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SET-VALUED MAPPINGS AND STRUCTURE OF BANACH SPACES 

Josef Kolorný 

The theory of monotone (maximal monotone), accretive (maximal 

accretive) single-valued and multi-valued mappings, intensively stu­

died in the last period, has fruitful applications in the theory of 

nonlinear partial and ordinary differential and integral equations 

( T23 , C4J , £8] , L21] )• 

The aim of this note is to present some known recent results 

concerning single-valuedness and continuity properties of maximal 

monotone and the new ones of maximal accretive multivalued mappings 

and the structure of Banach spaces, 

1. Notions and notations* 

Let X be a real Banach space, X* its dual, ^ , J the pairing 

between X and X* , S.(0) the unit sphere of X • We shall say that a 

Banach space X is : (i) smooth if its norm is Gateaux differentiable 

on S-(0); (ii) Fr^chet smooth if its norm is Fr£chet differentiable 

on S-(0); (iii) an Asplund space (a week Asplund space) if each 

convex continuous functional f on X is Frgchet (G&teaux) differentiab­

le on a dense Gg subset of X, (iv) an (H)-space, if X is rotund and 

the following condition is satisfied: if (xn),X€fX, .^ -^ x weakly 

in X, If xn n-^Jx l| , then x —> x in the norm, of X • 

The notions of rotundity (R), local uniform rotundity (LUR), 

uniform rotundity (UR) of X are used in the usual sense (E15J)• Let 

X,Y be topological spaces, T:X -*> 2 a multivalued mapping, D(T) = 

= {u*X: T(u) t £ \ its domain, G(T) = { (u,v)<s- X x Y: u c-D(T) ,vc-T(u) j 
its graph in the space X x Y • We shall say that T is : (i) upper 

semi-continuous at uQeD(T) if for each open subset W of Y such 

that T(uQ)<: W , there exists an open neighborhood U of u such that 

T(U)cl ;(ii) lower semicontinuous at uQ^D(T) if for each open 

subset W of Y such that T(uQ)fl W /*$ there exists an open neighbor­
hood U of uQ such that T(u)fl W /-.#for all u^U, Let X be a real nor-

This paper is in final form and no version of it will be 
submitted for publication elsewhere. 
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X* 
med linear space. A mapping T:X^t* 2 is said to be: (i) monotone 
on D(T) if <u M - v*, u - v > y= 0 for each u,v^D(T), u*<£rT(u), 
v x^T(v); (ii) maximal monotone on D(T) if T is monotone on D(T) < 
and its graph G(T) is not properly contained in the graph of any 
other monotone map. 

Now we give some well-known examples of maximal monotone opera­
tors. 
1°.Let X be a Banach space, f a continuous convex function on X . 
Then the subdifferential map 
X-* u ^ D f ( u ) - £u*s X?: ^u*, v - u > = f(v) - f(u) for each 
v £ X J- is maximal monotone* on X . In particular, a duality map­
ping J:X -* 2 X* defined by J(u) ={u*^X* : <u*, u> = ii u i|2 , 

k u31 ii - fl u ii } , u £ X , is maximal monotone on X . In fact , 
J(u) = 2K*£ | u V ) for each u e X . Recall that J(u) is convex 
weakly11 compact subset of XM for each u^X . Moreover, J is single-
valued on X if and only if X is smooth. 
2°. If T:X -T X* is linear with D(T) ~ 
esGh u^-X , then T is maximal monotone. 

2°. If T:X -?> X* is linear with D(T) * X and <TT(u),u> = 0 for 

Let X be a reflexive Banach space, T: X*.PD(T)~> X M a closed linear 
and monotone mapping such that D(T) = X . Then T is maximal monoto­
ne if and only if T* is monotone. If X is reflexive, T:X -*• 2 X is 
monotone with D(T)o X f then T is maximal monotone if and only if 
(T + J) X = X* ( C21J ). The following result ( -T213 ) is useful 
in applications; , 

X 
Let X be a reflexive real Banach space, T:X -»• 2 a coercive maxi­
mal monotone operator on D(T)c: X . Then T(X) = X* . For the further 
results and examples concerning the maximal monotone operators see 

til , C43 and I21J . 

