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We obtain a precise description of the Thue Morse measure and the Fibonacci measure. 
More generally, we prove an equipartition result for ergodic measures on substitution dynamical 
systems generated by substitutions of constant length. 

Let x = x0xlx2 ... be the Thue Morse sequence, i.e. x is defined by 

(1) x0 = 0 ; x2n = xn , x2n+1 = 1 - xn for n ^ 0 . 

The sequence x has been studied by many authors in many different contexts. It is 
well known (see e.g. [6]) that x determines a shift invariant probability measure fi on 
the Borel sets of X = {0, 1}N by defining \x on cylinder sets 

[w] = {xeX :x0 = w0,...,xn = wn) 

with w = w0 ... wn 6 {0, l } n + 1 by 

(2) n([w]) = lim *»(*o;--*») . 
N-oo N 

Here Nw(v) denotes the number of sequences of a word w in a word v, i.e. v,w e 
elj„°°-:o{0, 1}". Hence the measure of a cylinder [w] simply equals the relative 
frequency of the word w in the Thue Morse sequence x. 

Recently it has been proved that \i can occur as the unique shift invariant probability 
measure supported by the ground state configurations of a lattice gas model ([3]). 
This rises the question of a precise description of \x. The measure /i is rather different 
from a Gibbs measure, as there are very few cylinders of positive //-measure. The­
orem 1 implies however that ft satisfies a strong equipartition property. There exist 
constants c2 < cx < 0 such that 

(3) cx ^ n^i([w1 ... wn~\) ^ c2 

for all n _• 1, and all cylinders [wx ... wn~\ of length JLL with positive //-measure. 

*) Faculty of Mathematics and Informatics, Delft University of Technology, Mekelweg4, 
2628 CD Delft, The Netherlands. 
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It is in fact easy to derive from Theorem 1 that one can take ct = --, c2 = j and 
that these are the best possible constants. 

Theorem 1. Let fi be the Thue Morse measure. Let [w~ = [wx ...wn~bea cylinder 
of length n = 2 with positive pi-measure. Then 

M M ) = £2-m or /i([w]) = i 2 - m , 

where m is defined by 2m < n = 2m+1. 
More precisely9 for n = 3 let n = 2m + r + 1, where 0 < r < 2m, and let ocn = 

= Card {w : fi([wj) = i2~m}9 fin = Card {w : fi([w~) = £2"m}. Then 

(4) a„ = 8r , 0n = 3.2m - 4r if 0 = r < 2m_1 , 

(5) a„ = 2m+1 + 4r , 0n = 2m+1 - 2r if 2m_1
 = r < 2m . 

Proof. We first show that (4) holds for r = 0, i.e. that all cylinders of length 
2m + 1 have //-measure ^ . 2_m. It is an easy exercise to show that all cylinders 
of length 3 of positive /i-measure have measure £ (cf. [6], p. 103). We proceed by 
induction. Suppose that (4) holds for n = 2m + 1. Then consider a word w of length 
2m+1 + 1. Since x2jx2j+l either equals 01 or 10 for ally, occurrence of w uniquely 
determines a word w (obtained by extending w one letter to the left or the right) 
of length 2m+1 + 2 , occurring at say 2fc in x. But then by (1) w9 and hence w9 deter­
mines a unique word v of length 2m + 1 occurring at place k in x. Conversely any 
occurrence of v leads to an occurrence of w. Hence for all N we have 

(6) Nw(x0 ... x2N_ J = Nv(x0 ... %- 0 > 

which by (2) implies fi([w~) = i/*([tf]). Therefore n([w~) = | 2 " m " 1 , by the induction 
hypothesis. 

We next prove the first statement of the theorem, again by induction on m. Let 
n = 2m+1 + r + 1 with 0 < r < 2m+1. First suppose r = 2s is even. Then as in the 
argument above, occurrence of a word w of length n = 2 m + 1 + 2 s + l implies 
occurrence of a unique word v of length 2m + s + 1 in JC, and inversely. Hence we 
find in the same way that v([w~) = ifi([i/]) = i2" m " 1 or i2~m~1 (by the induction 
hypothesis). Now suppose r = 2s + 1 with 0 ^ 5 < 2m is odd. Then w has even 
length n = 2m+1 + 2s + 2, and depending on whether w occurs at an even or odd 
place in x9 it determines a unique word v of length in = 2m + 5 + 1 or \(n + 2) = 
= 2m + s + 2 in x. Now for 0 = s = 2m - 2, the claim will follow as before by 
induction. In the case s = 2m - 1, \n = 2m+1 and %(n + 2) = 2m+1 + 1. In the 
first case the claim follows as before, in the second case because by the first part of the 
proof ii([v~) = J2"m-1 for all cylinders of length 2m+1 + 1, and hence fi([w~) = 

