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Received 31 March, 1987 

In an earlier author's paper it has been proved that every Nemytskii operator N mapping 
the Banach space of Lipschitzian functions into itself and globally Lipschitzian with respect 
to the Lip-norm has to be of the form N(q>) (x) -= A(x) <p(x) + B(x) where A and B are given 
Lipschitzian functions. In this paper we give a kind of local version of this result. 

1. It has been proved in [3] that every Nemytskii operator N mapping Lip [a9 6] 
into itself and globally Lipschitzian with respect to the Lip [a9 fc]-norm has to be 
of the form 

N(q>) (x) = A(x) <p(x) + B(x) , x e [a9 6] , Lip [a9 &] , 

where A9B e Lip [a9 6]. Recently this result has been extended to the Nemytskii 
operators mapping a normed space Lip (U9 Y) into Lip (U9 Z) where Y and Z are 
normed spaces and U is a convex (or starshaped) subset of a normed space X (cf. 
[4])-

Similar theorems have also been proved for the Banach spaces BV[a9 fe], Cr[a9 b~] 
andLipa[a,6](cf.[5],[6],[7]). 

In the present paper we give a kind of local version of the above result. This 
"locality" is understood here in the sense of the supremum norm, i.e. a weaker 
one than any of the norms of Banach spaces mentioned above. 

2. Let (X91-|), (y, |-|), (Z, |-|) be normed spaces and let U c X. Denote by 
F(U9 Y) the vector space of all functions <p: U -> Y and by Lip (U9 Y) the vector 
space of all functions <p e (U. Y) such that 

sup 
x*.? \x — x 

x) — ę(x)\ 

where supremum is taken over all x9xeU. Assume that 0 e U. Clearly, Lip (U9 Y) 
with the norm defined by the formula 

(1) llH|:=KO)l + suPK;)-f)l 
x*5c \X — X\ 
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is a normed space. Let 

MU:=sup|f l>(*) | f <P e Lip (U9Y) 
xeU 

and let (L(Y9 Z), ||| • |||) be the normed space of all linear and continuous mappings 
A:Y-*Z. 

Every function h: U x Y-^ Z generates the so called Nemytskii operator 
N= Nh: F(U. Y) -» F(U9 Z) defined by the formula 

(2) N(cp)(x):=h(x9<p(x))9 xeU, cpeF(U9Y). 

In general it is, of course, a nonlinear operator. 

We are going to prove the following 

Theorem. Let (X, \'\)9 (Y9 |*|), (Z. |*|) be normed spaces and suppose that U cz X 
is star-shaped with respect to 0. If the Nemytskii operator N defined by (2) satisfies 
for a positive number r the following two conditions: 

1°. N: {<p e Lip (U9 Y): fl^ __ r} -> Lip (U9 Z) ; 

3°. there is a c _± 0 such that 

(3) lN(<p_) - N(<p2)j __ cl<p_ - cp2\ , <pt G Lip (U9Y)9 \\<PtU = r9 

then there exist functions A: U -> L(Y9 Z) and B e Lip (U9 Y) such that 

(4) h(x9y) = A(x)y + B(x)9 xeU9 yeY9 \y\ = r . 

//, moreover, (Y9 \ • |) is a Banach space then A e Lip (U9 L(Y9 Z)). 

Proof. Since for every fixed y e Y the constant function cp(x) = y9 xeU9 belongs 
to Lip (U9 y), it follows from 1° that 

h(-9y)eUp(U9Y)9 yeY9 \y\ t_ r. 

Therefore h is continuous with respect to the first variable for every fixed y from 
the ball 5(0, r) : - \y e Y: \y\ _t r}. 