2. Single-valuedness and continuity properties of maximal mo­
notone multivalued mappings. 

Single-valuedness and continuity properties of monotone opera­
tors have been studied by Zarantonello C24J f Kenderov HA 91 , i-203 f 
Fabian C103, £111, Fits&patrick £12], £131, Zajigek£23J f Christensen 
and Kenderov C6J,L7Jf Jayne said Rogers C18J and others. We recall 
here only some results which are related to those stated later con­
cerning the accretive multivalued mappings. 

Theorem 1 (ClS3). Let X be a Banach space which admits an equi­
valent norm such that its dual norm is (R) in X x . If T:X -> 2 X 

is maximal monotone with D(T) = Xf then T is single-valued on a den­
se Gg subset of X * 
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If X satisfies the renorming condition of the above theorem, 

then X is a weak Asplund space ( C19.1 ) • In particular, each WOG 
(and hence each separable Banach space) is a weak Asplund space. 

Theorem 2 (f20J)« X is an Asplund space if and only if each ma-

ximal monotone mapping T:X-** 2 with int D(T) t& is single-

valued and upper semicontinuous (with respect to the norm topologies 

of X and X*) on a dense G* subset of X . 

It was proved in C6J that the similar result of Theorem 2 holds 

even in the case when maximal monotonicity of T is replaced by the 

condition that T is weak31 compact valued and upper semicontinuous on 

int D(T) from the norm topology of X into the weak* topology of X* • 
Theorem 3 (L*9l ). Let X be a Banach space such that X* is (R) 

vi­
and (H)-space, T:X —*> 2 a maximal monotone mapping such that 

int D(T) / -0* • Then: (i) there exists a unique lower selection TQ 

of T ; (ii) for each xe-int D(T) at which TQ is continuous, T(x) 

is a singleton and T is upper semicontinuous (with respect to the 

norm topologies of X and X31) at x ; (iii) the set C(TQ) of all tho­

se points at which TQ is continuous is a dense G^ subset of int D(T). 

According to £22* a subset AcX is said to be an ©o-angle po­

rous ( oL>Q) if for each x ̂ A and each S>0 there exist z^B.(x) = 

= iu«? X : 0 u - x ij< € } and x*4 X* such that 

A n { y ^ X : < y - z , x*> > << % x* l! . ij y - z 1/ } = & . 
We shall say that A is an angle small (C223) if A = L/A , where An 

are oC-angle porous. n 

Theorem 4 ( C221 ) • Let X be a real Banach space such that X* 
X* 

is separable, T : X — ^ 2 a monotone mapping with D(T)c X . Then 

there exists an angle small subset A cD(T) such that T is single-

valued and upper semicontinuous ( with respect to the norm topologies 

of X and X**) on A . 

Theorem 5 (C73). Let X be a Banach space, f : X31-^ R a convex 

functional which is continuous with respect to the Mackey topology 

T?(XU,X). Then f is Fr^chet differentiable on a norm-dense G^ sub­

set of X31 . 

According to Q8] a map f : X -^ I is said to be a Borel measu-
st rable function of the 1 Borel class if for each closed subset H of 

Y the set f~1 (H) is a G| set in X . H 

Theorem 6 ( £181 ). Let X be a Banach space , T : X —> 2 

a maximal monotone operator with int D(T) £<& . (i) If X admits 

an equivalent norm whose dual norm on X31 is (R) , then T has a 

norm-to-weak* Borel measurable selection TQ of the 1 Borel class 

on D(TK The set C of points of int D(T) where T is norm-to-weak* 
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continuous coincides with the set of all points of int D(T) where 
TQ is point-valued. Further C coiitains a dense Gj- subset of int P(T). 
(ii) If XK has the Radon-Nikod^m property, then T has a norm-to-norm 
measurable selection TQ of the 1 Borel class on D(T). The set U of 
all points of int D(T), at which T is norm-to-norm continuous, co­
incides with the set of all points af int D(T), at which T is point-
valued and norm-to-norm upper semicontinuous. Furthermore U is dense 
G^ subset of int D(T). 

