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0. Introduction 

The aim of these lectures is to give through a sample of three examples, how 
can one use game determinacy in problems where games are not involved a priori. 
We hope that the variety of these examples will convince the reader in the interest 
of such a procedure. 

The recipe is the following: If you are interested in proving some statement of 
the form "(A) => (B)", introduce some game G with the following properties: 

1. If Player I has a winning strategy in G then (non A) holds. 
2. If Player II has a winning strategy in G the (B) holds. 

Then "(A) => (B)" is equivalent to the the determinacy of the game G. Of course the 
recipe does not give you any indication how to invent the game G... On the other 
hand not all games are determined. But since as we shall see "Borel games" are deter­
mined, this procedure will be more successful if you deal with "nice" properties of 
Borel sets. However as we shall see in one of the examples "natural" properties of 
Borel sets might create non Borel games. We shall also describe the main classical 
trick to produce Borel games, and even closed games, when dealing with analytic sets. 

But more than a nice approach for solving concrete mathematical problems, we 
shall show how the proof of some result using a closed game has interesting 
descriptive consequences. 

These lectures should be considered as an invitation to game Theory. For a more 
detailed exposition we refer the reader to [6] for the general part, and to [4] and 
[2] for the particular examples discussed later. 

1. Preliminaries 

1.1. General notations 
We denote by co the set all natural integers. 

*) Equipe d'Analyse, Université Paris VI, 4, Place Jussieu, 75252 — Paris Cedex 05, France 
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If A is a subset of a fixed space X we denote by A the complement of A in X. 
If A is a subset of a product space I x Y and x £ l , w e define the section A(x) 

and the fiber Ax by: 

A(x)={yeY:(x,y)eA} 
and 

.4* = {x} x ^l(x). 

Thus A(x) cz y and ,4X cz X x 7. 

1.2. Sequence spaces 
If AT is any abstract set we denote by Xa\ X<a\ X^n the set of all infinite, finite, 

finite of length < n, sequences in X. 
The length of s e X<a) is denoted by |8|; the concatenation of t e X<a) after s by 

s^t, and when t = <a> we also write s^t = s^a. The extension relation is 
denoted by -<. 

The space Xai will be endowed with the product topology of the discrete 
topology on X. This topology is generated by the sets of the form Ns = {a G Xai: 
s<oc}v/ithseX<a\ 

1.3. Trees 
A tree T on the set X is a subset of X<a) which is hereditary for -< (i.e. 

satisfying: (s <t and t e T) => 5 e T)). 
A branch of T is an infinite sequence a e l w such that for all n e co the finite 

sections ar„ = <a(0),..., <x(n — l)> are in T. 
The set of all branches of a tree T is denoted by [T]. It is easy to see that [T] 

is a closed subset of Xa\ Conversely any closed subset of Xa) can be represented 
(not in a unique way) as the set of all branches of some tree. 

If T has no branch (i.e. if [T] = 0 the tree T is said to be well-founded. 

1.4. Borel sets 
In any topological space we denote by -E° and 11° the Borel additive and 

multiplicative classes, where £ is any countable ordinal. 
Thus L? and II? are just the families of open sets and of closed sets. For £ = 2 

we also use the classical notations T^ = Fff and £2 = G .̂ 
If X is a separable and metrizable space, the Borel class of X is defined as the 

class of X in some metric compactification E of X. We recall that the class of 
X is independent from the choice of the compactification E. 

1.5. Analytic and coanalytic sets 
Unlike for Borel sets that we shall consider in non separable spaces, we shall 

consider analytic and coanalytic sets only in the classical context of Polish spaces. 
We denote by Ej the class of analytic sets, and by n | the class of coanalytic 
subsets. 

We also denote, in the context of Polish spaces, by A{ the class of sets which 
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are simultaneously analytic and coanalytic. By Souslin Theorem A{ is exactly the 
class of Borel sets. 

2. Game determinacy 

2.1. Main conccepts 
By game we mean an infinite game with perfect information. In such a game, 

two players, Player I and Player II, choose alternatively an element in some fixed 
abstract set X. A run in the game can thus be identified with an infinite sequence 
(fl„)„6fl) e X0), where the a2„s are choosen by Player I and the a2n+i's are choosen 
by Player II. Any run in the game is won by one or the other player according to 
some fixed rule, also called the win condition. The game is completely defined by 
its win condition. 

Given any set A cz Xa) we denote by G(A) the game for which A is exactly the 
set of all winning runs for Player I (and so A is exactly the set of all winning runs 
for Player II). 

A game is said to be determined if one of the players has a winning strategy in 
the game. Clearly both players cannot have a winning strategy in the same game, 
hence when the game is determined exactly one of the players has a winning 
strategy. The following simple result makes a crucial use of the Axiom of Choice. 

Proposition 2.2. (AC) There exist games which are not determined. 

