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CONVEXITY IN COMBINATORIAL STRUCTURES (*) 

Pierre Duchet CNRS3 Paris 

SUMMARY. The recent (since 1968) combinatorial developments of abs­
tract convexity are surveyed. The combinatorial properties' of convex 
sets (Hetty propertys Eckhoffrs partition problem ...) are consider­
ed in the general setting of finitary closure systems ("Convexity 
Spaces" or "Alignements "). In ordered sets3 in tree-like structures 
and in combinatorial structures inspired by Geometry (e.g. "oriented 
matroids") there are natural definitions of convex sets : an axiomatic 
common background is the theory, of "convex geometries" (or anti-• 
exchange convexitiesff) of Edelman and Jamison or dually the theory 
of "shelling structures" (or "APS-greedoids")of Korte and Lovasz. 
Convexity in graphs recently appeared of independent interest 
(contraction into complete graphs^ universal properties of geodesic 
convexity .. . ) 

I - INTRODUCTION 
Properly speaking, convexity is not a mathematical theory, but 

rather a notional domain where five basic concepts operate : between-

ness (-* medians, convex dependance) , algebraicness (-+convex hull 

operator, dimension), separation ( •>hemispaces, copoints), connected-

ness and optimization (-*• extremal points, face-lattices, duality). 

Thus, convexity is present in almost all constituted combinatorial 

theories:Finite Geometry (namely oriented matroids) of course, but 

also Graphs, Set Systems, Ordered Sets, Extremal Set Theory, Enumera­

tion Problems, Designs and Combinatorial Optimization. 

The first aspect of the interplay between Combinatorics and Convex­

ity is the use of combinatorial methods when studying ordinary convex­

ity (i.e. standard convexity in Euclidean spaces !R ) : combinatorial 

properties of .families of convex sets, facial structure of polytopes. 

(*) This paper is in final form and no version of it will be submit­

ted for publication elsewhere. 
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The second aspect is the use of convexity concepts in combinatorial 

research. The title of the present article refers to a definite part 

of the second approach : we restrict our attention to those combina­

torial structures where the notions relative to convexity are intro­

duced by intvinsio means, or to put it differently, where the defi­

nition of the convex sets only depends on the combinatorial struc­

ture itself. Nevertheless,since most convex approaches of combinato­

rial structures are motivated and inspired by abstract generaliza­

tion of Euclidean space situations, we briefly recall in Section 2 

the major oombinatovial themes of convexity theory in real vector 

spaces. But convexities that arise in an extrinsic way in Combinato­

rics are not considered in this survey. For instance the reader who 

is interested in polyhedral combinatorics (discrete optimization, 

linear programming, packing and covering-problems) is refered to 

the classical literature of this important domain : Rockefellar 

[1970], Stoer and Witzgall [1970], Lawler [1976], Hammer et al. 

[1979], Schrijver [1979], GrStschel et al. [1981], Lovasz [1984] 

Yemelichev et al. [19 84], Karmarkar [1985]. 

The general context, a sort of "Pvototheovy of Convexity" is in­

troduced in Section 3. The interest of an independent development 

of an abstract and axiomatic convexity is underlined by recent re­

sults that concern oombinatovial pavametevs attached to convexity 

spaces (Section 4) and by Eckhoff's partition problem. A typically 

interesting direction is the theory of Convex Geometvies . (or anti-

exchange convexities) where every convex set is the convex hull of 

its extreme points : this theory, described in Section 5, can be 

viewed as a part of the Theory of Greedoids (a relaxation of Matroids) 

In Section 6, we deal with convex sets in gvaphs. Graphical convexi­

ties appear as a very important example of finite convexity spaces 

with possible applications both in Graph Theory (e.g. Hadwiger's 

conjecture) and in Abstract Convexity (universalness of geodesic 

convexity). The last three sections present more specialized works 

on combinatorial structures where convexity appears in a very natural 

way : oviented matvoids (Section 7) with facial structure and sepa­

ration problems, ovdeved sets (Section 8) with betweeness or medians, 

tvee-like stvuotuves (Section 9) with coherent convexities. 

Throughout the paper, strict inclusion is denoted by c and set 

difference by ^ # square brackets indicate the year of a reference 

issue. Open problems are numbered separately. A notation of the form 

(3.7) refer to the seventh paragraph of Section 3. 
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2. FROM EUCLIDEAN CONVEXITY ... 

(2.1) Combinatorial properties of ordinary convex sets were progress­

ively discovered when mathematicians tries to find geometrical proofs 

of properties of convex sets. So, in a parallel direction with geo­

metric approaches by Brunn [1887], Bonnesen [1929], Alexandroff [1950], 

the combinatorial works follow one another : Caratheodory [1907"] , 

Radon [1921], Helly [1923], Kakutani [1937]. Further ideas and refe­

rences may be found in usual books on Convexity and Combinatorial 

Geometry : Bonnesen and Fenchel [1934], Yaglom and Boltianski [1956, 

1961], Hadwiger and Debrunner [1964] (wonderful ! ) , Valentine [1964] 

Boltianski and Soltan [1978]. Interesting survey papers are : Dantzer 

et al- [1963], Eckhoff [1979,1986]. 

(2. 2) The second major theme in Combinatorial Convexity is the follow­

ing problem, attributed to Baker. 

PROBLEM 1. (Baker) Characterize the nerves of finite families of 
convex sets in JR 
The nerve of a finite family (C .) . c T of convex sets in IR is the 

abstract simplicial complex (*) whose vertex set is \ and simplices 

(= faces) are those subsets J cz I such that I I (C ;i £ J) ^ 0 . An 
~~ i 

important stage towards a solution of Baker's problem was recently 

reached : Kalai [1984], using technics of exterior algebra, characte­

rized the f-vectors (**) associated to the nerves of families of con­

vex sets — thus solving a conjecture due to Eckhoff — 

A special unsolved part of Baker's problem deserves mention : 

PROBLEM 2 (Wegner) Characterize the intersection graphs of families of 
2 convex sets in JR 

The characterization problem for lattices of Euclidean convex sets 

is closely related to Baker's problem : see Bennett [1974] and its 

references,, 

(2.3) At last, combinatorial Convexity includes the systematic exami­

nation of face lattices of convex bodies, espacilly of polytopes : 

McMullen [1971] solved the Upper Bound Conjecture (Motzkin) when 

(*) An (abstract) simplicial complex is a collection .K of subsets 

— the faces of X — such that the properties F € X and Fr 5 F 

imply F' G X . In Berge's terminology [1973,1986] a simplicial com­

plex is a hereditary hypergraph. 