= ±KM) = £2~W~1-
We proceed with the proof of (4) and (5). Let P(n) be the total number of cylinders 

of length n with positive /^-measure. It follows as in the arguments above that P(n) 
satisfies for n ^ 2 

P(2n + 1) = 2P(n + 1) , P(2n) = P(n) + P(n + 1) . 
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It follows from this by induction that P(n) is given by 

,7x p ( x = f3.2m + 4r if 0 = r < 2 " - 1 , 
{') \n) | 4 2« + 2r if 2 m " 1

 = r < 2W , 

where n = 2m + r + 1. (This has been proved before in [2] and in [4]). Obviously 
oin and Pn satisfy 

*n + Pn = P(n), i*n2-m + tfn2-m=l. 

Solving for ocn and pn yields (4) and (5). • 

The Thue Morse measure is an example of a uniquely ergodic measure on a substi­
tution dynamical system ([6]). Let D be such a measure. It is well known that the 
number of cylinders of length n of positive u-measure P(n) grows at most linearly 
(see e.g. [6], Prop.V. 19). Explicit expressions for P(n) like (7) are difficult to obtain 
in general (cf. [5]). However, it is possible to show that the equipartition property 
(3) holds for all systems generated by substitutions of constant length /, i.e. substitu­
tions a defined on an alphabet A such that the length of a(a) equals / for all a e A. 
A substitution a is called primitive if there exist n such that all letters occur in each 
(^(a), aeA. This property ensures unique ergodicity of the associated dynamical 
system. 

Theorem 2. Let v be the unique shift invariant measure on a substitution dyna­
mical system generated by a primitive substitution of constant length. Then there 
exist c2 > ct > 0 such that 

(8) cx = nv([wt ... w„]) = c2 

for all n = 1, and all [w t ...wB] with v([wt ... w„]) < 0. 

Proof. We first recall that the substitution dynamical system is the closed orbit of 
a sequence x obtained by iterating a starting with a letter e e A such that <r(e) has 
first letter, e, i.e. for a l lN we have xt ... xeN = o-^(e). By unique ergodicity and mi­
nimality, words w have positive v-measure iff they occur in x, and similarly to (2) 
we have 

v ( M ) = !„„ OáČM , 
JV-+0O l 

Let P = {(a, b)eA x A: ab occurs in x}. For a word w = w1 ... wn choose m 
such that l"1'1 < n = lm. Then w occurs in x and only if w occurs in at least one 
word am(ab), (a, b) e P. Hence 

NJ(o»(e)) = N^o"®) = Nja^-^e)) . 

Dividing by lN and leting N -> co, we obtain 

v ( M ) ^ v ( [ f l 6 ] ) r - . 
Hence the lower bound of (8) follows with c± = inf(a>ft)eP v([ab])/Z. 

To obtain the upper bound, we first remark that we may assume that a is one 
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to one, i.e. that a(a) T-= a(b) for a 7-= b. (If a is not one-to-one v projects on the 
measure on the substitution dynamical generated by the substitution obtained by 
identifying (if necessary more than once) all a, b such that a(a) = a(b)). Next we 
prove the following claim. 

Let a be one-to-one, then for all letters a, b e A, all m e JV and all words w of 
length lm - 1 
(9) Nw(o"(ab)) = / + 1 . 

This is certainly true if m = 1, since a(ab) has length 21. We proceed by induction. 
Let w be a word of length lm+1 — 1 occurring at position j modulo / in am + 1(ab). 
Then we can write w = ua(v) u' for some words u and u' of length / — j and j — 1 
(0 respectively / — 1 if I = 0), and v of length lm — 1. As a is one-to-one, v is unique. 
Hence w occurs at most as many times in am+1(ab) as v occurs in am(ab). The claim 
thus follows by induction. For words w of length lm — 1 we find with (9) 

Nw(<TN(e))fZ £ Nam(ab)(a
Ne)Nw(<T-(ab))g(l + l) £ N^(a»e). 

