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ALMOST CONTINUOUS FUNCTIONS WITH CLOSED GRAPHS

Lubica Hold

A function f: X—sY is almost continuous if for every xeX
and for every open set VcY containing f(x), f (V) is & neigh-
bourhood of x. The main theorem of this paper states that if
f: X—»Y is almost continuous with a closed graph (closed in XxY),
X is & locally almost countably complete space and Y is a regular
spece, which possesses a complete sequence of open coverings of Y,
then f is continuous.

1. Introduction

In the theory of functions with closed graphs the notion
of the almost continuity is essentially used. We will use this
notion to prove a general theorem on closed graphs where the
underlying spaces are those complete in the sense of Frolik.

The notion of the almost continuity was introduced by Blum-
berg in 1922 and used by Ptdk, Husain and several other authors.

This paper completes the results of the papers [1] and [2].
The main theorem of (1] states that if f: X—Y is almost conti-
nuous with a closed graph and X and Y are complete metric spaces,
then f is continuous. In case X and Y are complete in the sense
of Gech this theorem is proved in [2].

This paper is in final form and no version of it will be
submitted for publication elsewhere.

2.

In what follows X, Y denote topological spaces. For a subset
A of a topological space denote A and Int A the closure and the
interior of A respectively. : :

The intersection of a feamily ﬁﬁ of sets will be denoted
by N % . N denotes a set of all positive integers.

Now, let us recall some definitions and basic facts which
~ will be used throughout this nate.
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Definition 1. (See [4]) Let [%,{ be a sequence of open fami-
lies (an open family is a family consisting of open sets) in a spa-
ce X. The sequence | #,{ is said to be countably complete if .
fgr every centered sequence of sets IA"J’ where A, « 'Z&,,A , the set
{J T,,k # #. The sequence [{%,{ is said to be strongly countably
complete if the following condition is satisfied: If an! is
a centgred sequence of closed subsets ofvx and if every Fn is con-
tained in some Age ch , then the set Al F, # 4.

Definition 2. (See [3]) A sequence {%,{ of open coverings
of a space X is said to be complete if the following condition is
patisfied: If # is a cente}ved family of closed subsets of the
space X such that for everyn =1, 2, ... some Fn € # 1is contai-
ned in some A e %, , then N F £ @. )

Definition 3. (See [4]) A space X is said to be countably com-
plete if there exists a countably complete sequence of open bases
for X. X is said to be strongly countably complete if there exists
a strongly countably complete sequence of open coverings of X.

It is known that a Tychonoff space is complete in the sense
of Gech iff it has a complete sequence of open coverings.

It is easy to see that, every regular strongly countably com-
plete space is a countably complete space. According to [3],
example 3,1 there exists a completely regular countably compact
space, which is not complete in the sense of éech. that means
there exists a completely regular countably complete space, which
is not complete in the sense of Sech.

Definition 4. (See [4]) An open almost-base for a space X is
a family % of open subsets of X such that every non-vold open sub-
set of X contains some non-void Ae % .

A space X is sald to be an almost countably complete space
if there exists a countably complete sequence of open almost-bases
for X, A space X is saild to be locally almost countably complete
if and only if every xe X has a neighbourhood which is an almost
countably compléte space. :

Definition 5. (See L1]) The function f: X—>Y is almost con-
tinuous at xe X if and only if for each open Vc Y containing f(x),
x ¢ Int f-I(V).

Definition 6, We say that the diameter of a subset M of
e space X is less than a covering % = {As: sc S{ of this space
(diem M< % ) provided there exists an s e S such that Mc A,

Theorem 1. Let X be a locally almost countably complete
space,Y be a regular space. Suppose Y possesses a conplete se-
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quence of open coverings of Y. Let f: X—Y be an almost conti-
nuous function with a closed graph. Then f is continuous. ‘
Proof, Suppose f is not continuous at a point pe X, Let U
be an almost countably complete neighbourhood of the point p.
Let f'Z(,nf,,':,.be a countably complete sequence of opén in U almost
bases for U end { #;(,., be a complete sequence of open coverings
of Y. " ,
We will inductively define a sequence Ipii ;1 of points
of X, a sequence évij ;1 of open subsets of Y, sequences !'Gi'f ;1,
1Ui§ ;1 of open subsets of X satisfying the following conditions:
(1) pjely, 1 =1, 2, .00

(i) _f_(pi)evi, 1 =1, 2, ¢c0

(111) V,NV, = ¢

(iv) if 1 and j are either both even or both odd and i< J
then?} cVi

(v) PyypeGyr 1 =1, 2, oo

(vi) Uy, Uy oC Gyy Gy qC Gy, L= 1, 2, oo

(vii) Uy c f"(Vi), Ugpq€Uyp 1 =1, 2, oen

(viii) diem (V,)< % » diem (Vi) ¢ Wl”_' , diam (Vi)<y{ s 1 =22,3,000
Put p, = p. There  is an open set V containing f(pf) such that '
f"1 (V). is not a neighbourhood of pye Let V1 be an open set con-
taining f(p,) such that diem (V,)< ¢ and '\T1 C€V. By the almost
continuity of f at p,, p,e Int £~ (V). Put Uy = Int f-I(V1) a
N1Int U, Then U, ¢ f'I(V1). There must be & point p, ¢ U, such that
f(pz),{v (thus f(pe);{T‘). Let V, be an open set containing f(p,)
such that V,NV, = @, diam (V,)<¢ 7% , diam (V,)<? . The almost
17172 27 » B 220 Y
continuity of f at p, implies p,e Int £ (V2). Put U, =
P o e

