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0. Introduction

The aim of these lectures is to give through a sample of three examples, how
can one use game determinacy in problems where games are not involved a priori.
We hope that the variety of these examples will convince the reader in the interest
of such a procedure.

The recipe is the following: If you are interested in proving some statement of
the form *(4) = (B)”, introduce some game G with the following properties:

1. If Player I has a winning strategy in G then (non A) holds.

2. If Player II has a winning strategy in G the (B) holds.

Then “(4) = (B)” is equivalent to the the determinacy of the game G. Of course the
recipe does not give you any indication how to invent the game G... On the other
hand not all games are determined. But since as we shall see “Borel games” are deter-
mined, this procedure will be more successful if you deal with “nice” properties of
Borel sets. However as we shall see in one of the examples “natural” properties of
Borel sets might create non Borel games. We shall also describe the main classical
trick to produce Borel games, and even closed games, when dealing with analytic sets.

But more than a nice approach for solving concrete mathematical problems, we
shall show how the proof of some result using a closed game has interesting
descriptive consequences.

These lectures should be considered as an invitation to game Theory. For a more
detailed exposition we refer the reader to [6] for the general part, and to [4] and
[2] for the particular examples discussed later.

1. Preliminaries

1.1. General notations
We denote by w the set all natural integers.
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If A is a subset of a fixed space X we denote by A the complement of 4 in X.
If A is a subset of a product space X x Y and x € X, we define the section A(x)
and the fiber A, by:

Ax) = {ye Y: (x,y)e 4}
A, = {x}x A(x).
Thus A(x) = Y and 4, = X x Y.

and

1.2. Sequence spaces

If X is any abstract set we denote by X, X <“, X =" the set of all infinite, finite,
finite of length < n, sequences in X.

The length of s € X< is denoted by [s]; the concatenation of t € X < after s by
s™t, and when t = {a) we also write st = s"a. The extension relation is
denoted by <.

The space X“ will be endowed with the product topology of the discrete
topology on X. This topology is generated by the sets of the form N, = {ae X*:
s < o} with s € X=°,

1.3. Trees

A tree T on the set X is a subset of X< which is hereditary for < (i.e.
satisfying: (s < tand te T) = s e T)).

A branch of T is an infinite sequence o € X® such that for all n € w the finite
sections oy, = <o(0), ..., a(n — 1)) are in T.

The set of all branches of a tree T is denoted by [T]. It is easy to see that [T]
is a closed subset of X*“. Conversely any closed subset of X* can be represented
(not in a unique way) as the set of all branches of some tree.

If T has no branch (i.e. if [T] = 0 the tree T is said to be well-founded.

1.4. Borel sets

In any topological space we denote by X? and II} the Borel additive and
multiplicative classes, where £ is any countable ordinal.

Thus X{ and IT{ are just the families of open sets and of closed sets. For ¢ = 2
we also use the classical notations £ = F, and I = G;.

If X is a separable and metrizable space, the Borel class of X is defined as the
class of X in some metric compactification E of X. We recall that the class of
X is independent from the choice of the compactification E.

1.5. Analytic and coanalytic sets

Unlike for Borel sets that we shall consider in non separable spaces, we shall
consider analytic and coanalytic sets only in the classical context of Polish spaces.
We denote by X the class of analytic sets, and by IT} the class of coanalytic
subsets. :

We also denote, in the context of Polish spaces, by A} the class of sets which



are simultaneously analytic and coanalytic. By Souslin Theorem A} is exactly the
class of Borel sets.

2. Game determinacy

2.1. Main conccepts

By game we mean an infinite game with perfect information. In such a game,
two players, Player I and Player II, choose alternatively an element in some fixed
abstract set X. A run in the game can thus be identified with an infinite sequence
(@u)new € X, where the ay,’s are choosen by Player I and the a,,,,’s are choosen
by Player II. Any run in the game is won by one or the other player according to
some fixed rule, also called the win condition. The game is completely defined by
its win condition.