Proof. Take X = {0,1} and consider the set Sf of all possible (not necessarily 
winning) strategies for Player I or Player II in all possible games on X. (Notice 
that the notion of strategy is independent of the win condition). Then clearly 
card(^) = c is the continuum. Fix some enumeration of the elements of 
Sf = {<%; £ < c}. Denote by R^ the set of all infinite runs compatible with a^ that 
is all runs in which the concerned player is following the strategy o .̂ Since the 
opponent player has complete freedom in his moves, the is clear that card(/?c) = c. 
Then by a standard transfinite construction one can find a set A cz X0) such that 
for all I < c: 

A n Rf 4= 0 and An R; =# 0 

Obviously for such a set A the game G(A) is not determined. • 
Fix a set A cz X(i) and consider the games G(A) and G(A). In the game G(A) 

Player I is trying to construct a point in A and Player II is trying to construct 
a point in A, whereas the situation is reversed in the game G(A). However since 
the players are not in symmetric positions (Player I always starts the game!), one 
cannot in general deduce from a winning strategy for one of the players in the 
game G(A), a winning strategy for the other player in the game G(A): This is 
clearly the case if X = {0,1} and A is the set of all sequence starting by 0, so that 



A is the set of all sequences starting by 1. However this lack of symmetry is 
balanced by the following general result: 

Proposition 2.3. Let si a 3P(SP(XUi)) and sf = {A;Ae si). Suppose that the 
family si is stable under taking inverse images by continuous transformations from 
X<° into X03. 

If all games in si are determined then all games in si are also determined. 

Proof. Fix B = A in sfwith A e si. By the hypothesis, for all x e X the set 
Ax = {ae Xw: x^oc e A} is also in si. Then the conclusion follows directly from 
the next obvious facts: 

Fact 1. If for some x, Player II has a winning strategy in G(AX) then Player I 
has a winning strategy in G(B). 

Fact 2. If for all x, Player I has a winning strategy in G(AX) then Player II has 
a winning strategy in G(B). 

2.4. Determinacy of closed games 
We recall that the set XM is always endowed with the product topology of the 

discrete topology on X. 

Theorem. (Gale and Stewart) If A is open or closed in XM, then the game G(A) 
is determined. 

Proof. Applying the previous result to the family of all open sets in X°\ it is 
enough to prove the Theorem when A is open. 

Fix A an open subset of Xa) and suppose that Player I has no winning strategy 
in the game G(A). We shall prove that Player II has a winning strategy in this 
game. 

Let B = A and for any sequence s in X of even length (and in particular for the 
empty sequence) we define as in the previous proof the set: 

A' = {oceXM:s~aeA}. 

Consider the set S of all s with even length for which Player I has no winning 
strategy in the game G(AS). Notice that by assumption 0 e 5 and so 5 is nonempty. 

Fact. VseS, V x e l , 3 y e X: s^x^y e S. 

Proof. If not, fix some s e S and xeX such that for all y e X Player I has 
a winning strategy oy in G(As~x~y). Then this defines a winning strategy a for 
Player I as follows: At the first move Player I plays x0 = x\ next if Player II 
plays for the second move x{ = y then Player I answers x2 = cr>(0); and more 
generally if Player II has played (xu x3,..., x2n+i) then Player I answers 
*2n+2 = Gy(*>u *3> •••> *2n+i)- This strategy is clearly winning for Player I in G(AS), 
so s $ S which gives the contradiction. • 
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Coming back to the proof of the Theorem we shall construct a winning strategy 
T for Player II in G(A). We define r informally by describing a run (xn) where 
Player II follows this strategy x. If Player I plays x0 at the first move, then apply 
the Fact to s = 0 e S, x = x0 to find y = x{ such that (x0, x{)e S; then if Player I 
plays x2 at the next move, apply again the Fact to s = (x0, x{) e S, x = x2 to find 
y = x3 such that (x0, x b x2, x3) e S, etc ... To show that this strategy is winning for 
Player II in G(A), we have to check that in such a run a = (x„) e A. We again argue 
by contradiction: If a e A, then since _4 is open we could find a finite sequence of 
even length s < a such that Ns a A\ then it follows from this inclusion that in the 
game G(AS) any strategy for Player I is winning, and in particular that 5 £ 5; but 
by construction we also have that s = (x0, x b x2..., x2n+l) e S. • 

2.5. Determinacy of Borel games 
The Gale-Stewart Theorem (1953) is the first general result on game deter­

minacy. It was extended by P. Wolfe (1955) to the case of L" games and later by 
M. Davis (1964) to the case of L3 games. However the general Borel case that we 
shall discuss below was proved much later by D. A. Martin (1975). 