(**) The f-vector (face-vector) of a cell complex X is (f0^f1s*^'j 

/-.... J where f* is the number of k-dimensionnal cells of X . In 

case of simplicial complexes, fj. is the number of k+1 -elements 

simplices. 
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determining the maximum number of k-dimensional faces of real 

Ol-dimensional polytope with a given number of vertices. Stanley [1975] 

generalizes the result to shellable complexes. More, the characteri­

zations of /-vectors of simplicial (*) polytopes was obtained by 

Stanley [1980] (necessity of McKullen1 s conditions) and Billera and 

Lee [1981] (sufficiency). Stanley intensively uses homological and 

commutative algebra. 

(2. 4) Evident similarities exist between Eckhoff's conditions for 

nerves (2.2) and McMullen's conditions for /-simplicial boundary 

complexes of polytopes (2.3),. Attempts to find a common general 

setting (**) to both properties can also help for a solution to a 

nice conjecture due to Chvatal [1974a,b]. 

PROBLEM 3 (Chvdtal) Let Jf be a simplicial complex with at least two 

faces* Let A denote the maximum number of J^ -faces that have a common 

vertex; Is it true that every family of L+l faces contains two dis­

joint faces ? 

Berge (seefl986])conjectures a stronger property : the line-graph 

(***) of the faces has chromatic number A . 

3. ... TO ABSTRACT CONVEXITY. 

(3.1) How to do geometry with convexity ? This was the original moti­

vation of pioneers of axiomatic convexity. The scheme was : 

convexity -*• convex hull -> segment -* line •+ dimension •+ geometry. The 

best achievements in this domain were obtained by Busemann [19 55] , 

Prenowitz [1969], Bryant, Webster [1972,73,77], Cantwell [1974,76], 

Cantwell and Kay [1978], Prenowitz and Jantosciak [1979]. An axiom­

atic characterization of M by the means of axioms that only involve 

abstract convexities, "linearization problem" is possible : see 

Doignon [l?76l and Whitfield and Yong i" 19811, where further referen­
ces can be found. 

(3. 2) Motzkin [1951] was seemingly the first to advice an independent 

{*) i.e. in which every face is a simplex. . 

(**) I share Eckhofffs [1985] point of view : an homological inter­

pretation of the /-vectors (or more precisely of the associated 

"^-vectors") of a wider class of simplicial complexes is highly 

desirable. 

(***) The line-graph L(7) (or intersection graph) of a family of 

sets 7= (F^ ) ^ j has vertex set I : the vertices i3g € I are 

joined in L(7) when F. H F , ? 0 . 
i g 
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development of an axiomatic convexity in a very general abstract 

setting, namely in the theory of algebraio closure systems Cohn 

[1965], Birkhoff [1967], Graetzer [1968]. As a matter of fact, seve­

ral approaches of what is now called Abstract Convexity pre-existed 

without any reference to Convexity : Moore [1910], Schmidt [1932,1953] 

Tarski [19 30], Hammer [1963a]. The purely abstract point of view is 

now sustained by convergent problems and results. Recent general re­

ferences on Abstract Convexity are Jamison [1972,1982] and Soltan 

[1984]. 

(3. 3) CONVEXITY SPACES There are essentiall/ two ways of defining 

a convex set : by intersection of "large basic convex sets" (for ins­

tance half-spaces in vector spaces), or by the property of being 

closed with respect to a certain family of finitary operators (for 

instance rc-any operators of the form n 

xv...,xn £TRd - Z A ^ 
^ - l 

where the A.'s are non negative and sum to 1 ) . This remark leads 

to the following definition : a set X , endowed with a set € of 

Z-subsets forms a convexity space (X3 *£) if the following axioms 

are satisfied : 

(C ) 0 e € , X € t 

(C-) <? is preserved under intersections 

(C~) € is preserved by nested union. 

Elements of X are points, members of £ are convex sets or 

oonvexes. Set families that satisfy (C..) and (CO are known as Moore 

families or closure systems. Families satisfying (CJ are known as 

inductive systems. An alternative terminology for convexity spaces is 

algebraic closure systems (cfX--- 3)), alignements [Jamison 1972],geo­
metries [Wille 1970]., domain finite convexity structures [Hammer 1963^ 

Sierksma 1976]. 

(3.4) BASIS When infinite convexity spaces are considered, Choice 

Axiom is assumed. By Zorn's lemma, Axiom (C^) implies the existence, 

for all x € X , of a maximal convex set that does not contain x . 

Such a convex set is called a copoint (relative to x).The set X and 

copoints form a basis 3f c: *€ , i.e. every convex set is an intersec­

tion of members of 5 . As easily seen,this set constitues the 

unique inclusion-minimal basis of <> . (cf. Soltan [1984]) 

(3.5) CONVEX HULL, OPERATORS. Let £ be a Moore family (resp. a 

convexity) on .a set X . The closure (resp. the convex hull) of a 

Z-subset A , denoted by (A)g — or simply by (A)> when no confusion 

can arise — is the intersection of all ^-members containing A . 
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Axiom (C~) expresses the algebraic nature of the convex hull opera-

tor : for Moore families, this axiom is equivalent (Schmidt[1952], 

see Cohn[J.98l] p.95) (*) , compare Hammer [m63a]) to the following 

property : 

(CF) If x € (A) then x € <F> for some finite A -subset F . 

Thus, every convexity Jf can be defined by a family of algebraic 

operators "generating rules" to. ; X •> X . A set A c X is convex 

if and only if it is closed for all operators. This point of view 

allows recursive proofs. 

(3. 6) INTERVAL CONVEXITIES. A convexity is n-ary (or n-generated) if 

it can be defined by a family of n. -ary operators with n. < n 
for all i . . Z -generated convexities are known as Interval convex­
ities. Most usual convexities are interval convexities : Euclidean 

convexity in K / geodesic convexity in metric spaces (graphs, 

Reimann manifolds . . . ) . Although, the oriented matroid convexities 

(see section 7) are not interval convexities. 

Intersection of convexities (see (3.8)) preserves n-arity. Hence 

there exists a smallest n-ary convexity that contains a given convex­
ity ^ on a set X (Burris,[ 1968]) It may be defined as 

t(nJ = {C c X ; A c C 3 Ul < n -> <4>g> E C} 

Burris [1972] has shown that every convexity space is isomorphic to 

an induced subspace (see (3.8)) for a definition) of an interval con­

vexity space. 

(3.7) METRIC CONVEXITY. In every metric space (X3d) one may consi­

der an operator D(x,y) = {z € X ; d(x,y) = d(x,z)+d(zyy)} . Any 

interval convexity which can be defined by a single operator of this 

form is called a metric convexity. To give an intrinsic characteri­

zation of metric convexities should not be difficult. See Busemann 

[1955] . 

