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The class minimally generated algebras is introduced in [Ko 3]; the results of that 
paper might suggest that it is quite well-behaved. This hope is partially destroyed 
by counterexample to the questions (Ql) through (Q4) below. 

Let us recall material from [Ko 3] as far as it is relevant to the questions and their 
answers; for general information on Boolean algebras resp. set theory see e.g. [Ko 2] 
resp. [Je]. For Boolean algebras A and B, A g B denotes that A is a subalgebra 
of B. C ^ m D (D is minimal over C or a minimal extension of C) means that C ^ D 
and there is no subalgebra of D lying properly between C and D. A ^mgB (B is 
minimally generated over A) if there exists an ordinal o and a sequence (Ba)a<Q such 
that B0 = A,U « < A = B>Bx = U « < A for limit ordinals X < O,andBa ^ m B a + 1 if 
a + 1 < Q. We say that B is minimally generated if it is minimally generated over 
its two-element subalgebra 2. 

Proposition 1 (cf. 1.7, 1.9 in [Ko 3]) a) The class of minimally generated algebras 
is closed under taking subalgebras, quotients, and products of finitely many factors. 

b) If A ^mgB, then for every xeB, the subalgebra A(x) of B generated by 
A u {x} satisfies A ^mg A(x). 

The subsequent proposition contains the most important easy examples on minimal 
generation. 

Proposition 2 (cf. 2.1, 2.3, 3.3, 2.4 in [Ko 3]) a) Every Boolean algebra embeddable 
into an interval algebra is minimally generated. 

b) Every superatomic algebra is minimally generated. 
c) If A is superatomic and B is minimally generated, then the free product 

A ® B of A and B is minimally generated. 
d) No Boolean algebra with an uncountable free subalgebra is minimally 

generated. 

*) Mathematisches Institut der FU Berlin, Arnimallee 3, 1000 Berlin 33, West Germany. 
The author gratefully acknowledges the hospitality of the Fakultät für Mathematik, Uni­

versität Konstanz, during the preparation of this paper. 
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Interval algebras and superatomic algebras are crucial examples of minimally 
generated ones because of the following proposition. For A = B and x e B, let JxA 

be the ideal 

JX,A
 = {ae A: a . xe A} 

of A. Then A(x) is minimal over A iff AjJx>A is the one-element or the two-element 
algebra. For T = A, call T a tree in A if 0 $ T, Tis a tree (as defined in set theory) 
under the (restriction to T of the) converse of the Boolean partial order <A of A, 
and for any x 4= y in T either x < A y or y <A x or x . y = 0. It is easily seen that 
if a tree T = A generates A, then A embeds into an interval algebra. 

Proposition 3 (cf. 3.2, 4.3 in [Ko 3]) a) A simple extension A(x) of A is minimally 
generated over A iff AJJX}A is superatomic. 

b) For every minimally generated algebra B, there exists A = B such that: 
A is generated by a tree, A is dense in B and B is minimally generated over A. 

We are ready to state our questions and their motivation. 

(Q1) If Fr cox, the free Boolean algebra over co1 generators, does not embed into B, 
does it follow that B is minimally generated? 

(Q2) Is the free product of any two minimally generated algebras minimally 
generated? 

(Q3) Does every infinite minimally generated algebra have cofinality co? 
(Q4) Is every retractive Boolean algebra minimally generated? 

A positive answer to (Ql) would give the very satisfactury characterization "B is 
minimally generated iff Fr co1 does not embed into B", by Proposition 2d), and this 
would nicely parallel the well-known fact that B is superatomic iff Fr co does not 
embed into B. It would also imply a positive answer to (Q2) because it is a result 
by Sapirovskii that for every infinite cardinal x, x, Fr yc embeds into a free product 
A © B iff it embeds either into A or into B — see e.g. Theorems 10.16 and 11.15 
in [Ko 2]. 