Theorem. (Martin) If A is Borel in XM, then the game G(A) is determined. 
We shall not give the proof of this result, and restrict ourselves to the following 

observations: 
a) We recall that all Borel classes satisfy the hypothesis of Proposition 2.3, so 

that the determinacy of L? games is equivalent to the the determinacy of II? games. 
So it might be tempting to try to derive Martin's Theorem from a general stability 
result by proving for example that the family of sets A for which the game G(A) 
is determined is stable by countable union; but this is simply false in general. 

b) To prove the determinacy of the game G(A) for a given Borel set A in X°\ 
Martin introduces a game G(B) where B is now a closed subset of some new space 
YM. These two games are linked in such a way that from any winning strategy of 
any of the Player in the game G(B) (which is determined by Gale-Stewart), one 
can derive a winning strategy for the same Player in the game G(A). 

c) The game G(B) is obtained by a transfinite inductive construction, depending 
on the Borel class of the set A. More precisely, if A is of class ^ (a countable 
ordinal) then the set Y (constructed in Martin's proof) is essentially of the same 
cardinality than the set obtained from X by £ iterations of the operation of power 
set: 0>(X\ 0(0(X)\ 0>(0>(0>(X)%... Thus the Borel game G(A) on the set X is 
replaced by a closed game G(B) in a huge space Y. 

d) Suppose that X = a>. If follows from the previous remarks that to prove the 
determinacy of all Borel games in coM one has (at least following Martin's proof) 
to deal with sets with cardinality at least X̂  for all countable ordinal £. In fact an 
extension of a metamathematical result of H. Friedman shows that one cannot 
prove the determinacy of all Borel games in oM without "using" such large 
cardinals. More precisely Friedman's result says that if one works in a weak system 
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of axioms for Set Theory, where all uncountable ordinals do not a priori exist 
but rich enough to speak about games and determinacy, then the determinacy of 
all ES games on co implies the consistency of the existence of the cardinal Kj. This 
was extended by Martin to show that for any countable ordinal £ the deter­
minacy of all E£ games on co implies the consistency of the existence of the 
cardinal t^. 

2.6. Determinacy of analytic games 
From now on we restrict ourselves to X = co. 
Given any class T of subsets of subsets of co(° we consider the following 

statement: 
Det (r): "Any game in T is determined" 

Thus Det (A}) is a theorem of ZFC. However for the first natural extension of this 
statement, namely Det (E{), the situation is completely different. In fact: 

a) Det (£}) is false in Godel's model L (the universe of constructive sets). 
b) Det (E}) is true if we assume the existence of a measurable cardinal. 

Of course a) proves that it is impossible to prove Det (E}) in ZFC. Whereas b) 
shows that disproving Det (E}) in ZFC — although not impossible — cannot be 
obtained without destroying one of the most well established and oldest "large 
cardinal" axioms. Thus Det(E}) appears as a reasonable extra Axiom to ZFC, 
which, as we shall see later, can provide interesting answers to some natural 
questions. Finally notice that by Proposition 2.3 Det (II}) is equivalent to Det (E}). 

In the rest of these lectures we shall not go beyond Det (E}), although more 
determinacy statements were extensively studied by logicians. Notice that even the 
determinacy of all games in coa), which is in contradiction with the Axiom of 
Choice, has been seriously considered as an extra Axiom to ZF; in fact under this 
appealing Axiom all sets behave nicely: are measurable, have the Baire Proper­
ty,... 

3 . The perfect set property 

A class r has the perfect set property if any set in T is either countable or 
contains a perfect set (or equivalently a copy of the Cantor set). It is well known 
that the class of Borel sets, and even the class of analytic sets satisfy this property. 
We shall see that this property is very linked to the determinacy of some game. 
For simplicity we shall work in the space 2°\ 

3.1. The game G*(A) 

For any A c 2a) we define a game G*(A). A run in this game goes as follows: 

I S0 SI . . . sn 

II e0 ex ... en 
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where sn e {0,1}<W and en e {0,1}. (Notice that the length of the sequence sn played 
by Player I is not fixed and can be choosen by Player I). Let: 

£ = (eo,eue2,...9 en,...) 
and 

a = s(f^e0'^sl^el^...^sn^en... 

The win condition of the game is the following: Player I wins the run iff oce A. 
It is not difficult to see that the game G*(A) can be identified with a game G(A*) 

for some set A* c XM with X = {0,1}<W. Moreover the complexity of A* in XM 

is essentially the same than the complexity of A in 2M (if A is Borel, analytic,..., 
then the same holds for A*). In particular if A is Borel the game G*(A) is 
determined. 

Theorem 3.2. Let A be an arbitrary subset in 2M 

If Player I has a winning strategy in G*(A) then A contains a perfect set. 
If Player II has a winning strategy in G*(A) then A countable. 

Proof. Suppose that Player I has a winning strategy G in G*(A) and consider the 
mapping cp : s M• a associated to all possible runs where Player II is playing freely 
some a e 2M and Player I is constructing a by following his winning strtategy G. 
Since the computation of sn+1 depends only on (e09el9e2,...,en) the mapping 
cp : 2m -» 2M is continuous. Moreover one can easily check that cp is one-to-one, so 
that K = cp(2M) is also a copy of the Cantor set. Finally, since the strategy G is 
winning for Player I then all played a's are in A, hence K c: A. 