Int £ (Vz)nU1. Then Uch1 and U, Cf (Va). There exists Gy %1
such that G, # @, G cU, end G, is open in X. The inclusions
Gy ¢ U, and U,c Uy, U1 c £ (V15 imply there existsd point Py € Gy
such that f(p3) € V1.

Let j» 2. Suppose now we have defined Vi,' Ui; p; for all
1 ¢<J and Gi for all 1< (J - 1) satisfying (i)-(viill, Since Gj_‘1
is open in X and # # G,_,cU €Uy_, and Ud_1Cf'l(VJ_1) there
is a point Py € 63_1 such that f(p._j_n)e V;)'-1' Let vj+1 be an open
set containing f(pj+1) such that 71'3_” c V;j-1 and diam (Vd”) <%,
diam (V,.,) ¢ 7,4 . The almost continuity of f at p implies

JH1— s premma +1

pJ+1E Int £ (VJ+1 ')‘:'13;"1-2—!];"‘1 = Int f (VJ+1 )nGJ-1o Then
Uj+1 CQJ_1, Uj+1c f (V3+1 « Since Uj+1 is non-empty open set
in X and U +1 < 63_1, there exists a non-empty open set G, e ’léj
such that GJ CUJH and GJ C(}j_'.l._ This completes the inductive
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definitions. -
Q G, £ 8. (U is almost countably complete, that means Q (G ifl )
# ¢). Let x € ﬂ Gi' Let H be a neighbourhood of x. Since /() G <

s el *
c ﬂ f (V21 1) there exists a net ‘x2i 1( im 1 such that'

X54- 1eH and f(x,;_ 1)e Vojq for i =1, 2, ...

Let O be an open neighbourhood base at the point x. o'~ N
is directed set. (If (U,n) ¢ O'xN and (V,m) ¢ ¢*x N then (U,n)>
>(V,m) if and only if UcV and n> m)., Define a net lx ,nt Oc O
ne N{ as follows. Let 0e O , neN., 0 is a neighbourhood of x,
xe £ 1( on- 1) Let X0, n be such point in O for which ;f(xo n)e Von-1°
It is clear that the net 2x0 pt 0€¢ 0, ne N{ converges to x.
(Let V be a neighbourhood of x., If (B,m) 2> (V,1) then g, meV).
There exists a cluster point of the net If(xo n)t 00, neN{.
Put AO = ff(x p)é (Bym)? (o,n) . The system iA nt 060,
ne N satisfles the conditions of Definition 3. for complete se-
quence of open coverings of Y, that is M ZAO : 0O
neN{ # @. Let ¥y € ﬂiA ,nt O¢ ¢ , ne N{, By Theorem 2.2 in [6]
¥, is a cluster point of the net lf(x n): 0ed , néﬂ_"

Since n G < ﬂ £ (V) xe ) £71(Vyy)e We will
define analogical the nets Iyo pt 0€U , ne N{ and If(yo n)?
0€ 0, neN§ such that Yo,n€ 0 and f(y0 n) € Vope The net
Iyg,nt 0¢ O, ne N{ converges to x and there exists a cluster
point ¥, of the net ff(y0 Y: 00 , ne N/ by similar argument
as above, _ _

Since y, eV, and y, ¢V, ¥4 # ¥+ But the points (x,y1)

and (X.yz) are both limit points of the graph of f, contradicting
the fact the graph of f is closed.

Corollary 1. (See [2]) Let X, Y be spaces complete in the
gsense of Sech. If f: X—Y is an almost continuous function
with a closed graph, then f is continuous.

Theorem 2. Let X be a first countable locally complete space,
Y be a regular strongly countably complete space, If f£: X—Y is
an almost continuous function with a closed graph, thenf is con-
tinuous. :

Proof. We will proceed as well as in the proof of Theorem 1.
Since there exists a countable open neighbourhood base at the
point x, the systems (' and fA $ 0¢ 0 , ne¢ N§ in the proof
of Theorem 1., are countable,

Definition 7. A subset of a topological space is called
almost open if it is in the interior of its closure, a function
is called almost open if the image of every open subset is

O,n
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almost open. _ .

Corollary 2., Let X, Y be topological spaces. Let Y be a lo-
cally almost countably complete space, X be a regular space.
Suppose X possesses a complete sequence of open coverings of X.
Let f: X—>Y be a bijective almost open function with a closed
graph. Then f is open.

Acknowledgement, The author thanks to Prof.T.Neubrunn for dis-
cussing the paper.
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