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CALCULATION OF THE FREE ENERGY IN A SIMPLE. MODEL 

A.K. Kwaśniewski 

Abstract: 

The free energy per site is calculated, for the one-dimensional periodic 

chain, in an arbitrary external magnetic field. 

This chain is a one-dimensional counterpart of the two-dimensional, three state 

Potts models. 

The use of generalized Clifford algebras, has recently resulted in revealing 

new perspectives for calculation of the partition function for Potts models [1,2]. 

At the same time the main algebraic obstacle for straightforward generaliza­

tions of the known in the Ising case model methods - seems to be localized now. 

Therefore it is useful to get further experience, while calculating the partition 

function for the one-dimensional counterparts of both standard and planar Potts 

models. 

These are one-dimensional periodic chains with partition functions defined 

as follows: 

N N 
Z = I exp{a I S(\i. -u. ) + B £ Re y } , (1) 

{y} i=1 X ' i=1 

N N 
Z M - I exp{a I Re(u.u.+1) + B I Re y. , (2) 

{y} i=1 L ' i-M 

k 2 2TT 

where y. € {to }, , a) = exp(i — ) and y = y , a ̂  0, a,B € TR . 

The transfer matrices L and L' are given correspondingly by: 
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Ľ(a) = e a R e UL(a - Reш) . (4) 
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Due to (4) it is sufficient to calculate .7 partition function only.. 

We shall look for eigenvalues of L(a), and for that to do let us introduce the 

following notation: 

a .,2 B ,2 BRew .,-2 _ 
e »= a , b =e , b = e , x = a - Ab - a - A3-

o o o 

x = a - Ab H a - A3 .. 

2 
Note that 3 3 . = 1. 

Define now for the moment the A & B matrices: 

b 0 0 
o 
0 b 0 /. 

0 0 b 

Then one easily sees that the spectrum of L(a) is that of BAB, what amounts to 

looking for the roots of det(BAB - XI), where 

det(BAB - AI) 

xo 1 ' 
1 x 1 I = (x - 1)(xx + x - 2) . (5) 

| o o 
1 . 1 X 

Hence the first eigenvalue of L(a) is equal to 

A = (a - 1)b2 . (6) 
o 

The other two are to be found from 

A2 - [aft2 + (a + 1)3 3]A «• 3[a(a + 1) - 2] . (7) 
o 

Denote the coefficient of A by A while A2 = 3[a(a+1) - 2] . Then we see that L(a) 

has two more eigenvalues as 

A = A2 - 4A2 = [ a 3 2 - (a+1)33 Q ] 2 + 83 > 0 (8) 

for any a and B. Thus we obtain: 

A, = i[a32 + (a + 1)3 3 + &~] - (9) 
1 o 

A0 = i[a3
2 +"(a + 1)3 3 - *£~] . (10) 

I o 
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It follows from (9) that X^O independently of a and B, Meanwhile A^O depending 

on the values of a only, i.e. 

X > X
2
 > 0 for a > 0, and 

(11) 

X
2
 < 0 ., X

1
 > |X

2
| for a < 0- . 

In order to prove (11) it is enough to notice that 

b
2
X X = a(a + 1) - 2 and that a > 1 for a>0, while a< 1 for a<0. 

The inequality X
1
 > |X«| for any a is obvious in virtue of (9) and (10). 

As the next important step we prove: 

LEMMA 1. 

Let B > 0 and a i 0, then X > |X | „ . 

Proof: 
2 
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Now we are in a position to extend the validity of the above Lemma - to arbitrary 

B. 

LEMMA 2. 

For any B and a ± 0, X, > |X | . „ 

1 ' o' a 

• Proof: 

At first we prove that the continuous function of B: f(B) = X., - |X | never 
1 ' o' 

takes the zero value. The thesis to be proved then follows from Lemma 1. 

Let a>0. Then a>1 and let X,-|X |=X -X =0. This is equivalent to 3 = 3 i.e. 

1 o 1 o o 
B=0 and this leads to contradiction as for B=0, a+2=X.^X =X

0
=a-1, 

1 o z 
Let now a<0, then a<1 and let X -|X | = X, + X = 0. Then xx +x -2 = 0 for X =-X 

1 ' o' 1 o 2 3 ° 1 ° 
(see (5)). This is equivalent to x = 1 or explicitly: a +a K-aK-1=0; K=3 3~ >0. 
However, this proves the contradiction as for 0<a<1 a -1 + K(a -a) < 0 ,

 n 

B 
From what was proved it follows directly that the free energy per site - f(a,B) -
for the model defined by (1), reads: 

f (a,B) -= -kT l n ^ . (12) 
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The free energy thus is a continuous function of all its arguments. 

The further, implicite dependence of f on temperature T is through parameters a 

and B which naturally incorporate the 1jkT factor. 

The 5-state model is to be presented in a forthcoming paper. 
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