Given any set A = X we denote by G(A) the game for which 4 is exactly the
set of all winning runs for Player I (and so A is exactly the set of all winning runs
for Player II).

A game is said to be determined if one of the players has a winning strategy in
the game. Clearly both players cannot have a winning strategy in the same game,
hence when the game is determined exactly one of the players has a winning
strategy. The following simple result makes a crucial use of the Axiom of Choice.

Proposition 2.2. (AC) There exist games which are not determined.

Proof. Take X = {0, 1} and consider the set & of all possible (not necessarily
winning) strategies for Player I or Player II in all possible games on X. (Notice
that the notion of strategy is independent of the win condition). Then clearly
card(¥) = ¢ is the continuum. Fix some enumeration of the elements of
& = {05 & < c}.Denote by R the set of all infinite runs compatible with o, that
is all runs in which the concerned player is following the strategy o;. Since the
opponent player has complete freedom in his moves, the is clear that card(R;) = c.
Then by a standard transfinite construction one can find a set A < X” such that
forall ¢ < ¢

AnR;+0 and ANR;*0

Obviously for such a set 4 the game G(A) is not determined. [

Fix a set 4 < X“ and consider the games G(A) and G(A). In the game G(4)
Player I is trying to construct a point in A and Player II is trying to construct
a point in A, whereas the situation is reversed in the game G(.l). However since
the players are not in symmetric positions (Player I always starts the game!), one
cannot in general deduce from a winning strategy for one of the players in the
game G(A), a winning strategy for the other player in the game G(A): This is
clearly the case if X = {0, 1} and A is the set of all sequence starting by 0, so that
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A is the set of all sequences starting by 1. However this lack of symmetry is
balanced by the following general result:

Proposition 2.3. Let of < P(P(X")) and o/ = {4 A€ o). Suppose that the
family o/ is stable under taking inverse images by continuous transformations from
X® into X°.

If all games in of are determined then all games in o are also determined.

Proof. Fix B = 4 in &/ with 4 € /. By the hypothesis, for all x € X the set
A* = {oe X°: x"a € A} is also in /. Then the conclusion follows directly from
the next obvious facts:

Fact 1. If for some x, Player Il has a winning strategy in G(A") then Player I
has a winning strategy in G(B).

Fact 2. If for all x, Player I has a winning strategy in G(A") then Player II has
a winning strategy in G(B).

2.4. Determinacy of closed games
We recall that the set X® is always endowed with the product topology of the
discrete topology on X.

Theorem. (Gale and Stewart) If A is open or closed in X®, then the game G(A)
is determined.

Proof. Applying the previous result to the family of all open sets in X, it is
enough to prove the Theorem when A is open.

Fix A an open subset of X“ and suppose that Player I has no winning strategy
in the game G(A). We shall prove that Player II has a winning strategy in this
game.

Let B = A and for any sequence s in X of even length (and in particular for the
empty sequence) we define as in the previous proof the set:

A = {aeX?: s ae A}.

Consider the set S of all s with even length for which Player I has no winning
strategy in the game G(A°). Notice that by assumption @ € S and so S is nonempty.

Fact. Vse S, VxeX, dJyeX:s"x"yeSs.

Proof. If not, fix some se S and x € X such that for all y e X Player I has
a winning strategy o, in G(ASA"A”). Then this defines a winning strategy ¢ for
Player I as follows: At the first move Player I plays x, = x; next if Player II
plays for the second move x; = y then Player I answers x, = O'}.(Q)); and more
generally if Player II has played (xi, X3, ..., X,41) then Player I answers
Xons2 = OyX1, X3, ..y X2n41). This strategy is clearly winning for Player I in G(A4°),
so s ¢ S which gives the contradiction. []
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Coming back to the proof of the Theorem we shall construct a winning strategy
1 for Player II in G(4). We define t informally by describing a run (x,) where
Player II follows this strategy 7. If Player I plays x, at the first move, then apply
the Fact to s = P € S, x = x, to find y = x, such that (x,, xl) € S; then if Player I
plays x, at the next move, apply again the Fact to s = (xo, X;) € S, x = x; to find
y = X3 such that (xo, X1, X2, X3) € S, etc ... To show that this strategy is winning for
Player I in G(A), we have to check that in such a run o = (x,) € A. We again argue
by contradiction: If « € A4, then since A is open we could find a finite sequence of
even length s < « such that N, < A; then it follows from this inclusion that in the
game G(A’) any strategy for Player I is winning, and in particular that s ¢ S; but
by construction we also have that s = (Xo, X1, X;..., X2,41) € S. [