Suppose now that Player II has a winning strategy T in G*(A). For any finite 
sequence u = (s0, su ..., sk) of {0,1}<M denote by Nx(u) the set of the points a e 2M 

such that s 0 ^ 0 ^ s r e p . . . ^ 5 ^ < ; a where e0, eu..., ek are the answers by 
T when Player I plays s0, sb ..., sk. Then define the subset Cx(u) of 2M by 

Cx(u) = {ae Nx(u): Vs e {0,1}<W a $ Cx(u~s)} 

We shall prove that Cx(u) contains at most one point and that A a D = \JCx(u). 
Since the set of finite sequences of {0,1}<W is countable, it will follow that D and 
A are also countable. 

Let u = (s0, sh ..., sk) and let a be a member of Cx(u). Denote by t the sequence 
s^e^s^e^... ^sk^ek and by ( its length. Let s(0) = 0 and e(0) be the answer by 
T to s(0) when played by Player I after s0, sl5..., sk. So a £ CT(u^s(0)), that is t -< a 
and t^S -< a. Thus e(0) 4= a„ and this means that a, = 1 - e(0). 

Now put s(1) = (1 — e(0)) and let e(1) be the answer by T to s(1) when played after 
s0, sl5..., s*. So a \ CT(u^s(1)), that is r" ( l - S) < a and r"( l - e(0'pe(1) ^ a. 
Thus e(1) #= a,+1, and this means that a /+1 = 1 — 8(1). 

In a similar way, put s^ = (1 - e(0))~(l - e(1))~...-(l - e(/'-1)) and let e^ be 
the answer to s^ when played after s0,su..., sk. So a£CT(w^sW), it is 
tT(l - e(°/p(l _ e(1))~...~(l - e^-1)) ^ a and t~(l - e(0))^(l - e(1))-\.. 
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. . .~(1 - e{j~l))^(l - e{j)) -< oc. Thus ew =t= oc,+j, and this means that ocr+j = 
1 - e^\ 

We conclude that all coordinates of a are completely determined by u and the 
strategy T, hence that Cx(u) contains only one point. 

We now prove that A cz D. Suppose that oc does not belong to D, we prove that 
there is some run compatible with T giving a as result; then since T is winning, 
a cannot belong to A. 

First, for u = 0, oce Nx(u) and oc$Cx(u). Thus there exists some s 0 e {0,1}<W 

such that a e Nx(s0). Then, for u = (s0), a $ Cx(u). Thus there exists some 
s{ e {0, l}<(° such that a e Nx(s0, s{). And we can construct inductively some infinite 
sequence (s )̂ such that, for any k, oce Nx(s0, sh..., s*). This means that the run 
where Player I plays the sk's and Player II follows T has result a. • 

3.3. Remarks: 
a) As appears clearly from the proof of Theorem 3.2 there exists an explicit 

mapping <P : T I—• (An(x)) which assigns to any strategy T for Player II a sequence 
(An) of sets, obtained by any enumeration of the countable family (Cx(u)), such that: 

1. Each An contains at most one point. 
2. If the strategy T is winning then A cz [jnAn, and hence A is countable. 
b) It is a well known fact that in Godel's universe L there are II} sets A which 

are uncountable but contain no copy of the Cantor set. For such a set A the game 
G(A*) described above is a II} game which is not determined. This shows that 
Det (£}) does not hold in L. 

c) Of course one can derive the perfect set property for Borel sets from the 
previous Theorem and the determinacy of all Borel games. However this procedure 
does not prove the same property for analytic sets. We shall now describe a variation 
of the previous game which enables one to prove the perfect set property for analytic 
sets using only the Gale-Stewart Theorem, that is a closed game. 

3.4. The game G*(A; F) 
Let A be a 2} subset of of" and F be a closed subset of 2° x oM which projects 

onto A: 

oce A <-> 3y ecDM : (oc, y)e F 

we define the game G*(A; F). A run in this game goes as follows: 

I (% to) (*i> ti) ... (s„, tn) 

II e0 ex ... en 

where sn e {0,1}<W, tneco and en e {0,1}. Let: 

e = (eo,eue2,..., en,...) 

a = s0 e0 SІ e{ .. 

7 = t<ГtC~~tn... 

n ^n • 
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The win condition of the game is the following: Player I wins the run iff (a, y) e F. 
Notice that unlike the game G*(A) which was defined for any set subset A in 2M, 
the game G*(A; F) is defined only for L[ subsets A in 2M. The second main 
difference between these two games is that G*(A; F) is always a closed game and 
so determined by the Gale-Stewart Theorem, whereas the game G*(A) is a Ej game 
if A is Si. 

Theorem 3.5. Let A be aH\ subset of 2M and F be a closed subset of 2M x coM 

which projects onto A. 
If Player I has a winning strategy in G*(A; F) then A contains a perfect set. 
If Player II has a winning strategy in G*(A; F) then A is countable. 