In (Q3), the cofinality cf B of an infinite algebra B is the least infinite cardinal x 
such that B = \Ja<KBa for some strictly increasing chain (Ba)a<x of subalgebras. It has 
been shown in [Ko 1] that co = cf B = T° and that for many algebras B, cf B = co1. 
In particular, cf B = co if B is superatomic or embeds into an interval algebra; 
moreover cf B = co1 if Fr co1 embeds into B. No algebra satisfying cf B > co1 has 
been constructed up to now. Note that a positive answer to both (Ql) and (Q3) 
would imply that cf B = co1 for every infinite B, since in this case either Fr co1 

embeds into B and cf B = co1 or B is minimally generated and cf B = co. 
In (Q4), a Boolean algebra B is called retractive if for any epimorphism p: B -> Q 

onto some algebra Q, there exists a monomorphism e: Q -> B such that p o e = idQ. 
Subalgebras of interval algebras are retractive, as shown in [Rub], and by Proposi-
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tions 2 and 3, they are important examples of minimally generated algebras; no 
other natural examples of retractive algebras seem to be known. Rubin has also 
constructed in [Rub] retractive algebras not embeddable into interval algebras, 
but only under additional set-theoretic assumptions. — It is easy to see that not 
every minimally generated algebra is retractive — e.g. the subalgebra of the power 
set algebra of co generated by the singletons and an uncountable almost disjoint 
family is superatomic but not retractive. 

All of the questions (Ql) through (Q4) will be answered in the negative. We shall 
use twice the following lemma. 

Tree lemma Let B be a Boolean algebra which admits a strictly positive finitely 
additive measure. Then every tree in B is countable. 

Proof. Let /x: B -> [0,1] be the measure T Q B a tree. B satisfies the countable 
chain condition, hence every branch and every level of T is countable. Assume T 
is uncountable; then its height must be co1. For a < col5 denote by Ta the a'th level 
of T and let 

xa = max {n(t): teTa) ; 

xa exists since Ta has at most n elements with measure ^ ljn, for n e co. Then 
(xa)a<(0l is a strictly decreasing sequence of reals, a contradiction. For if a < /? < co1, 
fix s e Tp such that JX(S) = xp and t e Ta such that t < s in T Then s <pt and 

*/, = Ks) < HO = ** • 
Our first example provides a negative answer to (Q2), hence (Ql). 

Example 1. The algebra 

B = lntalg[0, 1) © lntalg[0,1)Q 

is not minimally generated; here [0, 1) = {x e U: 0 = x < 1}, [0,1)Q = [0,1) n 
n Q and Intalg Lis the interval algebra of a linear order L. 

Proof. The elements of B are, without loss of generality, unions of finitely many 
disjoint rectangles in [0,1) x [0, 1)Q of the form u = [a, b) x [c, d), where a < b 
in [0,1] and c < d in [0, l ] Q . Putting /x(u) = (b — a) (d — c), we see that B admits 
a strictly positive finitely additive measure. 

Assume for contradiction that B is minimally generated; then by Proposition 3 
and the tree lemma, B is minimally generated over some dense countable subalgebra 
A. The following definition and facts are what makes our proof work. If u e B and 
a < b in [0 ,1] , call w full in [a, b) if for each t e [0,1)Q, [a, b) x {t} is either 
included in or disjoint from u. 

Fact 1. The elements of B which are full in [a, b) constitute a subalgebra of B. 
Fact 2. For arbitrary u e B and a < b, there is [a', b') g [a, b) such that u is full 

in [a', V). 
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Fact 3. If u is full in [a, b) and [a', b') g [a, b) where a' < b', then u is full 
in [a', b'). 

Fact 4. If u intersects [a, b) x [0,1)Q, then there are ve A and [a', b') g [a, b) 
such that v = u, the elements u, v, and u . — v are full [a', b'), and both v and u . —v 
intersect [a', fc') x 0,1)Q — this holds since A is dense in B. 