(3.8) MORPHISMS. Morphisms for convexity spaces are defined as for 
topological spaces : a convex morphism from a convexity space (Xy£') 
in another (Y>$) is a mapping <f : X •* Y such that f~1(D) £ £ 

for every D €0 . Endowed with these morphisms, the class of convex­

ity spaces forms a category (or an "espece de structure" in Bourbaki 

*s terminology [1966]). Initial and final objects in this category 

(~"Structures deriv^es") are easily defined. For instance the pro­
duct convexity space of a family (X.y€.) (i € I) of convexity spaces 

1* 1* — « _ 

is the convexity space (X9 *6) where X = T\ (X .;i € I) and 
K = {\\(C.;i € I) ; C. € £f.}* The intersection convexity space is 

(*)Cohn's definition for inductive system is uncorrect; replace by 

ours in the proof. 
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{\\(X.;i € I) ,\\(<£.;i € I)) . The convexity subspaoe (Y^tL) of a 

convexity space (X3"C) induced by a subset Y c X is defined by : 

if„ = {'C n Y ; C € tf} . Other derived convexities are considered be­

low : (3.9) and (3.10) and in Degreef [1979,82], Sierksma [1981], 

Soltan [1984]. 

(Z. 9) MINORS. As in Matroid Theory (see Welsh [1976]), a very natural 

notion of minor space exists for convexity spaces (see Jamison [1982], 

compare Korte, Lovasz [1984b]). Let S = (X,^) be a convexity 

space and let Y c x . The oontraoted space of S by A , denoted 

by s / A is the convexity space (X ̂  A , ^6/ A) with : 

If/ A = {C^A ; A c C and C G 1-f i 
The subspace S ^ A is the convexity subspace of S induced by X ^A 
We have s ̂  A = (X v A , t^A) with : 

t^A = {C ^A ; C eg7} . 
When ASB are disjoint subsets, we have ( SV A) \ B = (S ^B) / A . 
A minor of s is every convexity space which is isomorphic to some 

induced subspace of a contracted space of S .If the flats of a 

matroids are viewed as convexes of a finite convexity structure, the 

notions "matroidal minor" and "convex minor" coincide. With this 

first point of view, matroids are exactly the finite convexity spaces 

with no minor isomorphic to the- space Q = ttL32},{{0}s {1}S {13 2}f) . 
Convex geometries (section 5) are another interesting class which is 

stable under taking minors. 

(3.10) VAEIETES. If we order by inclusion the set of all convexities 

on a given set X we obtain a complete lattice (Jamison,[19821), in 

which the upper bound of a family of convexities is called the joint 
of the family. Most interesting classes of convexity spaces are pre­

serve under the formation of joints. Jamison proposer to call ̂ a-

riety a class V of convexity spaces that possesses the following 

properties : 

(V ) Convexity spaoes isomorphic to a number of V are in V . 

(V«) Subspaoes of members of V are in V 

(V~) If every finite subspaoe of a space' (X, u) is in V then 

(X, if; is in V . 

When convexities if. (i € I) are taken in a variety V , the 

convex hull in their joint 2 has a simple expression ; 

<A>7 = .QT <*) *< rғ iei 

By (V
2
), varieties can be characterized by excluded subspaces. A 

variety V is finitely based when V can be defined by a finite list 

of forbidden subspaces. 
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PROBLEM 4 (Jamison) Let V,W be two finitely based Varieties. Let 

V v W be the class of all convexity spaoes (X3 <£) where £f is a 

joint of a member of V with a member of W (*) . Is V V W finitel 

based ? 

4. COMBINATORIAL INVARIANTS 

(4.1) Essential results in Axiomatic Convexity concern various 

parameters associated to combinatorial properties. Each of these para­

meters expresses a certain notion of dimension. All definition list­

ed below are relative to a convexity space (X, *£ ) . 

(4.2) CONVEX DEPENDANCE : a set A e X is said to be free if 

a C (4^a) , for every a € A . The rank of fS is the maximum cardi­

nality (if finite) of a free set. The rank, denoted by rank (ff), 
equals the least integer k that fulfils the following property : 

(F-) If CJJ...JC« ^ are convex sets of u , then one of them 

contains the intersection of the others. 
Real intervals of the real line form a convexity of rank 2 (see 

section 8) . Convexities of rank n are obviously ,*?-generated. 

(4. 3) HELLY PROPERTY : 

(H-) If a finite family of oonvexes has an empty intersection, then 

this family contains at most k members with an empty intersection. 

Notice that (H-) is a relaxation of (F-) *. The Helly number of 
denoted by h(\f) is the smallest integer k (if it exists) such 

that (H-)' holds. Ordinary convexity in 3R has Helly number 

d+1 (Helly, [1923]/1. Arithmetical progressions in Z satisfy (H ) 

(Chinese Remainder Theorem). For further examples see Dantzer et al. 

[1963], Jamison [1982], Duchet, Quilliot [1986], Eckhoff [1986]. 

Berge, Duchet [1975] : h ( €) = max (\A\ ; A c X and f]<^a) = 0 : 

We have also : rank (tf) = max (H'( jf.) ; A 5 X) . 
Particular results on Helly number are given in other sections. 

Other results may be found in Sierksma [1975 /76]•and Soltan [1984]. 

(4.4) PARTITION PROPERTY 

(P, ) If (P')'cr ts a family of n - in points, there exists 
K , n ^ ^ tJ 

a partition of I into k parts 1^...!* such that : 

n {p. ; i E J } ^ 0 
U\£k % 

Ordinary convexity in JR has property (P.̂  (K^2) (d+1 )+l^ f o r 

k3d > 1 (Radon, [1921] for k=2 , Birch [1960] for d=2 , Tverberg 

(*) It can be shown that VvW is a variety. 
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[1966/82] for the general case). The k-th partition number denoted 
by Vv(^) i s t h e smallest' integer n such that (P, ) holds. 

Number pf)(
 <6) is usually known as Radon number and is dendted by 

r( *C) . An important inequality is h(%>) < r(((?) - 1 (Levi, fl951]) : 
see (4.7). Eckhoff [1979] asked for a purely combinatorial proof of 

Tverberg•s theorem.: 

PROBLEM 5 (Eckhoff) Suppose a convexity space £f has Radon number 

r . Is the following "partition inequality" / -p^AS} <- (k-1) (r-1) +2 

always true ? 

A first step towards a solution to this surprising problem is 

taken with the following results [Jamison-Waldner, 1981] ? 

P kk 
ř ^ p k ' P k ř (hence p k <. p 2 k lo^2f2 

Pn-w+i - rV€;Pfc'+I fov 1 - l - k ' 
Jamison proved the partition inequality for order convexities 

(section 8), tree-convexities (section 9) and more generally for 
convexities that have the following property : 

CIP(3,2): for every point x , among three copoints relative to 

x two of them are disjoint. 

Roudneff [1986] proved the partition inequality for convexities of 
oriented matroids of rank < 3 (section 7). 
(4.5)'CARATHEODORY PROPERTY 

( Ck} If x e (A) 3 then x € <F^ for some F.c-A with \F\< k . 

