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A NOTE ON FIEDLER - MORAVEK COMBINATORIAL PROBLEM* 

Jiří Vinárek 

M.Fiedler aad J.Moravek have formulated in [ 1} the following: 
1.Problem. Let A^,...,A be vertices of a convex n-gon, fiL fee the 
Euclidean plane.Find the smallest number K(n) of convex sets S-.,..., 
Sv-/̂ \ such that „, N 

—Mn; K(n; 
M = E 2 -{A1,...,Anl « U S. . 

We are going to prove the following : 
Hypothesis. (J.Kratochvil) If we consider only pairwise disjoint 
partitions of M then the smallest number k(n) = l | n l + 1. 

2 .Lemma*. Boundaries of parts ̂ •••••S^jn) a r e unions of straight 
lines,half-lines and abscissas. 
Proof. If X,Y € bd S±r\ bd S. then X,Y€ cl S±r\ cl S.. Since S±f 

S. are convex, their closures cl S>, cl S. are convex as well. 
Hence, the abscissa XY c cl S± n cl S. and also XY<= bd S ^ bd S., 
q.e.d. 
3oDefinition3» a) Let y = (S1i»..,S13 be a partition of M (i.e* k I -K -
M « U S. , S, n S . « 0 for i t j), Xe EP . Then a degree of X 

with respect to y is defined by deg(Xf5f ) * |{i I X<£ el S ^ | 
b) A straight line (or its subset) p is called 

an edge of the partition !f if there exist i,j such that p c cl S± n 
ncl S, and for any straight line, abscissa or half-line q ̂  p with 
q c cl S,n cl S. there is q « p. 

c) A point X is called a vertex of the partition F 
iff it is an end point of some edge of !f #It is called a proper 
vertex if deg(X,y ) > 3* 
-UProposition. Let y « {§-»,•.. ,S-3 be a partition of M, V be a vertex 

*) This paper is in final form and no version of it will be sub** 
mitted for publication elsewhere. 
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of!f,deg(V,y ) * d> 4.Then there exists a partition** ={£•,!•••i£k*} 
of M such that k'-£ k, degtV-.A) J* d - 1 and there is a bisection 
f : E2 — > E2 such that deg(f(X)f* ) -S deg(X, . f ) or deg(f(X),«* ) £ 3, 
for any X G Eg. 
Proofs Let p 1 > *» # J p d be edges of JP containing V.One can suppose that 

the angle ¥• PjPi+i between p^ and V±+i contains no other p ^ The 
Dir ichlet principle implies that there e x i s t s i such that -¥ P±P±+2 $ 
<180° • Suppose that p i + 1 c b d ^ n b d S , q < r . 
Consider the following cases : 

( i ) p i + 1 i s a h a l f - l i n e 
( i i ) p 1 + 1 = VW with degfW,? ) 2 3 

( i i i ) p 1 + 1 = VW with deg(Wf !f ) * 2 
In the case ( i ) there i s S u S^ also convex (see F i g . D and 

—q —r 

one can define 26 = (B,|.»i,D^i where 
D. = Sj for j ^ r, j j- q' 
2j = §q u S r for J * q 
£ j s § J+1 f or j > r 

If we put t as the identity mapping then <© ,f satisfy asser­
tions of Proposition. 

In the case (ii) there exists an edge p with an end-vertex W 
such that £ PPi+i <£180°« Without loss of generality one can suppose 
that p ccl S . Then one can choose V*<s p i t 2 such that the angle 
between p and WV'is less than 180° and V* is not a vertex of !f (see 
Fig«2).Now one can define ̂  as a union of 3 and the triangle T 
with vertices V,V', W, £ r = S r - T, Dj * S^ for any j i q,r. 
c» * i2.\f**$Rv) is the asked partition of M« (Actually, the only new 
vertex is V' with deg(V',A) = 3 and we can put f as the identity 
mapping*) 

In the case (iii) one can suppose that W & {All##*'A
n* • 

Consider three cases : 
(a) There exists a straight line m containing W such that 
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the half-plane mV contains the n-gon A^#»A n (see Fig.3)# 

One can suppose that m contains no vertex X of If such that 

X 4 W. Denote by mV the union of the open half-plane mV and the 
right half-line m + ̂  m with the end-point W. 

Fig.2 Fig.5 

Then define for any j ^ q , r : D . * S . o mV. Further define : 

Rr « J ^ mV^{W}, IV • (Sv S r) n mV. Clearly,* =* i]k»*
##»2k* i s 

a convex partition of M, deg(V,<§& ) » d-1. One can put f as the 

identity mapping* 
(b) Non(a) and cl S u cl S_ is convex. Then choose a line m — q —»p 

such that the only vertex of $ lying on m is W (see Fig.4). Denote by 
m+(m"*t resp.) the open half-iii»&'of m with end-point W which inter­

sects Sr(S-resp.).Then define mV as the union of the epen half-plane 

mV and m • Further put : 

D, • Sj for i / q,r 

£q (Şq v Ş J п mV 
£ r • (:L v; S r )^ mV u(nf H cKSq u Sr)) 

Clearly, <* « { ^ • • • t £ k \ i s a convex partition of M and deg(V,5T ) 
- - d - 1 . 

Fig.4 . 
One can again put f as the identity mapping. 

(c) Non (a) and cl SV V cl £>r i s not convex (see Fig.5)« Then 

the half-l ine VW contains another vertex U of if . It U e ^ , . . * ^ } 
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t»en there exists a tangent t to n-gon at U. If U £ cl S , u / q,r 

then one can define S' as the open half-plane opposite to tW with 

the right half-line t added, S' = S. ̂  S' and then apply (b) since 

cl S* u cl S£ is convex. 