For the rest of the proof, let us say that c e [0,1] is a relevant point of u e B if there 
exists a non-empty interval I in [0, 1)Q, such that {c} x I is included in the boundary 
of u (computed in [0,1) x [0,1)Q). E.g. a rectangle [a, b) x [c, d) has a and b as 
its relevant points, and each ueB has only finitely many relevant points. Let 

R = {c e [0 ,1] : c a relevant point of some u e A] , 

a countable subset of [0,1]. 
Fact 5. Assume u e A is full in [a, fc) and intersects [a, b) x [0,1)Q, a < c < b 

and c £ R. Let x = [0, c) x [0,1)Q. Then u $ Jx A. — For otherwise, u . x e A. 
But c is a relevant point of u . x and hence c e R, a contradiction. 

Using the above facts, we construct, for n e co, an interval In in [0, 1] and an 
element un of A such that 

(1) J* = [<*n> K) and a„ < an+1 < bn+l < bn9 

(2) In has length at most 1/2", 

(3) the unique element c of f) [a„, b„] is not in K, 
new 

(4) un is full in In, 

(5) for any c g n, the elementary product Y\ ui • 11 ~~ M» *n -̂  intersects In x 
iee ien\e 

x [0,1)Q (it is also full in I„, by Facts 3 and 1). 

Here (3) can be satisfied by Fact 3 and since R is countable, and (5) by Fact 4. Ap­
plying Fact 5 to c G 0 [tf„> b«] and x = [0, c) x [0,1)Q, we see that none of the 

new 

elementary products displayed in (5) is in Jx A. But then AjJX}A is not superatomic, 
A(x) is not minimally generated over A by Proposition 3, and B is not minimally 
generated over A by Proposition 1. 

We will now answer (Q4) and (Q3) in the negative, assuming the continuum hypo­
thesis CH, resp. Jensen's principle 0 . In the proofs, we formulate some lemmas which 
are proved later on. 

Example 2. (CH) There a retractive Boolean algebra which is not minimally 
generated. 

Proof. Our algebra will be the union 

c = uca 
a<o)i 
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of a continuous chain (Ca)a<(0i of countable algebras such that C0 is atomless and 
dense in C, i.e. C0 = C g. (Co)cm (where Acm denotes the completion of a Boolean 
algebra A) and Ca+1 = Ca(ua) for some wae(C0)cm. C will have the following 
properties: 

(6) C is not minimally generated over any dense countable subalgebra, 

(7) for any dense ideal K of C, C\K is countable. 

By (7), C will be retractive, as shown in the proof of Theorem 4.3c) in [Rub]. And 
by (6), Proposition (3) and the tree lemma, C is not minimally generated since it 
admits a strictly positive finitely additive measure. (To see this, fix an atomless 
complete algebra B with such a measure; clearly C0 embeds into B and C embeds 
into B over C0 since C0 is dense in C and B is complete.) 

The properties (6) and (7) of C are ensured by some bookkeeping device and the 
following lemma. 

Lemma. Assume MA(20i) and let A be a countable atomless algebra, A rg B _̂  

= .Acm and \B\ < 2". Let / be a family of dense ideals of B such that | / | < 2W. 
Then there exists u e Acm such that u $ B9 A(u) is not minimally generated over A9 

and for every J e / there is i e J n A such that u . —ie A. 
For the bookkeeping, we assume that C0 has underlying set co and the algebra C 

to be constructed, evidently of size col9 has co1 as its underlying set. By (CH), there are 
enumerations 

{I £= Co: I a dense ideal of C0} = {Iv: v < cox) , 

{s _ cox: s countable} = {sv: v < cot} 

such that each countable subset of co1 is enumerated co1 times. 
The algebras Ca are constructed by induction as follows. Given Ca, put Aa = sa 

if sa happens to be (the underlying set of) a dense subalgebra Ca (recall Ca _ cox)9 

and Aa = C0 otherwise; in any case, Aa is a dense countable subalgebra of Ca. 
Also put 

A = {/gca(Iv): v < a} 

(where for X a subset of a Boolean algebra C, Igc(X) is the ideal of C generated 
by X), a countable family of dense ideals of Ca. Then define 