Using definition (1) we may write assumption (3) in the following form 

|K°> 9i(0)) - h(0, <p2(0))\ + 

+ ~up !*('• g»(0) - h(*> ^-(0) ~ K*.<PM + *(*. y»(0)l _ c i u _ 9 H 

where supremum is taken over all t9leU and ||<Pi||co = r9 i = 1, 2. Hence it follows 
that 

(5) \K*> Pi(0) - fe(*> ^ ( 0 ) - fcfr 9i(Q) + *(*» 92(0)1 <c c | 9 i _ 9 2 | 
\t — r| 

for all <pl9 cp2 e Lip (17, Y) such that H^H^ ^ r , i = 1, 2 and f, ? e U9 t 4- F. 
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Let us fix x G U9 x + 0, and x from the segment joining 0 with x. Take yl9 y i , 
yl9 y2 e B(0, r) and define the functions 

(6) *.(0 
ӯ, \ц < щ 
УІ - УІ Mt\-H) + Уi, Щѓ\t\ѓ\x\ 
1*1 -1*1 

(y, \t\ > \x\ 

for t e U and i = 1, 2. Evidently <pt e Lip (U, Y), \<Pi\x <^r,i= 1, 2, and 

l<P1-<P4 = \y1-y2\ + ^-"]-^. + p 2 l 
1*1 - 1 * 1 

Hence, setting in (5) <pu <p2 defined by (6) and t := x, I: = 3c, we obtain the inequality 

\h(x, y.) - h(x, y2) - h(x, j>t) + h(x, y2)\ f, . \yt - y2~ Pi + y2\\ 

I*-*I = v1 ^ I*I-I*I r 
which can be rewritten in the following form 

\h(x, yi) - h(x, y2) - h(x, y±) + h(x, y2)\ = 

= c (\yi - y2\ \x - x| + l̂ j ^ j l |yi ~ y2 - yi + yilj • 

Letting x tend to x, using of the continuity of h(«, y), we hence get 

(7) |h(x, yx) - h(x, y2) - h(x, yi) + h(x, y2)\ = c^t - y2 - y± + y 2 | , 

for x 4= 0, x e U, yi, yi, yl9 p2 G B(0, r). 
By the continuity of h(*, y) it follows that (7) holds for x = 0. Let us fix an x e U 

and define the function A(x): B(0, r) -» Z by the formula 

(8) A(x)(y):=h(x9y)-h(x90). 

Taking in (7) y1 := y + w, y2 := y, yt := w, >?2 := 0 such that y,we B(0, r/2) c y 
we obtain 

h(x9 y + w) - h(x, y) - h(x, w) + h(x, 0) = 0, 

which means that 

A(x) (y + w) = .4(x) (y) + 4(x) (w), y, w e 5(0, r/2) , 

i.e. A(x) is additive mapping in the ball B(0, r/2). It is well known that A(x) has the 
unique extension to an additive map from Y to Z (cf. [1] and [2], Theorem 4.3). 
Denote this extension by A(x). Setting y i = y2 — 0 in (7) we get 

\A(x) (yi) - A(x) (y2)\ = c\yi - y2\ , yl9 y i e B(0, r) , 

which implies the continuity of A(x). Since every additive and continuous map is 
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linear we have proved that A(x) e L(Y, Z). Putting 

B(x):= h(x,0), xeU, 

we have, according to (8), 

h(x, y) = A(x) y + B(x) , xeU, yeY, \y\ = r, 

where A e F(U, L(Y, Z)) and B e Lip (U, Z). 
Suppose now that (Y, |-|) is a Banach space. For every x, x e U, x #= x, we have 

A(x)-4x)бL(I>z) 

\x - X\ 

From the just proved part of the theorem we have N(q>) — B = A(*) y, for <p(x) = y. 
Consequently, for every y e B(0, r), A(*) y e Lip (U, Z), and, therefore 

\A(x) y - A(x) y\ 
sup •' v \ v f ' = sup 
jc-l-jč \X — X\ JC4-JČ 

JCJčelt ' ' x,xeU 

Ф)-A*)УÌ 
\x — x\ 

This shows that the family of linear maps 

< 00 , y є B(0, r) . 

\A(x) - A(x)) 

L \X ~~ X\ Jx,Jčelt;x-NJi NJC 

is pointwise bounded. In view of Banach-Steinhaus Theorem the number 

: u p P(») - 4*)lll 
p î  H 

jc=l-jc X — x\ 
xyxeU ' ' 

is finite. This completes the proof. 
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