Ordinary convexity in JR has property (C ) (Caratheodory, 

[1907]). For related results see Barany [1981]. The Caratheodory 
number denoted by c(<£) is the smallest integer k (if it exists) 

such that (C, ) holds. We have : 

c((€) = max(\A\;A 5 x and <4> jfc IJ (^sa) ) 
*~ aEA ' 

For interval convexities (3.6) more can be said [Duchet, 1986a] : 

the Caratheodory number equals the least integer k such that 

every k+1-point set A satisfies the following property : 

(A)= (J (is.) . 
a£A 

(4.6) EXCHANGE NUMBER [Reay, 1965; Sierksma, 1976] 
(E^) If x € X y A 5 X , \A\ > k then : 

(A) E U <M U *; ^a) . 
a€A 

Ordinary convexity in H satisfies (FJ./.7) Reay, 1965 . The 
exchange number [Sierskma, 1976], denoted by e(£) is the small­
est integer k (if it exists) such that (E-) holds. 



270 PIERRE DUCHET 

(4. 7) INEQUALITIES 

Levi [1951] : h < r-1 

Sierksma [1976] : e < c+1 

Sierksma [1977] : r < (h-1) max(h,e-l)+2 

If e < c y r < (c-1) (h-l)+Z 

Jamison-Waldner [1981] : P'k < (k-U rank +1 

Ibid.(Kay Womble [1977] for k=2)- p < (K-i)ch -c +2 

For i =- l,2,...9n let (X.3 if.) be a convexity space. Let (X,^) 

denote their product space (3.?). Set h. = h(if.) , h = h(<{f) ; 

numbers r ^ c ^ e ^ r , c . e are defined analogously. 

Sierksma [1975] : h = mqx h. 

Eckhoff [1978.1979] : max r. -< r 
i * ~ 

for n = 2 : r < r2+r -1 

Sierksma tl976] : r < Z * • - 2w +2 
i 

Soltan [1981](cf.Sierksma [1976]) : e 1 + Z (c. + sign(e .-c .-1)) 
^ 

Soltan [1981], Sierksma [1975](n=2) c = e-l+z (where e = 0 

(also Reay [1970] if ^i if e. = c.+1 for every i 

are standard convexities in or if c. > 2 for every i ; 

H""2- ) e -=• 1 in other cases) . 

PROBLEM 6 (Kay, Womble) Characterize possible triples of the form 

(h(¥>) 3 r(u) 3 c(u)) for some convexity space (X9¥>) . 

5. CONVEX GEOMETRIES 

(5.1) Convex.Geometries were introduced independently by Edelman [1980a] 

and by Jamison [1980] . Convex Geometries are finite convexity spaces 

in which the (finite) Krein-Milman property holds : 

(KM) Every convex set is the convex hull of its extreme (*) points. 

Theory of Convex Geometries is interesting at least for two rea­

sons. On the one- hand, it is general enough to unify areas that were 

previously ill-matched : Convex Geometries were independently dis­

covered under dual form by Korte and Lovasz [1981,1984a] (shelling 

structures) and Crapo [1984] (selectors) in a completely different 

context; a similar structure appears also in Discrete Optimization 

[Hoffman 1979]. On the other hand the concept of Convex Geometry is 

rich enough to allow the. growth of a theory. 

If all singletons of a convex geometry, are convex, then the 

(*) A point x of a convex C is extreme in C iff C ̂ x . is convex. 
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convex geometry is completely determined by the lattice of its con-

vexes. Edelman [1980] showed that a finite convexity space is a con­

vex geometry if and only if the lattice of its convexes is meet-dis­

tributive (*). Hence one can say that the concept of Convex Geometry 

is implicit- in Dilworth [1940]where meet-distributive lattices are 

characterized as lattices in which every element has a unique express­

ion as a joint of joint-irreducible elements. These lattices were 

frequently rediscovered : see Konjardet [1985]. 

Although Edelman and Jamison restrict their attention to finite 

spaces, I suspect that no major difficulty arises about extending 

their results to infinite spaces (compare Soltan [1984]). 

PROBLEM 7 (Duohet) Extend the theory of convex geometries to infinite 

spaces. 

(5. 2) EXAMPLES : Convexities of acyclic oriented matroids (section 7); 

partial order convexities and some related convexities (see section 8) 

8); minimal path convexity in triangulated graphs (6.4); geodesic 

convexity in ptolemaic graphs (6.7); tree convexities (see section 9). 

(5.3) CHARACTERIZATIONS AS CONVEXITY SPACES (Edelman, Jamison) A 

finite convexity space (X, tf ) is a convex geometry if and only if 

each of the following equivalent axioms is satisfied, 

(i). (Anti-exchange axiom) 

xyy C (jf) 5 x £ y and x € (A U y} imply y C (A U x> 

(ii) (Augmentation axiom) 

If C € & then (C U x) €. *tf for some x € X ̂  C 

(iii) (Generation axiom) 

If c = (A) = <£> then C = <(A D B)> 

(iv) (X, t?) is a joint of monotone convexity spaces (**) 

(v) (Xj £ ) has no minor isomorphic to QA2) where 

Q(2) = ({1,2} ; {0,{1,2}}) . 
u \ 

Antiexchange axiom (i) is to be compared with exchange axiom for 

closed sets (flats) of matroids. The equivalence between (i), (iv) 

and (v) holds for infinite spaces [Jamison, 1982]. A variant of anti-

exchange axiom is : 

(vi) For every C € TJ , the relation x € (c U y\ between elements 

x and y of X^C is a partial order on X ^ C . 

(*) A lattice is meet-distributive if and only if all intervals 

[x,y] suqh that x is the meet of elements that y covers, are 
Boolean algebras. 

(**) See (3 JLO) and ( 8.4) for definitions. See (5.8) for details 
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For other variants see Edelman, Jamison [1985], Thron [1985]. An 

equivalent form of (ii) is : / 

(vii) Every maximal chain 0=CczCc...c:X of oonvexes 

comprises \X\ + 1 oonvexes. 

Notice that the existence of extreme points for every convex set is 

not sufficient to imply (ii). The generation axiom (Hoffman, [1979]) 

is equivalent to the following axiom (cf. Korte,Lovasz [1984b]) : 

(viii) Every convex C € if contains a unique minimal subset B 

such that ^B ) - C . 

(5.4) HELLY NUMBER. In a convexity space (X, g) , a set K cz X is 

a clique if K and all X-s'ubsets are convex. Equivalently a clique 

is a convex set all vertices of which are extremal.In a convex geometru 
the Helly number equals the maximum number of points in a clique. 

(Edelman, Jamison [1985]). Compare with the Helly number of minimal 

path convexities in graphs (6.4). 