^ a + l = Ca(Wa) 

where ua e (Ca)
cm = (C0)

cm is chosen by the lemma to take care of A = Aa9 B = Ca 

and / = / a . — This finishes the construction of C. 
To prove (6), assume A is a countable dense subalgebra of C, say A _̂  Cv for 

some v < a>!. Pick a > v such that sa = A. Thus in the construction of Ca+l9 

sa = A _ Cv ^ Ca and Aa = A. Now wa has been chosen by the the lemma such 
that A(ua) is not minimally generated over A. By Proposition 1, C is not minimally 
generated over A. 

31 



To prove (7), let K be a dense ideal of C and n: C -> CJK canonical. I = K n C0 

is a dense ideal of C0, say I = Iv. We show that 7c[Ca] = 7c[Ca+1] for every a > v, 
hence C/K = 7i[Cv + 1 ] is countable. So let a > v. Put J = IgCx(l)\ so in the construc­
tion of C a + 1 , 

J=/gJIv)e/a, 

and J g K. By the lemma, ua has been chosen such that there is i e J n Aa satisfying 
ua. —ie Aa g Ca. Since i e J g K, it follows that 7c( — i) = 1 and 7r(wa) e 7r[Ca], 
i.e. by C a + 1 = Ca(ua) that 7c[Ca+1] = TC[C.]. 

Proof of the Lemma. We work in the Stone space X = UltA of A, a second 
countable compact (and hence completely metrizable) zero-dimensional space. We 
identify A with Clop X and Acm with RO(X), the regular open algebra of X. 

For J e / , J n i i s a dense ideal of A; hence the open subset Uj of X dual to 
J n A is dense in X and Nj = X \ Uj is nowhere dense. By Martin's axiom, there 
are countably many nowhere dense closed subsets Mn of X, n e co, such that U Nj = 

JeJ 
g U Mw (see e.g. [Rud], Theorem 14). Now 

new 

G = X \ U M„ 
new 

is a G^-subset of X which is uncountable by Baire's theorem. Thus there exists 
a perfect subset N of G, i.e. a closed set without isolated points (cf. e.g. Theorem 
94(c) in [Je]). Passing if necessary to a subset of N, we may assume that N is nowhere 
dense. Finally, we may assume that 

(8) N 4= bd b , for all b e B 

where bd b denotes the boundary of the regular open set b e B. This is possible 
since N, being homeomorphic to the Cantor space X, is homeomorphic to N x N, 
i.e. N can be split into 2°° subspaces Na homeomorphic to N; since |B | < 2W, we can 
satisfy (8) replacing N by some Na. 

N being closed and nowhere dense in X, there exists a regular open subset u of X 
such that 

bdu = N ; 

we show that u works for the Lemma. Clearly u $ B, by (8). A(u) is not minimally 
generated over A by Proposition 3 and since 

AjJUfA _ Clop(bd u) _ Clop N 

and N was perfect, i.e. A\JuA is atomless. Finally, for J G / , we have that N g Uj9 

Now N is compact and Uj is open in X; so there is i e Clop X = A such that N g 
_ i _ Uj. It follows from N = bd u g i that u r\(X\i) is clopen, i.e. an element 
of A. 
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Example 3. Assume Q holds. Then there exists a minimally generated Boolean 
algebra B such that \B\ = co^ = cf(B). 

Proof. For any Boolean algebra A, a sequence (An)nea) of subalgebras of A de­
monstrating cf A = co can be coded by the function v: A -> co defined by 

v(a) = min {n e co: a e An} . 

Let us call a function a valuation of A. I.e. v is a valuation of A iff v: A -> co and 

(9)t<0) = 0 , 

(10) v( — x) = v(x), v(x + y) ^ max (i>(x), tf(y)) for x, y e A, 

(11) v\A\ is unbounded in co. 