2.5. Determinacy of Borel games

The Gale-Stewart Theorem (1953) is the first general result on game deter-
minacy. It was extended by P. Wolfe (1955) to the case of L) games and later by
M. Davis (1964) to the case of X3 games. However the general Borel case that we
shall discuss below was proved much later by D. A. Martin (1975).

Theorem. (Martin) If A is Borel in X, then the game G(A) is determined.

We shall not give the proof of this result, and restrict ourselves to the following
observations:

a) We recall that all Borel classes satisfy the hypothesis of Proposition 2.3, so
that the determinacy of X games is equivalent to the the determinacy of IT{ games.
So it might be tempting to try to derive Martin’s Theorem from a general stability
result by proving for example that the family of sets A for which the game G(A)
is determined is stable by countable union; but this is simply false in general.

b) To prove the determinacy of the game G(A) for a given Borel set 4 in X*,
Martin introduces a game G(B) where B is now a closed subset of some new space
Y®. These two games are linked in such a way that from any winning strategy of
any of the Player in the game G(B) (which is determined by Gale-Stewart), one
can derive a winning strategy for the same Player in the game G(A).

¢) The game G(B) is obtained by a transfinite inductive construction, depending
on the Borel class of the set A. More precisely, if 4 is of class £ (a countable
ordinal) then the set Y (constructed in Martin’s proof) is essentially of the same
cardinality than the set obtained from X by £ iterations of the operation of power
set: Z(X), 2(P(X)), ?(?(#(X))), ... Thus the Borel game G(4) on the set X is
replaced by a closed game G(B) in a huge space Y.

d) Suppose that X = w. If follows from the previous remarks that to prove the
determinacy of all Borel games in w” one has (at least following Martin’s proof)
to deal with sets with cardinality at least N; for all countable ordinal £. In fact an
extension of a metamathematical result of H. Friedman shows that one cannot
prove the determinacy of all Borel games in ®” without “using” such large
cardinals. More precisely Friedman’s result says that if one works in a weak system
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of axioms for Set Theory, where all uncountable ordinals do not a priori exist
but rich enough to speak about games and determinacy, then the determinacy of
all £} games on  implies the consistency of the existence of the cardinal ¥,. This
was extended by Martin to show that for any countable ordinal & the deter-
minacy of all X} games on o implies the consistency of the existence of the
cardinal N..

2.6. Determinacy of analytic games

From now on we restrict ourselves to X = o.

Given any class I' of subsets of subsets of w® we consider the following
statement:

Det (['): “Any game in I is determined”
Thus Det (A{) is a theorem of ZFC. However for the first natural extension of this
statemnent, namely Det (X]), the situation is completely different. In fact:

a) Det (2{) is false in Godel’s model L (the universe of constructible sets).

b) Det (X]) is true if we assume the existence of a measurable cardinal.
Of course a) proves that it is impossible to prove Det (E}) in ZFC. Whereas b)
shows that disproving Det (£}) in ZFC — although not impossible — cannot be
obtained without destroying one of the most well established and oldest “large
cardinal” axioms. Thus Det (2{) appears as a reasonable extra Axiom to ZFC,
which, as we shall see later, can provide interesting answers to some natural
questions. Finally notice that by Proposition 2.3 Det (IT}) is equivalent to Det (X}).