(5.5) GREEDOIDS (Korte, Lovasz) As a framework for greedy algorithms, 
Faigle [1979,1980] proposed an extension of matroidal structure to 

partially ordered sets. Greedoids (Korte, Lovasz,[1981]) are a further 

generalization of "Faigle-geometries" (see Korte-Lovasz [1982]). A 

Greedoid (Xy 3* ) is a finite set X endowed with a collection J* 
of "̂-subsets such that the following axioms are satisfied. 

(G.^ 0 € 3? 
(G2) If A3B e & y \A\ < \B\ then A [){b\ £ 7 for some b € B^A 

Members of T? are the feasible sets of the greedoid. The independ­

ent sets of a matroid are the feasible sets of a greedoid. 

(5. 6) SHELLING STRUCTURES (= Selectors, "Alternative precedence struc­
tures" or APS-greedoids) [Korte, Lovasz, 1984b] are a special class of 

greedoids. Axioms are : 

(SH^ 0 , X € ? 

(SH2) If A3B € ¥ , A ± B then A [){b) ef for some b € B "s A . 

Axiom (SH2) is due to Bjorner [1983] who first pointed out the 

connection between greedoids and antiexchange axiom (implicit in 

Crapo [1984]) : let X be a finite set and let i f c / , set 

c" = {X^C ; C Gtf } . Then (X3 *€) is a convex geometry if and only 

if (X9^) is a shelling structure : see (5.8) below. 

(5.7) 

—TF75T" 
MATROIDS 

[GREEDOIDS 

ГM 

—r-rgi  

\C0NVEX GEOMETRIES I 

ORIENTED MATROIDS 
(Section 7) 
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(5.8) COMPATIBLE ORDRES. If T is a total order on a set X and 

x £ X , we denote by T the lower ideal {y € X : yxx} . Let & 

be a family of total orders ("criteria") on X . A total order T 

is said to be O-compatible when every element x € X is for some 

criterias ia 7? , the best element of T . The set of all lower 
X c*D 

ideals (respectively of all upper ideals) of all t>-compatible 

orders are the convexes of a convex geometry (respectively the 

feasible sets of a shelling structure). By (5.3)(iv) every convex 

geometry (hence every shelling structure) can be generated by this 

process. The set of all v-compatible orders induces a connected 

subgraph of the permutohedron on X (Korte, Lovasz, [1984c]; 

Edelman, Jamison, [1985]; compare Feldman-HSgaasen [1969] 1. Compatible 

total orderings x1,...yx of X are precisely those in which x,. 

is an extreme point of { x 7Jx .,. . . ,x .} .for i = 13 . . . >n .. The 
l a ^ 

sequences x x _ ...x . are precisely the words of the shelling 

structure when considered as a language over X (see Korte, Lovasz 

Tl984a]). 
PROBLEM 8 (Edelman, Jamison) Determine the convex dimension of a 
convex geometry% i.e. the minimum number of criteria which are need­
ed for the construction of that convex geometry. 

Edelman and Jamison [19 85] showed that the convex dimension is 

not less than the convex rank (4;2) but it may be greater for the 

construction of a given convex geometry : this number is at least 

equal to the convex rank (3.); see Edelman, Jamison [1985]. 

(5. 9) CHARACTERIZATIONS AS GREEDOIDS (Korte, Lovasz, Bjorner). A 

greedoid (X,3*) is a shelling structure if and only if X € 7 and 

each of the following equivalent axiom is satisfied : 
(i) Every union of feasible • sets is feasible. 
(ii) (Interval property without upper bound) 

If* A,B,A \}[x\ belongs to & and A c B 3 then (B U x) G 7 

(iii) If A y A [){x\, A U{y\ belong to & then (A \){x\\){y\) e 3? 

When replacing A c B in (ii) by B c A , we obtain an axiom 

(Interval property without lower bound) which characterizes matroids 

among greedoids. 

(5.10) CIRCUITS (Korte and Lovasz [1984a]) Let (X, *£) be a 

convex geometry.Free sets of are defined as in paragraph 

(4.2) . By analogy with Matroid Theory, a minimal*non free set is 

named a circuit; a circuit R has a unique point r such that 

r € (-?sr) / named its root. Finite convexity subspaces of Euclidean 

convexity have' the-property ; 

(CI) If A UitfJ and A U|z/} are circuits with respective roots x 
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and y then there exists a unique circuit R with root y such 

that {x,y} 5 R 5 A U {x,y} . s 

Say a convex geometry is good if it satisfies (CI) and if every 

3-points subset if free. 

Korte and Lovasz [1984b] proved the following generalization of 

a famous Erdos-Szekeres theorem [1935] : for some function fin) , 

every good convex geometry with at least f(n) points contains 

a free set of n points. 

Pemark that;in a convex geometry, free sets are precisely the sets 

of extreme points of convex sets. 

(5.11) ENUMERATION Let (T, *£ ) be a convex geometry. In the meet 

distributive lattice (*€,<=.) , the M6bius function (*) is easy to 

calculate <Edelman, Jamison [1985]) : for C c D we have 

\i(C,D) = (-1)*D^C if every point of D'^-C is extreme in D ; 

otherwise \i(C,D) = 0 . An (unpublished) theorem of Lawrence follows : 

we hav3 2J (-1) f = 0 where f- denotes the number of free sets 
k k k 

with k points. In [1985] Edelman and Jamison (**) also give a nice 

interpretation of the values of the Zeta function (*) of (u ,c) 

Let Z(n) denote the number of nondecreasing sequences of n 

c o n v e x e s of £f : 0 <= c4 <z . . . c c <= X . F u n c t i o n Z(n) i s a 
— i — — n — 

polynomial in the variable n . Let us say a function 

ip ; X -> {!,...,n} is extremal (respectively strictly extremal) if 

for every convex C € if , cp achieves its maximum on C at some 

extreme point of C (respectively / achieves its maximum only on 

extreme points). Then : 

Z(n) and (-1) Z(-n) are respectively the number of extremal 

functions X -> {!,...,n} and the number of strictly extremal func­

tions X -+ {1, . . . ,n} . 

I'. CONVEXITY IN GRAPHS AND HYPERGRAPHS 

(6.1) As far as I know, the first explicit use of convexity in graphs 

appears in Feldmann - Hogassen [1969] where convexity in the permuta-

hedron is investigated. Most results deal with geodesic convexity (6.5 ) 

A more general point of view appeared in Nebesky [1970,71], Sekanina 

[1975], Mulder Il978,1980], Harary, Nieminen [l98l]. A systematic 

approach arises in Duchet, Meyniel [1983] and Farber, Jamison [1983]. 

All definitions and results below refer to a connected graph G on 

(*) See Rota [1964]-or Algner [1979] for details. 
(**) See also Edelman [1980] and Stanley [1974, Prop. 2.1], 
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vertex set V (finite or infinite).. See Berge [1985] for general 

notions of Graph Theory. 