Our strategy will, of course, be to construct B in cox steps and killing, by 0 > all 
possible valuations of B. This depends essentially on the following definitions and 
two lemmas. Given a valuation v of A, we put 

h v(x) = sup (f(y): y _ x} for x e i , 

thus h i?(x) _ co. Moreover, we let 

l(v) = {XE A: h v(x) < co} , 

a proper ideal of A. We say that v has multiplicity n and write mult (v) = n, where 
n < co, if Ajl(v) is finite with exactly n atoms; A\l(v) is infinite, put mult (v) = co. 
Thus mult (v) —̂ n (resp. = co) means that there are at least n (resp. infinitely many) 
pairwise disjoint elements in the set {x e A: h v(x) = co}. The following observation 
will be used several times: if A _ C and v resp. w are Valuations of A resp. C such 
that w extends v, then h v(x) _ h w(x) for x e A, and hence mult (v) _ mult (w). 

Lemma 1. Let v be a valuation of a countable Boolean algebra A such that 
mult (i>) = n < co. Then there is a minimal extension C of A such that mult (w) _ 
_ n + 1 holds for each valuation w of C extending v. 

Lemma 2. Let u be a valuation of a countable Boolean algebra A such that 
mult (v) = co. Then there is a minimal extension C of A such that v does not extend 
to a valuation of C. 

To begin the construction of the algebra B for Example 3, fix by 0 a sequence 
(sa)a«oi s u c n that sa: a -> co and for each s: cox -> co, the set {a < co±: s [̂  a = sa} 
is stationary. We let B be the union of a continuous chain of countable algebras Ba9 

a < co±. Without loss of generality, we may assume that the underlying set of B 
is cot; hence each Ba will be a countable subset of cox. Put B0 = 2 = {0, 1} g cot 

and Bk = \J Ba for limit X. 
a<X 

Given Ba, let Ba+1 be a proper minimal extension of Ba. Moreover, if Ba happens 
to have a as its underlying set and sa: a -» co happens to be a valuation of Ba, pick 2?a+1 
by applying Lemma 1 to Ba and sa if mult (sa) < co and Lemma 2 if mult (sa) = co. 
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Assume for contradiction that cf B = co, i.e. there exists a valuation v of B. ByQ 
and continuity of the chain (Ba)a<(0l, the set 

X = {a < co±: Ba has underlying set a and v f a = sa} 

is stationary, hence unbounded. Fix a sequence oc(0) < a(l) < ... < a(co) in X 
where a(0) is large enough to guarantee that tf[-3a(0)] *s unbounded in co. It follows 
from the construction of Ba(0) + 1, J5a(1)+1>_ that 

mult (v f Ba(0)) < mult (v fBa(1)) < ... < mult (v f Ba((0)) , 

hence mult (v [̂  Ba(co)) = co. But then Ba((0)+1 has been constructed by Lemma 2, i.e. 
v [̂  Ba(a)) does not extend to Ba((0)+1, SL contradiction. 

Proof of Lemma 1. Let M be, in A, a set of representatives of the n atoms of 
A\l(v); we may assume that the elements of M are pairwise disjoint. For the rest of 
the proof, fix an element a of M. 

Since a is an atom modulo I(v), the set 

I = A [ a n I(v) 

is a prime ideal in A ^ a. Also I is the union of the increasing sequence (ln)neco of 
ideals In = {x e A |N a: /i v(x) _̂  n} of -4 [" a, and each Jn is a proper subset of L 
By countability of A there are elements an, ne co, of I satisfying 

hv(an) < hv(an+1), 

the an are pairwise disjoint 

I is the ideal generated by the an. 

Working in the completion of A, set 

t = ^a2n, C = A(t); 
new 

note that (— t) • a = ]£ a2 n + i- It follows that each a„ is in J,jA and J,)A = {xe A: 
new 

X- a el}, SL prime ideal of A; hence C is minimal over A. 
Now let w be an arbitrary valuation of C extending v. The elements of 

(M\{a})v{t,(-t)-a} 

are pairwise disjoint and for m e (M \ {a}), we know that h w(m) = h v(m) = co. 
Also h w(t) = co, since for each n e co, we have a2n = f and thus 2n = h v(a2n) = 

^ h w(a2n) = h w(t). Similarly, h w((— t) • a) = co, which proves that mult (w) ^ 

= n + 1. 