In the rest of these lectures we shall not go beyond Det (E{), although more
determinacy statements were extensively studied by logicians. Notice that even the
determinacy of all games in @®, which is in contradiction with the Axiom of
Choice, has been seriously considered as an extra Axiom to ZF; in fact under this
appealing Axiom all sets behave nicely: are measurable, have the Baire Proper-

ty, ...

3. The perfect set property

A class I' has the perfect set property if any set in I' is either countable or
contains a perfect set (or equivalently a copy of the Cantor set). It is well known
that the class of Borel sets, and even the class of analytic sets satisfy this property.
We shall see that this property is very linked to the determinacy of some game.
For simplicity we shall work in the space 2“.

3.1. The game G*(4)
For any A = 2” we define a game G*(A). A run in this game goes as follows:

I So S1 e Sy

II € e .. e,
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where s, € {0,1}<“ and e, € {0,1}. (Notice that the length of the sequence s, played
by Player I is not fixed and can be choosen by Player I). Let:

&€= (eo, €, €3, ..., €, ...)
and

~a

o =5y e S e ... s, e,...

The win condition of the game is the following: Player I wins the run iff o € A.

It is not difficult to see that the game G*(A) can be identified with a game G(A*)
for some set A* = X“ with X = {0,1}<“. Moreover the complexity of A* in X*
is essentially the same than the complexity of A in 2 (if 4 is Borel, analytic, ...,
then the same holds for 4*). In particular if A is Borel the game G*(4) is
determined.

Theorem 3.2. Let A be an arbitrary subset in 2%
If Player I has a winning strategy in G*(A) then A contains a perfect set.
If Player II has a winning strategy in G*(A) then A countable.

Proof. Suppose that Player I has a winning strategy o in G*(A4) and consider the
mapping ¢ : ¢ — « associated to all possible runs where Player II is playing freely
some ¢ € 2” and Player I is constructing o by following his winning strtategy o.
Since the computation of s,,, depends only on (e, ey, e, ..., €,) the mapping
@ :2” — 2“ is continuous. Moreover one can easily check that ¢ is one-to-one, so
that K = ¢@(2“) is also a copy of the Cantor set. Finally, since the strategy ¢ is
winning for Player I then all played a’s are in A, hence K < A.

Suppose now that Player II has a winning strategy t in G*(A4). For any finite
sequence u = (so, Sy, ..., 5¢) of {0,1}* denote by N (u) the set of the points a € 2°
such that sy ey s, e, ... s, e, < o where e, e, ..., e, are the answers by
7 when Player I plays sy, sy, ..., 5;. Then define the subset C,(u) of 2 by

C(u) = {oe N(u): Vs € {0,1}** a ¢ C[u"s)}

We shall prove that C,(u) contains at most one point and that A = D = [ JC/(u).
Since the set of finite sequences of {0,1}<” is countable, it will follow that D and
A are also countable.

Let u = (so, 5, ..., 5¢) and let o be a member of C,(u). Denote by ¢ the sequence
S0 eo sy e, ... "5 ey and by ¢ its length. Let s© = @ and € be the answer by
1 to s when played by Player I after s, sy, ..., s, S0 & ¢ C,(u™s9), that is t < o
and t™e® K o Thus e % «,, and this means that o, = 1 — €,

Now put s = (1 — €) and let el!) be the answer by t to s) when played after
Sos Sty +-vr S S0 a0 ¢ C(u™sW), that is (1 — €%) < o and (1 — ) e X a.
Thus e + «,,,, and this means that o, ,; = 1 — &),

In a similar way, put s¥) = (1 — e®)™(1 — e®W)™... (1 — V=) and let ) be
the answer to s¥) when played after sg,sy,..., 5. SO a¢ C,(u"s(j)), it is
(1 — )1 —e) (1 — eV ) <a and (1 — )1 — e
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...’“(10}— =) (1 — eV)) K o. Thus e + a,,;, and this means that a,,; =
1 — évi,

We conclude that all coordinates of a are completely determined by u and the
strategy T, hence that C,(u) contains only one point.