(6.2) A graph convexity (Duchet and Meyniel [1983]) is a pair (G, & ) 

formed with a (connected) graph G , with vertex set V , and a con--

vexity £f on V such that (V3 *£) is a convexity space satisfying 

the additional axiom : 

(GC) Every convex set induces a connected subgraph. 

(6. Z) HADWTGERfS CONJECTURE is a famous problem that generalizes the 

four colour problem. Let W be a 7-subset that induces a connected 

subgraph of G . Add a new vertex xw to the graph G^W and join 

it to every vertex y , y 6 V ̂  W~ for which G contains, a y — W 

edge. The resulting graph is the graph obtained from G by contraction 

of W . A contraction of G is every graph that can be obtained by 

a sequence of contractions of connected subgraphs. Hadwiger [1943] 

conjecture : 

PROBLEM 9 (Hadwiger) If the complete graph with p+1 vertices is 

not a contraction of G then one can color the vertices of G in_ 

p colours such that adjacent vertices receive 'different oolours. 

A recent survey on this important conjecture is"by Duchet, Xuong 

[1986]. 

The' Hadwiger number r)(G) of a graph G is the largest integer 

p such that G has the complete graph with p vertices as a con­

traction. Helly (4.3) and Radon (4.4) numbers of a graph convexity 

(G,^) are intimately related to the Hadwiger number ( Duchet,. Meyniel 

[1983]) : 

(i) h(<lf) < r)(G) 
(ii) r(((f) < 2r)(G) 

Equality is possible in (i) . 

PROBLEM lO (Duchet) For every e > 0 there is a graph convexity 

(G3€) such^that r ( %) > (2-e)r)(G) . 

For further details see Duchet [1984]. 

(6.4) MINIMAL PATHS. Let M(x3y) denote the set of all vertices of 

all chordless paths from x to y in a graph G . The convexity 

generated by the interval function M is called the minimal path-

convexity (or M-convexity) on G (Jamison [1982] Duchet [1979,1986a]). 

Caratheodory, Helly and Radon numbers (see (4.5) (4.3) and (4.4)) are 

respectively denoted by C
M(G) , h JG) and r (G) ; we have (Duchet 

[198 6a]; also Jamison and Nowakowski [1984] for h ) : 

oM(G) =2 (if G is not complete), h
M(G> •-w fW J rM(G) =u(G)+l 

(if -uJG) >'Z).'lf a) =2 , rM(G)<4 and rM(G)=Z iff G is~ a "path of blocks". 

Here above u(G) denotes the maximum number of vertices of a complete 
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subgraph in G . 

The M-convexity ef a graph G is a convex geometry if and only 

if G is triangulated — i.e. every cycle of length > 4 has a 

chord — (Farber, Jamison [1983]). Extremal vertices correspond to 

simplicial vertices, i.e. vertices whose neighbourhood is complete 

(see(9.3)). 

(6.5) GEODESIC CONVEXITY. Let D(xyy) denote the set of all 

vettices of all shortest paths between x and y . The convexity 
generated by the interval function D is called the geodesic 
convexity (or distance-convexity or D-convexity) on G ; the 

D-convexity is the metric convexity (3.7) associated to the usual 

distance function d(x,y) in graphs. First researches on Z?-convex 

ities were motivated by the following question of Ore [1962] : 

PROBLEM 11 (Ore) Characterize the geodetic graphsy i.e. the graphs 

in which every pair of vertices is (joined by a unique shortest path. 

Various constructions of geodetic graphs are known. See Stample 

and Watkins [1968], Zelinka [1977], Stemple [1979], Parthasarathy 

and Srinivasan [1984] and Plesfiik [19 84], Contrarily to M-convex-

ities of graphs (6.4), the Z?-convexity is very general (see (6.6)) 

and became intensively studied since 1981 : see Jamison [1981a], 

Batten [1983], Soltan [1983], Soltan and Chepoi [1983,84,85], Farber 

[1985], Farber and Jamison [1986], Sampathkumar [1984], 

(6.6) The geodesic convexity is in some sense universal with respect 

to Caratheodory, Helly and Radon properties : given any finite convex­

ity space (Xy *£) y there exists a finite graph G such that the 

Caratheodoryy Helly and Radon numbers of the geodesic convexity in 

G coincide with those of £f . (Duchet [1986b]). 

PROBLEM 1% (Duchet) Does universal property above hold for partition 

numbers ? 

(6.7) METRIC CHARACTERIZATIONS of some classes of graphs appear as 
a facet of the research on geodesic graph convexity. For instance, 

certain graphs are completely determined by the list of the iso­

morphism types of their convex subgraph , see Egawa [1986], Van 

Cruyce [1984a,b]. In Bhaskara Rao and Rao Hebbare [1976] and Rao 

Hebbare [1979] the authors investigate the graphs having only trivial 

Z?-convex sets ( 0 , V , singletons and edges) . Graphs in which 

D-convexity determines-a convex geometry are characterized (Farber, 
Jamison [1983]) by the Ptolemaic inequality : 

d(x,y)d(z,t) < d(xsz)d(y>t) + d(y,z)d(x,t) 

A related interesting class was introduced in Farber [1985] and 

Farber, Jamison [1986] : a graph is bridged if each cycle c of 
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length > 4 contains two vertices whose distance from each other 

in G is strictly less that in C . 

A graph is bridged if and 'only if every closed neighbourhood of a 

D-convex set is again D~convex (Farber, Jamison [1986]; Solta-n, 

Chepoi [ 1 9 8 3 ] ) . In connection with the problem of the metric deter­

mination of a graph, the results of Graham and Winkler [1984] on 

isometric"embeddings of graphs are to be considered. 

(6.8) MEDIAN GRAPHS (Mulder [19 78] are graphs in which the metric in­

terval function D '(see (6.5) has the following property : 

\D(x3y) (1 D(ysz) n D(z,x)\ = 1 for every x,yyz . 

These graphs generalise hypercubes and are extensively studied : 

Mulder [1980a,b], Mulder, Schrijver [1979], Bandelt, Barthelemy 

[1984], Nieminen [1984]. 

Mulder [1980a] also considers interval regular graphs in which 

D(xyy) contains exactly d(x3y) neighbours of x , for any two 

vertices xyy of the graph. 

PROBLEM 13 (Mulder) Conjecture : In any interval regular graph the 

sets D(x3y) are geodesically convex. 

Variants on the theme of betweeness or medians are numerous. See 

for instance NebesKy [1970,1971] (ternary algebras), Sekanina [1975] 

Barthelemy [1983] and Batten [1983]. Refer also to Fishburn . [1971] 

and to sections 8, 9 for betweeness in partial orders and in trees. 