Proof. Let a be a winning strategy for Player I. Then there is a continuous 
mapping cp: 2M —> 2M which assigns to each se2M the sequence a, where the (s,) 
and the (t,) are the answers to s = (e0, e{,...) by a. As above, the mapping cp is 
one-to-one. Moreover, since (a, y) e F, we have a e A. So A contains the perfect 
set <p(2M). 

Conversely, if T is a winning strategy for Player II, we will say that a sequence 
w = (s0, t0, e0,..., sk_i, tk_{, ek_l) is T-legal, and we will write u e S£x iff: 

— for all; < k, e, is the answer by T to ((s0, t0), (sb t{),..., (s;, t]j). 
— there is some point (x, y) e F such that (s0^e0^s^...^sk^ek)^k < x and 

^ r . . . ^ _ i <y. 
Clearly J£?T is countable. For each u e J£?T, we denote by IVM the set 

{x: s0^e0"sl^...^sk^ek < x} 
and define the set 

EUttn = {xe Nu: 3v e i?T u < v and Vs e {0,1}<M Ve e {0,1} 

u~(s,m,e)e<£x => x £iVu~ ( w )} 

We shall show that each Eum contains at most one point and that A c_ {jue^Timeo)Eum. 
Let xeEUttn, and put w = s0^e0^s{^...^sk_i^ek_i, and / = \w\. Since there 

is a T-legal v extending u, there are x* and y* such that (x*, y*) e F, w < x* and 
t0^t{^...^tk_{^m < y*. Hence, if s® = 0 and e'0' is the answer of T to 
% su ..., si_b s<°), u~(s(°\ m, e<°)) e <£„ so vnS < x, it is x(S) = 1 - S. Like in 
the proof of Theorem 3.2, we define inductively sequences s® in {0, \}<M and 
numbers e® such that eft is the answer of T to (s0, sb . . . , sk_i, s^), and s'J+1) = 
SW^(1 _ eii))t Then o n e c a n check that u^(s^, m, e^) e JS?T and deduce that x(£ + j) 
should be equal to 1 — e^\ This shows that x is completely determined by u, m 
and T, hence that £u m contains at most one point. 

To prove that A c: {Jue<?Ximeo)Eu>rn, suppose by contradiction that there exists 
some oc e A\[jue^rim€0)EU}rn, and fix y = (tk) such that (a, y)eF. Then we can 
define inductively sequences sk such if ek is the answer by T to ((s0, t0), (sb t{),..., 
(sk, tk)), then uk = (s0, t0, e0,..., sk_{, tk_{, ek_{) is T-legal and satisfies a e NUk and 
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a$EUkttk. This means that the run where Player I plays the s '̂s and the tks> 
Player II follows T is won by Player I, a contradiction since T is winning. 

4. ^-separation 

In all the sequel the notation X « Y will mean that the topological spaces X and 
7 are homeomorphic. We shall more particularly be interested in spaces which are 
homeomorphic to Q the space of all rational numbers. We recall that a space X is 
homeomorphic to Q iff X is countable and dense in itself (has no isolated points). 

4.1. Hurewicz Theorem 
The following classical result is due to Hurewicz (1928). 

Theorem. Let Ao and A\ be two disjoint subsets of a Polish space, and suppose 
that Ao is £2. Then: 

— either there exists a Hi-set containing Ao and disjoint from A\9 

— or there exists a compact set K c Ao u A\ with K « 2° and K n A\ « Q. 
Notice that in the second alternative we also have that K n Ao & co(°. 
We shall now show that Hurewicz Theorem is linked to the determinacy of some 

game. 

4.2. The game H(Ao9 A\) 
In the sequel we identify Q with the subset of the Cantor set 2° constituted of 

all infinite sequences which are eventually null. 
Given two disjoint subsets Ao and A\ in co0) we define a game H(Ao9 A\). A run 

in this game goes a follows: 

I e0 ex ... en ... 

n 50 Si ... sn 

where sneco and en e {0,1}. Let: 

£ = (e^el9el9...9 en9...) 

a = s0 S\ ... sn... 

The win condition of the game is the following: Player I wins the run iff 

(e e Q and a e A0) or (E £ Q and a e A^) 

Theorem 4.3. Let A0 and Ax be two disjoint sets in coM. 
If Player I has a winning strategy in H(A0, A{) then there exists a T^-set 

containing A0 and disjoint from Ax. 
If Player II has a winning strategy in H(A09 A{) then there exists a compact set 

K c A0KJ Al9 with Ktt2° and K r\ Ax & Q. 
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Proof. Suppose that Player I has a winning strategy o in H(A0, A{) and consider 
the mapping cp : a i—> e associated to all possible runs where Player II is playing 
freely some a e 2M and Player I is constructing s by following his winning strategy 
G. Then cp is continuous and so S = (p~l(Q) is a £2 s e t in Q>~- And since the 
strategy a is winning for Player I, then S => A0 and S n Ax = 0. 

