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We consider the question of the minimum number of Hamiltonian cycles occurring in Hamilto-
nian planar triangulations extended to the so called two-triangle graphs. 

Uvazujeme otazku minimalniho po£tu Hamiltonovskych kruznic v rovinnych Hamiltonov­
skych triangulacich roz§ifenou na tzv. 2A-grafy. 

H3yHaeTCH BOnpOC MHHHMaJIBHOrO HHCJia raMHJIbTOHOBBIX UHKJIOB B raMHJIbTOHOBHX ruioc-
KHX TpHaHryjMHHflx o6oineHHBiH Ha TaK Ha3biBaeMbie 2A-rpa<J)bi. 

1. Preliminary 

All graphs considered are finite, undirected, without loops and multiple edges. 
The vertex set and edge set of a given graph G is denoted by V(G) and E(G), re­
spectively. The complete graph on n vertices is denoted by Kn9 KJ stands for the 
complete graph on five vertices with one edge deleted. By a triangle in a given graph 
we mean any of its subgraphs isomorphic to K3. A planar triangulation is any 
maximum planar graph (with respect to the set of edges on a given set of vertices), 
a graph is called triangulated if it does not contain an induced cycle of length greater 
than three. By a 3-connected graph we always mean a vertex-3-connected one. 

Definition 1. A graph is called a two-triangle graph (shortly a 2A-graph) if each 
of its edges lies in at least two of its triangles. 

Remark 1. Clearly every planar triangulation on at least four vertices and every 
3-connected triangulated graph are 2A-graphs. 
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Definition 2. Let G be a graph and e one of its edges. The number of Hamiltonian 
cycles containing e is denoted by cG(e) and the total number of Hamiltonian cycles 
occurring in G is denoted by c(G). For a given integer n ^ 4, we denote by c2A(n)9 
c3CT(n)> CPT(U) th e minimum possible number of Hamiltonian cycles that may occur 
in a Hamiltonian 2A-graph, 3-connected triangulated graph and planar triangulation 
on n vertices, respectively. 

Remark 2. According to Remark 1, c2A(n) ^ c3CT(n) and c2A(n) g cPT(n) hold 
true for every n ^ 4. 

Hakimi, Schmeichel and Thomassen proved in [1], that cPT(n) ^ 4 for all n ^ 12. 
The main problem stated in [1] is then to determine the numbers cPT(n) precisely. 
For n = 12, we have solved this problem in [12] and extended the result to two-
triangle graphs: 

Theorem 1. For n ^ 5, c2A(n) ^ 4 holds true. 

Corollary. For n ^ 12, c2A(n) = c3CT(n) = cPT(n) = 4 holds true. 

The aim of the following chapters is to deal with the case of 4 ^ n ^ 11. 

2. Two-triangle graphs 

Lemma 1. Let Gx (G2, resp.) be a graph and {xl9 y±} ({xl9 y2}9 resp.) one of its 
edges, such that cGl({xl9 y±}) = cGl({x29 y2}) = 2. Suppose the graph G is obtained 
by amalgamation of the graphs Gx and G2 in such a way, that the vertices xx and x2 

(y± and y29 resp.) are unified and designated by x (y9 resp.) (see Figure 1). Then G 
contains exactly four Hamiltonian cycles and G also contains vertices u and v9 such 
that cG({u9 v}) = 2. 

Уl У2< 

Proof. Since every Hamiltonian cycle in G is a union of Hamiltonian paths from 
x to y in Gx and G2, the first part of the statement is clear. Now G2 contained exactly 
two Hamiltonian paths from x2 to y2, and these paths differ in at least one edge, say, 
{u9 v}. Then {u9 v} lies on just one of them, and hence cG({u9 v}) = 2. u 
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Theorem 2. i) c2A(4) = 3, 

i1) c2A(5) = 6, 

iii) c2A(n) = 4 for n = 6. 

Proof. The statements i) and ii) are trivial (c(K4) = 3 and c(Kj) = 6). Since 
cX4(c) = 2 for any c e -E(K4) and c^5-(c) = 2 for any edge e e E(KJ) nonadjacent 
with the nonedge of KJ, the statement iii) follows by inductive use of Lemma 1 (see 
also examples in Figure 2). u 

n even n odd 

3. Three-connected triangulated graphs 

Lemma 2. Let G be a graph with at least four vertices and let x9 y and z be vertices 
forming a triangle in G. Suppose the graph G' is obtained by adding a new vertex 
w to G adjacent to and only to the vertices x9 y and z. Then the following hold true: 

i) c(G') = cG({x9 y}) + cG({y9 z}) + cG({x9 z}) , 
ii) cG.({w9 x}) = cG({x9 y}) + cG({x9 z}) , 

iii) cG.({x9 y}) = cG({x9 y}). 

Proof is straightforward. D 

|V(G)| = 6 c(G) = 6 ІV(G)I=7 c(G) = 8 
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Theorem 3. i) с з с г (4) = 3, 
ii) c3CT(5) = 6, 

iii) c3 C r(6) = 6, 

iv) c 3 C r (7) = 8, 
v) c3CT(n) = 4 for n = 8 

Proof. The statements i)—iv) can be verified by hand, the graphs with 6 and 7 vertices 
which achieve the minimum numbers of Hamiltonian cycles are depicted in Figures 3 
and 4. Now consider the graph G of Figure 4 and the vertices x, y and z shown 
in the figure. One can easily check that cG({x9 y}) = 0 and cG({y9 z}) = cG({x, z}) = 
= 2. The statement v) then follows by inductive use of Lemma 2 as seen from Figure 
5 (there are n — 7 vertices placed inside the triangle xyz). m 

4. Planar triangulations 

Theorem 4. . i) cP Г(4) = 3, 
ii) cp г(5) = 6, 

ІІІ) Cpг(б) = ю, 
iv) CpГ(7) = 12, 
v) cPГ(8) = 6, 

vi) cP Г(9) = 8, 
vii) CpГ(Ю) = 6, 

viii) 4 = Cp r(ll) = 6 . 

As expected, the case of planar triangulation has turned out to be the most interest­
ing one. However, we have not been able to settle it easier than by counting Hamilto­
nian cycles in all necessary planar triangulations. The statements i)—v) have been 
worked out by hand and then checked and extended to vi) and vii) by the second 
author using computer search based on [3] (Lemma 2 is useful there). The case 
of n = 11 is under computation by now, it seems to us that Cpr(ll) = 6 is more 
likely to hold true. The graphs achieving the minimum numbers of Hamiltonian 
cycles are depicted in figure 6. 
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ІV(G)|=6 c(G)=10 ІV(G)l=7 c(G)=12 

|V(G)| = 8 c(G)=6 IV(G)|=9 c(G)=8 

ІV(G)I=10 c(G)=6 ІV(G)I=11 c ( G ) = 6 
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