3. Accretive and maximal, accretive multivalued mappings. 
First of all we recall some basic and well-known notions concer-

Y 
ning accretive operators. A multivalued mapping A : X *-*• 2 is said 
to be : (i) accretive on D(A) if for each u,v6-D(A) and each x^-A(u), 
yeA(v) there exists an element x*e J( u - v) such that <x-y,xK> = 0; 
(ii) maximal accretive on D(A) if A is accretive on D(A) and if (u,x) 
6X x X is a given element such that for each v^-D(A) and y^A(v) 
there exists xHG J( u - v) such that <x - y, x K> ^ 0 , then uc-D(A) 
and x^A(u); 
(iii) hemicontinuous at u_£ intQD(A) (an algebraic interior of 

o a 

D(A) ) if for each u eX^ every null sequence of positive numbers t 
and every v

n^
A( u

n)i where u n = u Q + tnu , (vn) converges weakly 
in X to some point z <_• A(u ). 

Theorem 7. Let X be a reflexive smooth and rotund Banach space, 
x vX 

A : X -^ 2 an accretive mapping (with respect to the duality map­
ping J : X* •-*• X ) such that D(A) = X* and for each u*<_- X* A(u*) 
is convex and closed in Xx . If A is hemicontinuous on Xx, then A is 
maximal accretive on X*. 

Let us recall that»Fabian C11J stated the following result : 
If X is a reflexive Banach space such that X, X* are both (LUR) and 

v 

A : X -^ 2 is maximal accretive such that int D(A) / & and 
( A"" + Xl )(X) =- X for each U^O , then A is single-valued and upper 
semicontinuous (with respect to the norm topology of X ) on a dense 
Gj> subset of int D(A). 

X 
Theorem 8 • Let X be a Banach space, A : X -^ 2 a maximal ac­

cretive mapping such that int D(A) £# . 
(a) If X is reflexive and (F)-smooth, then there is a dense Gp set 
D c int D(A) such that A|p is single-valued and continuous from the 
norm topology of X into the weak topology of X ; 
(b) If X is (F)-smooth and the duality mapping J : X -^ X* is open, 
then A is single-valued and upper semicontinuous. ( with respect to 
the norm topology of X ) on a dense Gr subset of int D(A)* 
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Remark 1 . If X is reflexive smooth and (H)-Banach space, then 

J is open. In particular, if X is smooth and &UR)-Banach space, then 

J is open. Note that if X* is (LUR), then X is (F)-smooth and if X is 

reflexive and (LUR), then X* is (F)-smooth. Since X and X51 are both 

(F)-smooth, J is a homeomorphism of X onto X* (fl6J) . 

Proposition 1 . If X is reflexive (F)-smooth Banach space, 

A : X -^ 2 is accretive on D(A) and lower semicontinuous at uQ£D(A) 

from the norm topology of X into the weak topology of X, then A(uQ) 

is a singleton. 

Theorem 8 and Proposition 1 show that the properties of maximal 

accretive multivalued mappings deeply rely on the structure of Banach 

spaces ( compare C193) • 

Theorem 9. Let X be a real normed linear space, f a convex 

continuous functional on X , vQ, w* given points of X and X
K, res­

pectively. Assume that there exists a closed linear subspace E of X 

such that { u ^ E : yv x (u) = c j is non-empty and relatively 

weakly compact in E fo? s8me c>0 , where y> is defined by y(u) = 

= f ( u + vQ) - <w* , u> for each u£E .-Then : 

(i) There exists a point uQ£-E such that 

(x) "2>f ( uQ + v0)/l ( w* + E
X ) * & . 

(ii) If f is Gateaux differentiable at the point uQ + vQ , 

then the intersection (x) consists of exactly one point. 

Corollary 1 . Let X be a real normed linear space, f a convex 

continuous functional on X . Assume that there exists a reflexive 

subspace E of X such that f(u) . \\ u IJ — ^ +*o as \ u // —^ + «*» 

Then: (i) If v ,w* are arbitrary points of X,XK respectively, 

then 

2f%( uQ + vQ ) n ( wJJ + E1 ) ;- & . 
(ii) If f is Gateaux differentiable on X , then the above inter­

section consists of exactly one point. 

Corollary 1 extends the results of Beurling and Livingston ^3J| 

Browder 153 f Asplund CU . Another generalization of the Beurling-

-Livingston theorem was given by Gobbo Cl7J. 

Further results concerning these topics will be published later. 
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