Suppose that Player II has a winning strategy T in H(A0, A{) and consider the 
mapping \j/ : e 1—> a associated to all possible runs where Player I is playing freely 
some 8 e 2M and Player II is constructing a by following his winning strategy T. 
Then K = il/(2a)) is a compact set, and since the strategy T is winning for Player II 
then: 

K n A0 = xl/(2M \Q) and K n ^ = ^ ( Q ) . 

So K n ylj is countable and dense in itself, hence K n A{ « Q; it follows then 
that KnAx = K « 2W. D 

Notice that the complexity of the game H(A09 A{) is essentially of the same level 
as the complexity of the sets A0 and A{. In particular since in the classical 
Hurewicz Theorem no assumption is made about the set Au one cannot derive this 
result from the previous Theorem. However as we shall see next, if we impose on 
both sets A0 and A{ to be Sj , then one can obtain interesting informations via 
games. 

4.4. The game H(A09 Ax; F0, F-) 
Let A0 and Ax be two disjoint H\ subsets of coa), and let F0 and F{ be two closed 

subsets of a>wx(Dto which project onto A0 and Ax. A run in the game 
H(AQ, AX\ FQ, F{) goes as follows: 

I (s-ht_{) (s09t0) (sl9tl) ... (smtn) 

II e0 ex ... en ... 

where sn, tneco and en e {0,1}. Let: 

£ = (eo,el9e29...9 en9...) 

& = (so> s 1 ? . . . , s „ , . . . ) 

y = ( to> t i , . . .> tn-.) 

Let us define trees T0 and Tj on {0,1} x coby letting, for s e {0,1}<0} and « e co<0) 

(s, w) e 7J <=> |s| = |w| and 3(a*, y*) e F( with s -< a* and u -< 7* 

In order to win, Player I has to obey to the following rules for every k: 
— if ek = 0 and if 

{foji,-.-,./,}= {/ <k:ej = 0} 
then 
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«%, sl9..., sp}, (tj0, th,..., tjp)) e F! 

— if ek = 1 and if ep = ep+l = ... = ek = 1 with p = 0 or ep_x = 0, then 

( ( % 8b •••> 5fc-p)5 ^ 5 ^p+i> •••5 O ) e ^o 

And Player EI wins if for some k these rules are not satisfied. It is clear that the 
game H(A0, Ax; F0, F^ is a closed game. 

Theorem 4.5. Let A0 and Ax be two disjoint analytic sets in of* and let F0 and 
F! be two closed subsets of Co"0 x co(° which project onto A0 and A{. 

If Player II has a winning strategy in H(A0, Ax; F0, F{) then there exists a T^-set 
containing A0 and disjoint from A{. 

If Player I has a winning strategy in H(A0, A{; F0, F^ then there exists 
a compact set K a A0KJ AU with K « 2W and K n Ax « Q. 

Proof. Suppose that Player I has a winning strategy o in H(A0, Ax; F0, F^ and 
consider the mapping \j/ : s \—• a associated to all possible runs where Player II is 
playing freely some e e 2W and Player I is constructing a by following his winning 
strategy o, and ignoring the sequence y, as well as s_x. Then exactly as in the proof 
of Theorem 4.3 one can check that K = ij/(2ai) has all the desired properties: if 
e e Q, Player II constructs a branch of the tree T{, hence ij/(s) e Ax; and if s $ Q, 
Player II constructs a branch of T0, hence {//(s) e A0. 

Now if we suppose that Player II has a winning strategy T the arguments of 
Theorem 4.3 cannot be resumed, but we shall define a countable family of closed 
sets whose union separates A0 from Av 

Let a e 2 w . We say that a sequence u = {t0, th..., tn) is (T, a)-legal and write 
u e J5^a if the run where Player II follows T and I plays ((0, 0), (a0, t0), (a1? t{),..., 
(a„, tn)) is legal up to n. Let us then denote by Q(U) the answer en + 1 by T to 
((0,0), (80, £0), (sh t{),..., (sn, tn)), and 

Cu= [cue coM : u e JS >̂a and Q(U) = 1} 

C = {a: 3u a e Cu and Vv Vm a e Cv and v^m e J2^a ^> 3w > lOrc a e Cw} 

It is clear that, for any u, the set Cu is clopen. Thus C is II". We want to prove 
that C is a E^-set separating A0 from Ax. We have to prove that C separates Ax from 
A0, that is C n A0 = 0 and C n Ax = 0. 

Suppose a e Ax n C. We shall construct a run won by Player I against T, 
a contradiction. Fix some y such that (a, y) e F{. We distinguish two cases: 

— If for every u <x$Cu, then for every k, yr/c e S£T>X since T never answers 1. 
Hence Player II wins against T playing (a, y). 