(6. 9) HYPERGRAPHS Natural generalizations of graph convexities may 

be considered in the context of abstract.families of sets (hyper-

graphs : Ber§e [1986]); for instance Farber and Jamison [1983] 

characterized strongly balanced hypergraphs — in which every cycle 

possesses an edge that contains three vertices of the cycle — by 

the fact that a certain natural convexity associated to the hyper-

graph determines a convex geometry. One can also consider edges of 

a hypergraph as copoints of a convexity. Helly property has been 

studied with this pdint of view : Mulder, Schrijver [1979], 

Barthelemy [ 1985] . In [1979,1983] Bollobas and Duchet solved the 

corresponding extremal problem : 

Let h < p < n be integers: in a n-element set, a convexity with 
- n — 1 

Helly number h has at most ( .J convexes of cardinality p . 

Moreover, this upper bound is reache only if the convexes of 

cardinality p are precisely the p-subsets containing a common 

element. 
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ACYCLIC ORIENTED MATROIDS 

All matroids here are supposed to be simple. See Welsh [1976] 

for general definitions and properties of matroids. 

(7.1) Let E be a finite set of points of 1R . Minimal affinely 

dependent subsets of are the circuits of a matroid M on E (affine 

matroid). Every such circuit admits a unique Radon partition (see 

(4.4), Eckhoff [1975,79]). Oriented matroids constitute an elegant 

axiomatic setting for a combinatorial treatment of these Radon par­

titions ; in an oriented matroid M every circuit X of the under­

lying matroid M admits a unique partition into a positive part X 

and a negative part X . These signed circuits satisfy certain 

axioms. For axioms and fundamental properties, see Bland, Las 

Vergnas [19 78], Folkman, Lawrence [1978]. An important fact is the 

existence of a canonical way of orientincr the orthogonal matroid 

M : for affine matroids, the positive and the negative part of a 

cocircuit Y correspond to the separation the hyperplane H = E^Y 

determines through Y # T h e s t r u c t u r e o f oriented Matroids is thus 

intimately related to convexity. A fundamental open question is the 

determination of the set of Radon partitions of finite sets of 

points in ]R . 

(7.2) FACES Affine matroids are acyclic : it means that no circuit 

X is entirely positive (X = X ) or entirely negative (X = X~) . 

Convexity in acyclic oriented matroids was first investigated by 

Las Vergnas [1980] who proved the following facts : Let M be an 

acyclic oriented matroid with point set E . A face of M is a 

flat F such that the matroid -M obtained from M by sign inter­

change of all points in F is again acyclic. Faces, when ordered 

by inclusion form a graded lattice where the meet is the inter­

section. A point p is extreme if {p} is a face. A rank r 

acyclic matroid admits at lease r extreme points. 

PROBLEM 14 (Las Vergnas) Characterize face lattices of acyclic 

oriented matroids. 

These lattices are meet-distributive (Edelman [1982]) and satisfy 

Euler's relations (Cordovil, Mandel, Las Vergnas [1982]). Further 

results may be found in Munson [1981], Lawrence [1983,84], Billera, 

Munson [1984]. 

(7.3) CONVEX OPERATORS Let M be an acyclic oriented matroid on a 

set E . All signed M circuits X whose negative part is a single­

ton { x } may be viewed as operators X -> x . The convexity on E 

determined (see (3.5)) by these operators is called the (canonical) 

convexity of M (Las Vergnas [1980]; cf. Goodman, Pollack [1982], 
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Folkman, Lawrence [1978, p. 2043. 

PROBLEM 15 Characterize convexity spaces that arise from acyclic 

oriented matroids. 

7.4) SEPARATIONS Let M be an acyclic oriented matroid on a point 

set E . Two disjoint ^-subsets A,B are said to be separable if no 
+ + 

signed circuit (X ,X ) of M both satisfy X c A and X c B 

A hyperplane H c E separates A and B when the signed parts of 

the cocircuit A s B contain respectively A and B . A separation 

of M (or "non-Radon partition", see Brylawski [1976], Cordovil 

[1985]) is a partition of E into separable sets. Bienia and 

Cordovil [1985] gave a characterization"'of the set of separations 

of an oriented matroid. 

(7.5) SEPARATION THEOREMS Let M denote an acyclic oriented 

matroid on a point set E . For A c E , the restriction of M to 

A is denoted by Wl(A) , the convex hull of A is denoted by A 

Let us consider the following properties relative to separation of 

two subsets AyB of E : 

! (i) A and B are separable. 

(ii) {AyB} is a separation of M(A U B) 

(iii) There exists a separation {A1 yB1} of M such that A c A ' 

.and B c Bf 

(iv) There exists an extension M
1 of M where A and B are 

separated by a hyperplane 
(v) In every extension N of MfЛ U B) y we have: 

A 
H
 П B

 N
 = 0 

(vi) In every extension м' ' of Ы y we have : 

A м'
 n ßм' - 0 . 

Properties (i), (ii), (iii), (iv) are equivalent. Furthermore 

(iv) ** (v) -* (vi) (Las Vergnas [1980], Mandel [1982]X The implica­

tion (v) •* (iv) is conjectured by Mandel who found a rank 4 

oriented matroid that satisfies (vi) but not (v). 

PROBLEM 16 (Mandel) Conjecture : A pair AyB of sets of points in 

an oriented matroid M is separable if and only if condition (v) 

holds. 

Equivalence between (iv), (v) and (vi) holds for certain class of 

oriented matroids : see Bachem, Wanka [1986]. Further results rela­

tive to separation may be found in Goodman, Pollack [1982], Cordovil 

[19 82], Cordovil, Duchet [1986], 

(7. 6) Further results relative to convexity in oriented matroids may 

be found in Mei [l97ll, Cheung [1974], Goodman, Pollack [1982], 

Edelman [1984], Bachem, Kern. [1982], Billera, Munson [1984b]. 
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8; PARTIALLY ORDERED SETS 

(8.1) Let P denote a finite partially ordered set. Define an inter­

val-function by I(xyy) ={zEP;x<z<y}. The interval convexity 
P P 

(see (3.6)) generated by J is named the order convexity of P 

(Franklin [1962]) and is denoted by. £?p . 

For any x € P , at most two copoints relative"to x may exist in 

fPp, namely the sets C (x) ={y€P;x<y} and 

C"(x) = {y € P ; x J: w} . Thus, property CIP(3,2) is satisfied (4.4): 

the partitions inequality holds in every order convexity (Jamison-

Waldner [1981a]). Order convexities form a variety (3.10) which is 

"sum-closed" but not finitely based (see Jamison [1979,82]). 

A convexity space (X>£) is the oder convexity of s0me partial 
order P on X if and only if it has the three following properties 
(Jamison [19 79]) : 

(i) Every free set is a union of two convex sets. 
(ii) O has Caratheodory number < 2 

(Hi) Every convexity subspaoe with at most 5 points is an order 
convexity space. 

The first axiomatic of partial orders in terms of betweeness was 

given by Altwegg [1950]. See Fishburn [1971] for further information. 