(a,b)eP (a,b)eP 

Dividing by lN and letting N -* 00, we obtain for such words 

vfl>]) £(1 + 1) rm £ v(-ab~) = (1 + 1) r~. 
(a,b)eP 

Finally let w = wt ... wn be a word If length n, and choose m as before. Then 

nv([ W l . . . wj) ^ r v ( [ W l . . . w ^ . i - j = /(/ + 1). 

Hence the upper bound of (8) follows with c2 = /(/ + 1). • 

We conjecture that (8) also holds for dynamical systems generated by substitu­
tions of non-constant length. The lower bound will follow analogously to the proof 
above, but the problem will be to obtain an expression like (9). 

Let T be the substitution on A = {0, 1} defined by T(0) = 01 and T(1) = 0. This 
substitution is known as the Fibonacci substitution. This is related to the fact that 
the length of T"(1) is equal to FN+1, where F0 = 0, Ft = 1, FN+l = FN + FN_t 

are the Fibonacci numbers. Let in the sequel v be the unique shift invariant measure 
of the associated dynamical system. We call v the Fibonacci measure. This measure 
has properties which are remarkably similar to those of the Morse Thue measure. 
The proof of Thorem 3 is however rather different from the proof of Theorem 1. 

Theorem 3. Let v be the Fibonacci measure and let p = i(>/5 — 1). Let w = 
= wx ...wnbe a word of length n _ 2 such that v([w]) > 0. Then 

v([w])e{pm-2,pm-1,pm}, 

where m is defined by Fm=^ n < Fm+l — 1. 
More precisely, let n = Fm + r — 1, where 1 g r ^ F^-^ and let 

o-n = Card {w : v([w]) = pm'2}, pn = Card {w : v([w]) = pm~-}, 
yn = Card {w : v([w]) = pm}. Then 

(10) a„ = FOT-! - r , pn = Fm-2 + r , yn = r . 
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Proof: With the Perron-Frobenius theorem it follows easily that v([0]) = p9 

and v([l]) = 1 - p = p2. This implies that v([01]) = v([l]) = p2 and v([00]) = 
= V (M) "" v([^^]) = P3- We fifSt proved by induction to prove that for any 
word w there exists an integer k such that v([w]) = pk (if v([w]) 7-= 0). Any word 
w ending in 1 has a unique decomposition in words from the set {1, T(0), T(1)}, 

hence each occurrence of w in T ^ O ) determines an occurrence of a unique shorter 
(except if w = 1 or w = 101) word v in T ^ " 1 ^ ) , and conversely. Hence 

Nw(rN(0)) = Nv(^(0)). 

Dividing by ((l + y/S)/!)" = (ljp)N, and letting N-+ 00 yields that v([w]) = pv([v]). 
For words not ending in 1 we have v([wl0]) = t;([ul]) and v([w00]) = V([M001]), 

since 11 and 000 do not occur in the Fibonacci sequence. 
To continue the proof we consider (following [7]) for fixed n the de Bruijn graph 

Gn of the words of length n occurring in the Fibonacci sequence, i.e., the nodes of 
Gn are words of length n, and u -> v if there exist letters a and 6, and a word w 
such that u = bw and v = wa. It is well known that there occur n + 1 different 
words of length n in the Fibonacci sequence. Hence Gn has n + 1 nodes, hence 
consists of two cycles (cf. [7]). Let u+ = {ve Gn: u -> v}. Then Card (11+ ) = 1 
implies v([v]) = v([u]), where u+ = {v}. One deduces from this and the cycle 
structure of Gn that v([w]) can take at most 3 different values if v([w]) > 0. Since 
we know already that these values are powers of p it also follows that these values 
are consecutive powers of p, say pJ~1, pJ\ pJ + 1. Then the equation a ^ " 1 + P„pJ + 
ynp

J+1 = 1 implies 

(an + yjp'-1 + (Pn + yn)pj = 1 . 

Equivalently, putting <p = p"1, we have 

(a* + yn)<p + Pn + yn = <Pj -

With induction one shows easily that the equation x + <py = <pJ has the solution 
(x, y) = (Fj-l9Fj). Using this, one then proves that this equation has (FJ^^FJ) 

as unique integer solution (again by induction). Hence necessarily an + yn = Fj 
and fin + yn = Fj.^ Combining this with a„ + fin + yn = n + 1 = Fm + r, one 
obtains (10). D 
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