— If there is v such that a e Cv, then fix m such that v^m is (T, a)-legal but for 
any extension w of \T*m a does not belong to Cvv. Then Player II plays a and 
v^mT^y and this is legal since Q(V) = 1 and T answers 0 each time after this move, 
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so nothing more is needed with respect to T0. Thus each position of Player I is 
legal and Player II looses. 

Now suppose a e A0 n C and fix y such that (a, y) e F0. There is a sequence u0 of 
minimal length k0 such that a e CMo, that is Q(U0) = 1; but, by minimality, this move 
is the first one where T answers 1. So Player II can play sko and m0 = y(0); then 
(s0, m0) G 7Q and the move is legal. 

Since u0^m0 is (T, a)-legal and cueC there is a i^ of minimal length kt > k0 

extending u0^m0 such that Q(U{) = 1, and, by minimality, it is the second time T 
answers 1. So Player II is expected to play skl and m{ such that ((s0, s{), (m0, m^ e T0, 
and Player II can choose m{ = y(i). Repeating this argument, Player I can play 
legally, and wins against T. This completes the proof. • 

Remark 4.6. 
There is an explicit mapping $ : T -• (En(x)) which assigns to each strategy T for 

Player II a countable family of closed sets in coM such that the union of the -E„(T)'S 

separates A0 from A{ whenever T winning in the game H(A0, A{; F0, F^. 

5. The strategic basis Theorem for closed games 

We consider only games on co. 

5.1. Families of games 
We shall now present a theorem of Martin which roughly speaking, asserts the 

following: In a closed game G(A), if Player II (who is trying to go in the open 
set A) has a winning strategy, then he has a winning strategy depending in a Borel 
way on A. 

To give a precise statement we shall replace the set A by a set A(p) depending 
on some parameter p. Or in other terms we fix some auxiliary space P and a set 
A c P x coM, so that for all p e P the section A(p) is a subset of com and we can 
consider the the game GA(p) = G(A(p)). Notice that if A is closed then all the 
games G(A(p)) are also closed. 

5.2. The space of strategies 
For simplicity we shall consider only strategies for Player II. Let S{ (respectively 

S2) denote the set of all finite sequences in co with odd (respectively even) length. 
A strategy for Player II can be viewed as a mapping T : S{ -> S2 of the form: 

11—• x(i) = t^a 

A sequence (an) is compatible with T if: 

T«ao, al9..., a2n}) = « % al9..., a2n, a2n+l}) 

So the set E of all strategies (for Player II) can be viewed as a subset of the 
space SQ1. We endow this space with the product topology of the discrete topology 
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on S0. Thus So1 « coM, and it is easy to see that E is a closed subset of this space. 
Hence S is a Polish space. 

Theorem 5.3. Let P be a Polish space and Abe a closed subset ofP x coM. Then 
a) The set Q = {peP: such that Player II has a winning strategy in GA(p)} is U\. 
b) There exist <P{ and *P{ two Ej subsets of P x £ such that for all peQ, 

$i(p) = $i(p) = {(p(p)} where (p(p) is a winning strategy for Player II in GA(p). 
c) If Q is Borel then there exists a Borel mapping (p:Q-+ll such that for all 

peQ, q>(p) is a winning strategy for Player II in GA(p). 
Of course c) is an immediate consequence of b). In fact the most useful case 

will be for us the case where Q = P. The proof of a) can be derived from the 
proof of the Gale Stewart Theorem, where it follows from the arguments that in 
a closed game G(B), the question whether Player II has a winning strategy can be 
reduced to the question whether some tree — depending continuously on B — is 
well founded. The proof of b) requires some nontrivial descriptive arguments. 

We now give several applications of the previous Theorem. 

Theorem 5.4. Let P be a Polish space and A be a 2 J subset of P x 2M. Then 
a) The set Q = {pe P : A(p) is countable} is U\. 
b) If A(p) is countable for all p e P (i.e. if Q = P), then A is the union of 

a countable family of Borel graphs (in particular A is Borel). 
To prove these results, fix a closed set F in P x oM x 2M which projects on A. 

Then consider the family of closed games G*(A(p), F(p)) for pe P. Then the 
Theorem is an immediate consequence of Theorem 3.5 and Theorem 5.3 (see 
Remark 3.3.a). 

In a "similar" way, using Theorem 4.5 and Remark 4.6, one can prove the 
following: 

Theorem 5.5. Let P be a Polish space, and let A0 and Ax be two disjoint 
analytic sets in P x coM. Then 

a) The set Q = {pe P : 3C a 1%-set with C 3 A0(p) and C n A{(p) = 0} is U\. 
b) If for all p e P there exists a E^-set containing A0(p) and disjoint from Ax(p) 

(i.e. ifQ = P), then there exists a Borel set B containing A0 and disjoint from Ax, 
and of the form B = [JnBn where each Bn is a Borel set and all its sections Bn(p) 
are closed. • 

The main argument in this proof is the following observation: If <P is the 
mapping defined in Remark 4., then for all n the set {(a, T) e coM x S : a e -En(̂ )} is 
closed in the space coM x S. 

