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1991 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 32. NO. 2 

Graph Coloring Problems with Applications in Algebraic Logic 

ZS. TUZA*) 

Hungary 

Received 15 April 1990 

For symmetric atomic relation algebras the property of being representable, finitely represent-
able, or associative (when associativity is not supposed to hold by definitions) is known to be 
equivalent to the existence of some edge colorings of complete graphs. Here we give a short 
survey of the open problems and related results concerning necessary and sufficient conditions, 
unicity of a representation, and the algorithmic complexity of deciding those properties. 

1. Introduction 

The aim of this note is to invite the attention of the reader to a topic that offers 
lots of challenging open problems. Those questions are of definite interest for the 
reason that they can be interpreted in two eqiuvalent — but entirely different — ways, 
in two branches of mathematics which, at first sight, have very little connection. 
Those two subjects are algebraic logic (representations of relation algebras) and 
combinatorics (edge colorings of graphs). This interesting relationship was discovered 
by Monk a long time ago (see e.g. [M3]) and was further developed by several 
authors. 

Tne one-to-one correspondence between some types of representations and color­
ings is explained in detail in [Ml ] . The link between those two concepts is established 
by a collection ST of 3-element multisets (triplets) which is uniquely determined by 
the algebra in question. Such a &~ can reflect algebraic properties including represent-
ability, finite representability, and associativity. For our discussion we have chosen 
the language of combinatorics, but in the other interpretation the problems and 
results have purely algrebraic contents. For a description of this correspondence 
the reader is referred to [Ml ] or to the short subsection §0.2 of [T]. A detailed 
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discussion of representation theory in algebraic logic can be found in the independent­
ly readable Part II of the textbook [HMT]. 

2. Basic concepts 

Throughout, the notation we use is consistent with that in [T]. For a natural 
number t, [t] denotes the set {1, . . . , t}. We denote by 2T(s, t) the set of all triplets 
Ton [t] such that precisely s distinct elements of [t] are contained in T(s = 1, 2, 3). 
For a subset S of {1, 2, 3}, set f(S, t) : = (JseS 3T(s, t). The set *T({\, 2, 3}, t) will be 
abbreviated as [t]3. 

Complete graphs: The complete graph K = (V, E) has vertex set V = {vt | iel} 
(I is finite or infinite) and edge set E = {vtVj | i,j el, i =t= j}. Here the edges v-Oj 
are considered to be unordered pairs, i.e., vtVj = VjVt. If I is finite, |I| = n, then we 
use the notation Kn = (V„, En), where Vn = {vl9 . . . , vn} (and then En = {v^j | J, 
; e [ n ] , i * j } ) . 

A triangle of K is a complete subgraph induced by three vertices. Moreover, we 
denote by K4-e the graph obtained from K4 by deleting an edge e. (This K4-e has 
just two triangles.) 

Colorings: A coloring f of a complete graph K = (V, E) is an edge coloring 
f : E -+ [t]. Let 3T c [t]3 be a given family of triplets. In order to avoid unnecessary 
complications, throughout it will be assumed that every i e [t] occurs in at least 
one TeZT whenever 2T =j= 0; for F = 0 we shall have t = 1 by definition. A color­
ing / of K is said to be a 

3 -coloring if 

(i) for any three distinct vertices vt, vj9 vk e V, the 3-element multiset 
U(vivj)>f(viVk)>f(vjVk)] belongs to F; 

3T*-coloring if 

(ii) for every Te3T, there are distinct vertices vi9 vj9 vk e Vsuch that 
[f(vivj)J(viVk)J(vjVk)] = T; 

strong ^-coloring if 
(iii)for every T= [a0,al9a2]e3T, if f(vtv^) = aq for some q, 0 ^ q ^ 2, 

then there exist vfc and vk,, distinct from vx and v}, such t h a t / ^ t ^ ) = f(viVk,) = 
= a€_x and f(vtvk,) = f(vjVk) = aq+i (where subscript addition is taken 

mod 3); 

representation of ZT it satisfies the properties (i), (ii), and (iii). 