Fig. 5. 

If U £ {A . . , . , . „ , A \ is a point of the interior of the given n-gon, 
U 6 bd S n bd S n bd S , u 4 q,r, UU, <- bd S„ —q —r —u* n* * 1 —c 
c bd S 

ЬàŞ r, , u u 0 <=• 
-q — —r9 2 

bd S«re border lines such that UU- 4 p,^ 4 UU0. If there —q 1 *i+l 2 exists A e UU2 o$Aj,...,A } then put U~ * A otherwise choose U~ £ UUp 

arbitrarily. Then define a point V'e P* as the intersection of p i 

and U«W and U*as the point of intersection of lines V^U« and U-.U (see 

Fig.6).Further put Ul as the point of intersection of'bd S^ and V'U* 

distinct from U~ (see Fig.6).Now use points U'jU^ as new vertices of 

a partition (instead of U,U2), connect U'(U2 ,resp#) with any vertex 

X of f , X 4 V (X t U,resp.) such that U"X(U2X, reap.) is an e^ge 
of If . Of course, connect also U'v'. 

Fig.6 

The new partition <© has again k elements, deg(U'.^T) - degCU,!?).. 
deg(V,<&) = 4 - 1 , deg(U5,5r) * 3, deg(V',«&) '• 3 and degCX,^) • 

= deg(X,!f ) for any X i-VV, V',U , U', U2", U2, U?. Put f(U> « uj 

.f(U') « U,f<U2) » UjJ.fCÛ ) .= U2,f(X) = X Tor any X * U,W
/,U2,u£, 

One can check conditions of Proposition. Q.E.D. 
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£• Using this Proposition and the method of induction one can sup­

pose that the given partition if of M has only vertices of degrees 
2 and 3 (and that all vertices of degree 2 are vertices of the given 

n-gon)# let £ be the diameter of the set of vertices of if and let 
£plt#.»,Ps) be the set of all half-line Jedges of ¥ #If p, =- X ^ 

then denote, by Pi the point of p , such that f (XifPi) -" • It is 

evident that all the vertices of if are situated inside the s-gon G 

with vertices (зee Fig#7)» 

Flg#7# ~ 

Moreover
f
 if induces a partition $ of the interior of G with the 

same number of elements.So, it suffices to count the number k of 

elements of F • Denote by v the number of proper vertices of $ (if 
v is the number of proper vertices of if then/v * v + 8 whtre s is the 
number of half-lines of if ), IT the number of edges of if . 

Euler formula imjhlies that k + v * h + l.Clearly, h 

Hence
f
 k * ̂  + 1*-

- 2 v. 

< * ) 

6»0ur goal is to minimize *v .We shall study the number adj X of 

proper vertices of J adjacent to tovertex •X-'tf/.the given n-gon#(If 

a vertex X is adjacent to two vertices A>B of ¥ we shall count only 
j of vertex X adjacent to A and ̂  of X adjacent to B et*)«Of course, 

if X €[Aj|^.,A^ is a proper vertex of !f then X is adjacent to X. 

For vertices X * A.., Y = ^141*^ * ̂ i+p w e h a v e ***e -following 

configurations : 

cv 
Fig.8a 
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('9 

C*) 

CYH) <vii:? 
Fig.8b. 

In the first case (see Fig.9) we have adj X -£. 1 (at least half-

points A and B are adjacent to X), adj Y • 2 (adjacent points Y,C), 

adj Z> 1 (at least half-points D,E adjacent to Z), 

Fig. 9. 

Similarly one can check the other configurations-: 

(ii) adj X > l,adj Y = 2, adj Z i 2 

(iii) adj X;» l,adj Y » 2, adj Z 2- 2 

(iv) adj X -> |,adj Y = 4, adj Z £ | 

(v) adj X 2. |,adj Y = |, adj Z *• 2 

(vi) adj X >. |,adj Y « |, adj Z --1 

(vii) adj X £1,adj Y * 1, adj Z * 2 

(viii)adj X > l,adj Y = |, adj Z £ | 

Hence, adj A^ + adj Ai+1 + adj Ai+2 > 4. 

Since vi 5?- adj k± there is v"i f£ n].By (* ) we have k •* P|nl + 1, 

Q.E.D. 
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T.Construction. One can construct a partition if of M as follows : 
for J * 1,..., \W\ denote by B. the point of intersection of lines 
^Sj^^J-l and ^Sj^Sj+l* Further ae^ine ^ A ^ as an open half-line 
which is the axis of the exterior angled Bi-aA3i~2B1*,xn21 as a 

closed half-line which is the axis of the exterior angled A~!,2B .A* .+1, 

%1-1 as the open 8et with the horder lin©s m2i-.i»A3i-2Bi*ro2 "» 
Cg. as the open set with the border lines ^iiBi^i+ii%-]+v Finally 
define D2J-I m £2J-1 U "^l-l^ *31-2^31-1 ^as the open abscissa),. 

'®2j = £2j um2A u ^j^J+l ^as the open ah^cissa)> Ik-i «' 

• (I/J^j'^ [jy ^j-^J u int - where £ is the polygon 
J-l ' J-l 

A ^ A ^ B g . . ^ (see Fig. 10). 

Fig.10. 
One can check that^ = iDlf...,Dk5 is the asked partition of M. 

8»Non-dis.1*int case. If one does not suppose the assumption of 
pairwise disjointness of a partition then generally K(n) ̂  k(n) • 
e.g. while k(8) * 7, K(8) 6 6 (see Fig.ll) : 

Ғig. 11 
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