We now prove that A < D. Suppose that a does not belong to D, we prove that
there is some run compatible with 7 giving o as result; then since 7 is winning,
o cannot belong to A.

First, for u = @, o€ N(u) and o ¢ C,(u). Thus there exists some s, € {0,1}<*
such that a€ Ns)). Then, for u = (so), a¢ C(u). Thus there exists some
s1 € {0,1}<“ such that o € N(so, s1). And we can construct inductively some infinite
sequence (s;) such that, for any k, o€ N(so, sy, ..., sx). This means that the run
where Player I plays the s,’s and Player II follows 7 has result a. [

3.3. Remarks:

a) As appears clearly from the proof of Theorem 3.2 there exists an explicit
mapping & : T+ (4,(t)) which assigns to any strategy t for Player II a sequence
(A4,) of sets, obtained by any enumeration of the countable family (C,(u)), such that:

1. Each A, contains at most one point.

2. If the strategy 7 is winning then 4 < U,, A,, and hence A4 is countable.

b) It is a well known fact that in Godel’s universe L there are I} sets 4 which
are uncountable but contain no copy of the Cantor set. For such a set A the game
G(A*) described above is a IT; game which is not determined. This shows that
Det (1) does not hold in L.

c) Of course one can derive the perfect set property for Borel sets from the
previous Theorem and the determinacy of all Borel games. However this procedure
does not prove the same property for analytic sets. We shall now describe a variation
of the previous game which enables one to prove the perfect set property for analytic
sets using only the Gale-Stewart Theorem, that is a closed game.

3.4. The game G*(4; F)
Let A be a X} subset of w” and F be a closed subset of 2“ x w® which projects
onto A:
x€A < Fyew”:(0y)eF

we define the game G*(4; F). A run in this game goes as follows:
I (S0 t0)  (St) oo (Swtw)
I € e ... e,
where s, € {0,1}<%, t,€ w and e, € {0,1}. Let:
e = (eq, €1 €35 vey Eny -.)

o =5 e s e .75, e,..

Y=t
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The win condition of the game is the following: Player I wins the run iff (oc, y) eF.
Notice that unlike the game G*(4) which was defined for any set subset 4 in 2,
the game G*(A4; F) is defined only for I subsets A in 2. The second main
difference between these two games is that G*(4; F) is always a closed game and
so determined by the Gale-Stewart Theorem, whereas the game G*(A) is a X} game
if A is X}.

Theorem 3.5. Let A be a X} subset of 2° and F be a closed subset of 2° X »®
which projects onto A.

If Player I has a winning strategy in G*(A; F ) then A contains a perfect set.

If Player Il has a winning strategy in G*(A; F ) then A is countable.

Proof. Let o be a winning strategy for Player I. Then there is a continuous
mapping ¢ : 2° — 2 which assigns to each ¢ € 2 the sequence o, where the (s,-)
and the (t;) are the answers to ¢ = (e, €y, ...) by o. As above, the mapping ¢ is
one-to-one. Moreover, since (oc, y) € F, we have o€ A. So A contains the perfect
set ¢(2°).

Conversely, if 7 is a winning strategy for Player II, we will say that a sequence
u = (So, o, €0y --» Sk_1> tk_1, €x—1) 18 T-legal, and we will write u € %, iff:

— for all j < k, e; is the answer by 7 to ((So, to), (51> £1)s -+ (Sj £))-

— there is some point (x, y) € F such that (s; ey s, ... "5 ey < X and
t ot T Tt < Y.