Corollary 5.6. If B is a Borel set in P x oM with £2 sections then B = \JnBn 

where each Bn is a Borel set with closed sections. 
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Compact covering 

Consider a set X cz 2(° x 2(° and Y = n(X) cz 2(° its projection on the first factor. 
We shall denote by 

nx : X -> y 

the restriction of the projection mapping to X. We are interested in the comparison 
of the following two properties for / = nx: 

(CC): "VL compact cz y, 3K compact cz X such that f(K) = L" 

and 

(IP): "~X' cz X such that f(Xf) = Y and VL compact cz y, 

the set X' nf~l(L) is compact." 

the mapping / is said to be compact covering if it satisfies (CC) and inductively 
perfect if it satisfies (IP). Notice that since / is continuous, (IP) states exactly 
that the restriction of / to some (necessarily closed) subset of X is onto and 
perfect. 

Clearly "(IP) => (CC)"; the problem whether the converse holds was first raised, 
for some particular cases, by E. Michael. In fact the implication "(CC) => (IP)" is 
now known to be true under several different supplementary hypothesis among 
which: 

(H0): "X is Polish" 

or 

(H^: - y is K ; ' 

The case (H0) was proved several years ago (1972) independently by J. P. R. 
Christensen and the second author, and (Hx) more recently (1990) by A. V. 
Ostrovsky and in the particular (already non-trivial) case where Y is countable by 
W. Just and H. Wicke. Notice that none of these two cases can be derived from 
the other; moreover the methods of their proofs are completely different. 

On the other hand, one can construct counter-examples to "(CC) => (IP)" using 
the Axiom of Choice; but in these examples the spaces X and Y do not have nice 
definability properties. It is then natural to ask whether the implication 
"(CC) => (IP)" holds under the hypothesis: 

(H): "X and Y are Borel." 

or under the weaker hypothesis: 

(H'): "-Y is Borel." 

In fact, assuming (Det (2})), we shall prove the following. 
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Theorem 6.1. (Det (£{)). Suppose that X is IT}, and that Y is either Ilj or Lj. 
Then nx : X —> y w compact covering if and only if nx is inductively perfect. 

Corollary 6.2. (Det (El)). Suppose that X is Borel. Then nx : X -> 7iy compact 
covering if and only if nx is inductively perfect. 

These results will be obtained by considering the following game. 

6.3. The game GC(X, Y) 
For any X c 2 f f l x 2 M and Y c 2°\ we define a game GC(X, Y). A run in this 

game is always infinite and goes as follows: 

1 lC0 K\ ... Kn_\ Kn ... 

n sx s 2 . . . sn ... 

where kn e {0,1} and 0 4= Sn c {0,1}" is such that 7; = (J Sp is a tree (where 
0<p<n 

by convention 50 = {0}).A run in this game will be identified with the sequence 
(kn, Sn)new, although S0 = {0} is not formally "played" by Player II. Let: 

y = (K)neM and T= \jTn= \JSn. 
new new 

Player I wins the run if: 

yeY and 3z e [T] such that x = (y, z) <£ X . 

Notice that there is no relation a priori between X and Y, but obviously if 
y <£ n(X) then Player I wins the game. 

Theorem 6.1 is now an immediate consequence of the following result. 

Theorem 6.4. If Player I has a winning strategy in GC(X, Y), then nx is not 
compact covering. 

If Player II has a winning strategy in GC(X, Y),fhen nx is inductively perfect. 

Proof. Suppose that Player I has a winning strategy, and let L be the set of all 
possible y = (kn)n€a) e 2M played by G (in all possible runs). Since Player II has at 
each step only finitely many possible choices (< 22") then L is compact, and since 
G is winning then necessarily L c Y. 

Suppose that L c n(K) for some compact set K a X. For any ue2<M let: 

S(u) = {ve 2<M: \v\ = \u\ and Kn(NuxNv) 4= 0}. 

Consider the run where Player I follows G and Player II answers Sn = S(un) where 
un = (k0,..., kn) is already played by Player I; then (with the notations of 6.1) we 
have: 

yeLczY and {y} x [T] <z K a X 

so Player II wins the run which is a contradiction. • 
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Suppose now that Player II has a winning strategy T. For any y e 2M let T(y) 
denote the tree constructed by Player II in the run where Player I plays y = (kn)n€M 

and Player II follows T. Then 

H ={(y,z)e2<»xT>:ze[T(y)]} 

is clearly closed (compact) in 2W x 2M and since T is winning, then for any y e Y 
we have: 

-*, = {y} *[%)]<=-*'• • 
Remark 7.1. 
Assuming the existence of an uncountable IIj set which contains no perfect 

subset, we construct in [2] a U\ set X cz 2a) x 2(1) such that Y = n(X) is also n j and 
nx is compact covering but not inductively perfect. 
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