»TATM on A my: ATM — AM. Using the T-natural
equivalence i, we can construct the map
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A . -1, '
ro o= MypeAlre(idy,@iy") : TAM @ TAM —» TTAM.

Proposition 9. The map r*A is a linear connection on AM for any
linear comnnection I” on M.
Proof. Since Tiy is a linear mepping, the linearity condition (11)
of Definition 3 holds. The condition (1) is easily verified by
local computations by Lemma 1. The linearity of the generalized
connection ["A follows from the definition of I‘A, Lemma 2 and
Proposition 7. Q.E.D.

Any linear connection Mon a manifold M determines the geo-
detic spray ?}- on M by the composition

-
e 228,y L, oo

The following proposition is obtained directly by comparing the
construction of [‘A with the construction of the prolonged sprays.

Proposition 10. Iet A be a Weil functor and let I be a linear
connection on a manifold M. The geodetic spray of the linear con-
nection r‘A on the manifold AM coincides with the prolongation
of the geodetic spray of the comnection ™ with respect to A, i.e.

A
(%r )" = fra

Lemma 7. It holds

iye ¥ypy = Xy Ty
Proof. This can be proved by direct computations in local coordi-

nates similarly to the proof of Lemma 6.

Proposition 11. For any linear connection T on & manifold M and
any vector fields S »7 om M we have

~ A (A
Vég} An -A(V(?"Z ).

\V/ - % ovrAA = Wy Tyo LA An =
Ae =7 TAM® M 27 M T VA 27

r
% g T i A VL)

By Lemma 7 and Lemma 6
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~ 4
VA sz = in°“ATM°iTM°A(v Wi ) = dyeAzeqyeAl fo oz) =

= iM'A(<%f7) . Q.E.D.

-Remark 5. Wé give the expression of the prolonged comnection in
local coordinates. Consider a linear comnection I on Rn, i.e.

" : RPx R®x R® — R%x R"x R®x R%,

(xt,yt,21) — (1,2 ,yi Fljy 11y , where F}g € c™®RR,

The multiplication w: RxR”— R” is prolonged into
Ao A xAR®— AR® and defines an A-module structure on AR".

The module structure defined in this way is studied in [7],
similar considerations are also possible in our setting. Let us
denote by xi'v the coordinates on AR® defined by Axi = xi’v
where e,, is a base of A, Then direct computations give:

’-A(xi,\’ ’yi?\:zi,v) - (xi,\) ’zi,V ,yi,v 'Al—iljt*(yi,\) )*(zi,\) ))

e\,,

where x denotes the above mentioned module multiplication. Taken

into account r.
V D 'Dx
D x

one verifies that the Morimoto's prolonged connection [7] coinci-
des with our one. This fact also follows directly from Propositi-
on 6 and Prop&sition 11 if dim M >k, provided A is a quotient

of E(k).
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