Clearly %, is countable. For each u € %, we denote by N, the set

{x:507 e "5 T ey < x}
and define the set

E,n={xeN,:veZu<v and Vse{0,1}**Vee{0,1}
u(s,me)e %, = X ¢ Nusmo)

We shall show that each E, ,, contains at most one point and that A < U,,e Z mewbum

Let xe E, ,, and put w = sy"ey sy ... " S,_1" €;_;, and £ = |w|. Since there
is a t-legal v extending u, there are x* and y* such that (x*, y*) € F,w < x* and
t ot Tt "m < y*. Hence, if s@ =0 and e® is the answer of t to
50> St -+es Sk, SO, 4 (5O, m, e9) € £, s0o wel® K x, it is x(¢) = 1 — €. Like in
the proof of Theorem 3.2, we define inductively sequences s in {0,1}<‘” and
numbers e!) such that e is the answer of 7 to (s Sty --v5 Sk—1 s¥), and sU+Y =
s¥(1 — e%). Then one can check that u™(s%, m, &%) € %, and deduce that x(¢ + j)
should be equal to 1 — €Y. This shows that x is completely determined by u, m
and 7, hence that E, ,, contains at most one point.

To prove that A < Uue #.mewbym Suppose by contradiction that there exists
some o € A\ | Juez, mewEum and fix y = (t;) such that (o, y) € F. Then we can
define inductively sequences s; such if e is the answer by 7 to ((So, o), (s1, £1), ---»
(S t)), then wy, = (so, to, €0y --+» Sk—1» te—1, €x—1) is t-legal and satisfies a € N,, and
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o« ¢ E, .- This means that the run where Player I plays the s,’s and the t;’s
Player II follows 7 is won by Player I, a contradiction since t is winning.

4. X)-separation

In all the sequel the notation X = Y will mean that the topological spaces X and
Y are homeomorphic. We shall more particularly be interested in spaces which are
homeomorphic to Q the space of all rational numbers. We recall that a space X is
homeomorphic to Q iff X is countable and dense in itself (has no isolated points).

4.1. Hurewicz Theorem
The following classical result is due to Hurewicz (1928).

Theorem. Let Ao and A, be two disjoint subsets of a Polish space, and suppose
that Ao is X3. Then:

— either there exists a X3-set containing Ao and disjoint from Ay,

— or there exists a compact set K < Aov AiwithK = 2°and K n A1 = Q.

Notice that in the second alternative we also have that K n Ao & o®.

We shall now show that Hurewicz Theorem is linked to the determinacy of some
game.

4.2. The game H(Ao, A1)

In the sequel we identify Q with the subset of the Cantor set 2 constltuted of
all infinite sequences which are eventually null.

Given two disjoint subsets Ao and A in @” we define a game H(Ao, 41). A run
in this game goes a follows:

I e € ... e, ..
I So S| ... Sy
where s, € @ and e, € {0,1}. Let:

e = (e €1, € .es Epy ...)

~ o~

o =5y 8 ...” S,...
The win condition of the game is the following: Player I wins the run iff
(e @ and aedy)) or (¢¢Q and aeA4)

Theorem 4.3. Let Ay and A, be two disjoint sets in .

If Player I has a winning strategy in H(Ao, A)) then there exists a X-set
containing A, and disjoint from A,.

If Player II has a winning strategy in H(Ao, Al) then there exists a compact set
KcAyu A, withK ~2°and K n A; = Q.

16



Proof. Suppose that Player I has a winning strategy o in H(A,, Al) and consider
the mapping ¢ : a+> ¢ associated to all possible runs where Player II is playing
freely some o € 2” and Player I is constructing ¢ by following his winning strategy
o. Then ¢ is continuous and so S = ¢~'(Q) is a X set in w”. And since the
strategy ¢ is winning for Player I, then S o Ay and S N 4, = 0.

Suppose that Player II has a winning strategy t in H(4o, 4,) and consider the
mapping V¥ : e — o associated to all possible runs where Player I is playing freely
some ¢ € 2* and Player II is constructing o by following his winning strategy 7.
Then K = |//(2“’) is a compact set, and since the strategy 7 is winning for Player II
then:

Knd,=y(2°\Q and Kn 4, =y(Q).
So K n A, is countable and dense in itself, hence K N A; ~ Q; it follows then
tht KN4, =K=2 O

Notice that the complexity of the game H(A,, A,) is essentially of the same level
as the complexity of the sets A, and A,. In particular since in the classical
Hurewicz Theorem no assumption is made about the set A;, one cannot derive this
result from the previous Theorem. However as we shall see next, if we impose on

both sets 4, and A, to be X}, then one can obtain interesting informations via
games.