Note that in (iii) if a0 = a1 and /^^y ) = a2 then for q = 2 one has to find just 
one vertex vk = vk,. 
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Packing of triples: Let T, T' eZT. A packing of Tand T' is a 'partial representa­
tion' of Tand V over K4, that is a color assignment f of the five edges of K4-e in 
such a way that the multisets of colors occurring on the two triangles of K4-e are 
identical to T and T', respectively. A packing is trivial if T = T' and f satisfies 
the following further requirement: assuming e = v3v4, f'(vii'i) = f(viV2) for i = 3 
and 4. 

Representable and associative families: A 3T c [f]3 is called representable if it 
has a representation over some complete graph K. If it has a representation over K„, 
for some natural number n, then we say that ZT is finitely representable. 

A ^~ is associative if each non-trivial packing of any two (not necessarily distinct) 
triplets T, T ' e^* can be completed to a ^"-coloring of K4. Clearly, for these pro­
perties the following hierarchy holds: finitely representable => representable => as­
sociative. 

Subfamilies of 3T\ Every collection y c [r]3 can be written in the form ST = 
= Fx u 3T2 u ^ 3 , setting &\:= ZT n ^(i,t) (i = 1, 2, 3). 

3. Problems and Results 

Throughout we formulate questions and statements in terms of triangle families. 
In the discussion below we proceed from the most particular structures to the general 
ones. Let us first consider the representability problem of the &~(S,t), 0 =f= S a {1, 2, 
3}. For convenience we assume t = s for all s e S. 

Theorem (representability of ^ ( S , t)) 

(1) &~(h t) is representable if and only if t = 1. 

(2) ^ ( 2 , t) is representable if and only if t = 2. 

(3) ^"(3, t) is representable if and only if t = 3. 

(1, 2) ^"{1, 2}, r) is representable for all t = 2; 

,^({1, 2}, t) is finitely representable if and only if t = 2. 

(1, 3) «^t(l, 3}, r) is representable if and only if there exists a finite projective 

plane of order t — 1. 

(2, 3) ^ ({2 , 3}, r) is representable for 3 = t = 5. 

(1, 2, 3) ^"({1, 2, 3}, t) is finitely representable for all t = 3. 

Parts (l), (2), and (3) are easily seen; the others were proved by Tuza [T] (1, 2), 
Lyndon [L] (I, 3), Corner [C2] (2, 3), and Maddux (unpublished) and Andreka, 
Jipsen, and Tuza [AJT] (l, 2, 3). The case (1, 3) is hopeless to describe more ex­
plicitly since it depends on the existence of finite geometries. For (2, 3), however, 
one would not expect such difficulties. 
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Problem 1. Is ^"({2, 3}, t) representable for all tl 
As shown in the references given above, in most cases the representations can 

also be characterized, as follows. 

— The representations of ^"(1, t) are the monochromatic complete graphs. 

— The unique representation of 2T{2y 2) is K5 with the edge coloring / such that 
/ - ! ( ! ) = {vtvi+i | 1 = i = 5} and / _ 1 (2 ) = {vi+2vt | 1 = i = 5} (subscript addition 
is taken mod 5). 

— The unique representation of «^*(3, 3) is K4 with the edge coloring / such that 
/ - 1 ( i ) consists of two pairwise disjoint edges for i = 1, 2, 3. 

— There exist infinitely many non-isomorphic representations of ^"({1, 2}, f) and 
infinitely many finite representations of 5"({1, 2}, 2). 

— The representations of ^"({1, 3}, t) are in one-to-one correspondence with the 
finite affine planes of order t — 1. (Hence, applying known results on finite geometries, 
the representation of ^"({1, 3}, t) is not always unique, cf. e.g. [HP].) 

— For every sufficiently large n (with respect to t), ^ ( { 1 , 2, 3}, t) has a representa­
tion over Kn. 

Problem 2. Determine the smallest integer n = n(t) such that -^({1, 2, 3}, t) has 
a representation over Kn. 

A trivial lower bound, following immediately from the definitions, is n(t) = t2 + 
+ t + 1. Moreover, Andreka, Jipsen, and Tuza [AJT] verified with an explicit 
construction that n(t) = (2 + o(l))*2, and proved with probabilistic methods that al­
most all colorings of Kn are representations of ^"({1,2, 3}, t) when n = ct2 log t for 
some constant c. 