Proof of Lemma 2. Let 7u: A -> Ajl(v) be canonical. In the infinite algebra Ajl(v)9 

we fix a non-principal ultrafilter g and let p be its preimage under TL. 
Claim. For a,b e p and ne co, there is a' e p such that a' < a . b and, letting 

d = a . —a', we have v(d) > n and h v(d) = co. 
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To prove the claim, first choose y ^ a . b such that the element c = a . b . — y 
is in p and n(y) > 0; this is possible since a .be p and the image of A ^ (a . b) 
under n has more than two elements. Now h v(c) = co, so there is a' _ c such that 

v(a') > v(c) , v(a') > v(a . — c) , v(a') > n . 

v(a') > v(c) implies that v(a') = v(c . —a'), and either a' or c . — a' is in p; so we 
may assume that a' e p. Consider d = a . — a'. We have y :g d and hence* by n(y) > 
> 0, h v(d) — h v(y) = co. Finally, d is the disjoint sum of a . — c and c . —a'; 
since v(c . —a') = v(a') > v(a . —c), it follows that v(d) = v(a') > n. This proves 
claim. 

Using the claim and the fact that p is countably generated as a filter, it is now 
easy to construct a sequence a0 > ax > ... in p such that the an generate p and the 
elements dn = an. —an+1 satisfy h v(dn) = co and v(dn) > n. By h v(dn) = co, 
choose for n e co elements bn and cn such that 

bn.cn = 0, bn + cn = dn, v(bn) > v(dn) . 

Working in the completion of A, put 

t = ^bn, C = A(t). 
new 

C is a minimal extension of A since bn ^ t, cn = — t, and hence Jt A = A\p. 
Assume that w is a valuation of C extending A. Letting n* = w(t), pick ne co such 
that v(dn) = n* (which is possible by v(dk) > k). Now t. dn = bn, but w(t. dn) g 
^ max (n*, v(dn)) = v(dn) and w(b„) = v(b„) > v(dn), a contradiction. 

Example 3 gives a particularly strong counterexample for a conjecture due to 
Efimov — unfortunately, only under <) . Efimov's conjecture states that every infinite 
compact Hausdorff space has a closed subspace either homeomorphic to the one-point 
compactification or to the Stone-Cech compactification of the integers. Restricting 
to Boolean spaces and applying Stone duality, we obtain the conjecture that for any 
infinite Boolean algebra B: either B has the finite-cofinite algebra of co as a homo-
morphic image (i.e. B h^s a countable homomorphic image) or B has the power 
set algebra of co as a homomorphic image (i.e. B has an independent subset of size 
2W). But algebra B of Example 3 has cofinality greater than co, hence no countable 
homomorphic image, and it is minimally generated, whence it has no uncountable 
independent subset, by Proposition 2. 

References 

[Je] JECH T H . , Set Theory, Academic Press, 1978. 
[Ko1] КOPPELBERG S., Boolean algebrasas unions of chains of subalgebras, Algebra Universalis 7 

(1977), 195-203. 

35 



[Ko2] KOPPELBERG S., General Theory of Boolean algebras, in: Handbook of Boolean algebras, 
ed. J. D. Monk, North Holland, to appear. 

[KoЗ] КOPPELBERG S., Minimally generated Boolean algebгas, preprint. 
[Rub] Ruвш M., A Boolean algebra with few subalgebгas, interval Boolean algebras and 

retractiveness, Trans. Am. Math. Soc. 278 (1983), 65—89. 
[Rud] RUDIN M. E., Martin's axiom, in: Handbook of Mathematical Logic, ed. J. Baгwise, 

North Holland, 1977. 

36 


		webmaster@dml.cz
	2012-10-06T00:02:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