(8.2) TOTAL ORDER CONVEXITIES : order convexities of totally ordered 

sets. Every order convexity of a poset P is the joint (3.10) of 
the total order convexities of linear extensions (*) of . P. (Edelman, 
Jamison [1985]); hence, finite order convexities are convex geometries; 

remark that linear extensions and their reversals are compatible 
orders with the meaning of (5.8). Arbitrary joints of total order 

convexities form an interesting variety we denote by V TO , indeed 

they include partial order convexities, ordinary convexities in 

Euclidean spaces (Jamison [1982]) and convexities of acyclic oriented 

matroids (Section 7). Variety V TO is the smallest variety contain­

ing all varieties V TO constituted of joint of n total convexities 

for n C IN . 

PROBLEM 17 (Jamison) Characterize the variety y TO . Isv TO fini­

tely based for each n € U ? 
Variety TO of total order convexities is finitely based since 

we have-: a convexity space (X,£) is the' order convexity space 
associated to some total order on X if and only if one of the 

(*) A linear extension of p is a total order T such that x £ y 
whenever x £ y . T 

P 
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following equivalent conditions is satisfied. 
(i) Every subconvexity of u induced by a X-subset of at most 

4 points is a total order convexity . 
(ii) Jf has rank < 2 9 has the antiexchange property and has the 

following separation property : for every pair a.9b € X 

there exists a partition of X into convex sets A and B 

so that a € A and b € B . 
Various alternative characterizations of total orders in terms of 

betweeness are known. See Fischburn [1971] and its references; also 

(9.2). 

(8. 3) Finite partially ordered sets may be viewed themselves as 
convex sets : Feldman-Hogaasen [1969] exhibit a Galois connection 

between partial orders on a finite set X and the geodesically-

convex subsets of the permutohedron with basic set X . 
(8. 4) In the downset convexity determined by a poset P , convexes 

are lower ideals of P , i.e. P-subsets I such that y € I 
whenever y < x for some x € I .A finite convexity space (X9 %) 
is the downset convexity of some poset on X if and only if it is 
a convex geometry in which every union of convex sets is again convex 
(*) (Edelman, Jamison [1984], Korte, Lovasz [l984bl). Remark that" 

downset convexities of total orders (monotone convexities in Jamison 

[1982]) may be considered as bricks in the construction of convex 

geometries : see (5.2(iv)). 

(8.5) A (meet) semi-lattice L is a poset in which each pair of 

elements has an infimum. The semilattice convexity associated with 

L consists of all subsemilattices of L . It can be viewed as a 

"refinement" of the downset convexity of L . Finite semilattice 

convexities are convex geometries. The Caratheodory number of the 

semilattice convexity coincides with the "breadth" (see Birkhoff 

[1967] p. 99, Crawley, Dilworth [1973] p. 38) of the underlying 

semilattice (Jamison [1982] ). Note that the rank of a finite convex­

ity space (X9 €) is the breadth of the semilattice ( if>*z) (Ibid.) 

(8.6) Various other examples of convex geometries arise in the con­

text of partially ordered sets. In [1983] Cochand and Duchet 

investigated the order convexity of a product of total orders. For 

every positive integer k , Saks defines a closure operator fi* 
(see (3.5)) in a poset P by : 

ilk(A) - A V {y £ P ; y < a2 < a2 < . . . < ak 

for some chain a^$a^9 ....a. of A] 

(*) This result can easily be extended to the infinite case. 



282 PIERRE DUCHET 

ft* -closed sets form a convex geometry <*-J . Free sets (*) of 2) 

are named k-families. A k-family A admits a unique partition into 

disjoint, possibly empty antichains A^3A„3 ...3A« such that 
Av 5 Av 1 5 ••• 5 At where A . < A . means that for every a. £ A. 

K K — J. i ^ 3 ^ ^ 
there exist some a. £ A. such that a. < a. . Given two k-families 

3 3 i ~ 3 
A.B of P , define A < B if and only if A. < B. for all 

9 - J ^ - ^ 

i = 13 ...3k . The set of all k-families ordered in this way is a 

join-distributive lattice (Greene, Kleitman [1976]), hence may be 

considered as the dual lattice of convex sets of some convex geome­

try : for a discussion about these two last examples see Edelman, 

Jamison [1985]. 
9. TREE-LIKE STRUCTURES 
(9.1) TREE CONVEXITIES. In a tree T the, M-convex sets (6.4) 

coincide with the ̂ -convex sets (6.5) : they form the convexes of 

the tree-oonvexity determined by T . Tree-convexities are convex 
geometries (section 5) and are coherent convexities (**).Results by 

Duchet [1978], Flament [1978], Slater [1978] imply that a given 

family 3* of subsets of a finite set X is a family of connected 

subsets of some tree on X if and only if the smallest coherent 
convexity that contains ^ has Helly property (H2) (4.3). 

Consequently : finite tree convexities are characterized as the 

convex geometries with Helly number < 2 in which any two different 

points are contained in disjoint convexes whose union is the whole 

space ("hemispaces"; compare with (9.2). In this characterization 

the assumption of being a convex geometry can be replaced by the 

property of being coherent.Compare to Skolander [1952], 

Tree convexities satisfy the partitions inequality since they 

have property CIP(3.2) (see (4.4)). 

A metric characterization of trees was provided by Colonius and 

Schutze [1981] where related references may be found. Further deve­

lopments may be found in Barthelemy [1983], Duchet [1986 ] and 

Duchet, Quilliot [1986]. 

(9.2) TOTAL ORDER CONVEXITIES (See (8.6)) are tree convexities of a 
special kind. Using structural characterizations of interval hyper-

graphs (Tucker [1972], Trotter, Moore [1976], Duchet [1978], 

Nebesky [1984]) one can obtain : a family .£" of subsets of a finite 

(*) As defined in (5.10). 

(**) A convexity space is coherent when the union of two intersec­

ting convexes is again convex. 
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set X is a family of intervals of a total order on X if and only 

if the smallest coherent convexity containing .?" has Radon number 
< 3 (see (4.4)). Consequently, a finite convexity space is a total 
ovdev convexity if and only if it is a convex geometry with Radon 
numbev < 3 and in which any two diffevent points ave contained in ' 
disjoint convexes whose union is the whole space. Again, the 
assumption "convex geometry" may be replaced by "coherent convexity". 

Compare with (8.6). 

(9.3) ARBORESCENT CONVEXITIES. Let Arb denote the smallest variety 

(3.10) that contains tree convexities. Members of Arb ("avhovescent 
convexity spaces") may be considered as a pertinent abstraction of 

what a tree-like structure should be. Downset Convexities (8*4) and 

^-convexities of triangulated graphs (6.4) are examples of arborescent 

convexities which are not tree convexities. 

PROBLEM 18 (Duchet) : Develop the theovy of avhovescent convexities 
(combinatovial invaviantsy pavtition pvoblem, sepavation pvopevties ..) 
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