A more general form of Problem 2 is this: 

Problem 3. Suppose that 3* is finitely representable. Eestimate the smallest size, 
n(3f), of a representation of T .Which properties of 2T are essential with respect to 

n[syi 
Those few known results may indicate that the 'density' of 2T might be relevant 

in this respect. As we have seen, [ t]3 has a very small representation. On the other 
hand, for 'sparse' triangle families Tuza [T] proved that if «^3 = 0 then the size 
of representations grows exponentially with t. 

Another fundamental problem is to draw the line between finite and infinite 
representability. 

Problem 4. Let RT denote the class of all representable families ZT. Describe 
those .ST e RT which are finitely representable. 

The following interesting class of examples was found by Comer and Maddux. 
Call a color c e \t\ flexible in a family 3~ if all triplets Te [f]3 with c e Tbelong to 2T. 
It has been shown in [CI] and [M2] that every family containing a flexible color 
is representable. The following analogous question, however, is still open. 
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Problem 5. Suppose that 9" contains a flexible color. Is 9" finitely representable? 
A general investigation of triplet-families 9" with 9m

i = 0 for some i e {1,2,3} 
was done by Tuza [T]. The case of i = 3 (i.e., when 3-colored triangles are excluded) 
is well-understood: All associative, representable, and finitely representable families 
are characterized. Also, all the cases when the representations are unique (or to the 
contrary, when there are infinitely many non-isomorphic ones) were determined 
in [T]. 

There are two interesting aspects of those representation theorems. First, they pro­
vide a method to find explicit constructions of relation algebras which are associative 
but not representable, and those which are representable but only over an infinite 
set. For instance, the simplest non-representable but associative one has 4 atoms 
(including identity) and corresponds to the triangle family 9'(2, 3). 

Second, by those characterizations, associativity or (finite) representability can 
be checked by fast altgorihms of at most 0( |^" | -f- t2) steps whenever 9'2 = 0 . 
This running time is surprisingly short, taking into account that associativity itself 
imposes a requirement for each pair of triples, i.e. its check might be quadratic in 
\9~\ (and \9~\ can grow as fast as f3). For 3T{ = 0 , i = 1 or 2, the results (again 
in [T]) are not equally efficient, but representability still remains decidable. Concern­
ing those results, the following problems arise when no restriction is put on 9~. 

Problem 6. How many steps are needed to check associativity? 
Of course, 0(t. \9~\2) —~ 0( t7) is a trivial upper bound, just by considering all 

possible packings of triplets of 9~. 

Problem 7. (a) Is finite representability decidable? 
(b) Is representability decidable? 

In particular, it would be of great interest to see a finite algorithm (if there is any) 
that decides the existence of infinite representations. We note that, by Ramsey's 
theorem [R], a family with 9m

1 = 0 is representable if and only if it is finitely 
representable. For another reason (by its connections with block designs), 9"2 = 0 
also implies that all representations of 9" are finite. A further related result of [T] 
states that if each pair of colors is supposed to occur in precisely one triplet of 9~ 
then associativity, representability, and finite representability are equivalent. (If 9" 
is representable then each pair of colors occurs in at least one of its triplets.) 

4. Further Directions 

We close this note with two less explicit problems. For the first one, let us recall 
that associativity can be viewed as 'local' consistency of a family of triplets, while 
representability means 'global consistency' in a very strong sense. In this context 
it is quite natural to raise the following question.: 
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Which algebraic properties correspond to the consistency of a (given) bounded 
number of triplets 

If some results of this kind were available, they would also provide a natural hierar­
chy among those algebraic properties. 

Another class of problems arises when, instead of algebras of binary relations, 
one considers algebras of relations of higher ranks (called cylindric algebras, see 
[HMT]). Then one can ask: 

Can some of the results concerning representations of relation algebras be ex-
tended to cylindric algebras! 

Beside similarities between those two types of algebras — cf. e.g. [HMT, Part 
II, §5.3] and [AJN] — there are some unexpected differences between them that might 
cause difficulties, see [AN]. 

Acknowledgement. I am grateful to H. Andreka for several stimulating discussions 
on the topic. 
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