4.4. The game H(AQ, Al; Fo, Fl)
Let A, and A, be two disjoint I} subsets of w®, and let F, and F, be two closed

subsets of w“xw” which project onto A4, and A,. A run in the game
H(Ay, A; Fo, F)) goes as follows:

I (sopto)  (Soto)  (s1.t1) o (5w )
II e e ... e,
where s,, t, €  and e, € {0,1}. Let:
e = (eo, €1, €5, . €py -..)
o = (S0, Sty +evs Spy-er)
P = (to, Ly vevs Ly oe.)
Let us define trees Ty and T, on {0,1} X wby letting, for s {0,1}*” and u € <
(su)eT, < |sl=|ul and 3I(a*,7*)eF; with s<o* and u<y*

In order to win, Player I has to obey to the following rules for every k:
— if ¢, = 0 and if

{os jis s Jp} = {j < k: ;= 0}
then
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(<&)’ Sl) ey Sp>1 <tjio, tjp ceey tj‘,>) € ’111

— ife,=1andife,=¢,,y = ... = ¢ =1withp =0ore,_; =0, then

(<&)a Spy eees sk—p>, <tp, tp+l, ceey tk>) € ’I(‘)

And Player II wins if for some k these rules are not satisfied. It is clear that the
game H(Ay, A;; F, F)) is a closed game.

Theorem 4.5. Let Ay and A, be two disjoint analytic sets in w® and let F, and
F, be two closed subsets of w® x w® which project onto A, and A,.

If Player II has a winning strategy in H (Ao, Ay Fo, F ,) then there exists a X3-set
containing A, and disjoint from A,.

If Player I has a winning strategy in H(Ao, Ay; Fo, F\) then there exists
a compact set K < Ayu A, with K ~ 2°and K n A, =~ Q.

Proof. Suppose that Player I has a winning strategy o in H(A,, 4;; Fo, F;) and
consider the mapping V¥ : ¢ — « associated to all possible runs where Player II is
playing freely some ¢ € 2° and Player I is constructing o by following his winning
strategy o, and ignoring the sequence 7y, as well as s_,. Then exactly as in the proof
of Theorem 4.3 one can check that K = (2“) has all the desired properties: if
¢ € Q, Player II constructs a branch of the tree Tj, hence y(g) € 4;; and if ¢ ¢ Q,
Player II constructs a branch of Ty, hence y(e) € A,.

Now if we suppose that Player II has a winning strategy t the arguments of
Theorem 4.3 cannot be resumed, but we shall define a countable family of closed
sets whose union separates A, from A,.

Let o €2”. We say that a sequence u = (to, ty, ..., t,) is (t, ®)-legal and write
ue %,, if the run where Player II follows t and I plays ((0, 0), (o, o), (o1, t4), .-
(s t,)) is legal up to n. Let us then denote by o(u) the answer e,,, by T to
((0,0), (So» to), (515 t1), ---» (Sws £)), and

C,={aew”:ue %, and o(u) = 1}
C={a:JuaeC, and VYoVmoaeC, and v"me %, = Iw > v " maecC,}

It is clear that, for any u, the set C, is clopen. Thus C is I1}. We want to prove
that C is a X-set separating A, from A,. We have to prove that C separates A4, from
Ay, thatis Cn Ay =0and Cn A, = 0.

Suppose o€ A; n C. We shall construct a run won by Player I against 1,
a contradiction. Fix some y such that (o, y) € F,. We distinguish two cases:

— If for every u o ¢ C,, then for every k, y;, € &% , since t never answers 1.
Hence Player II wins against ¢ playing («, 7).

— If there is v such that « € C,, then fix m such that v"m is (r, oc)-legal but for
any extension w of v"m o does not belong to C,. Then Player II plays a and
v m™y and this is legal since Q(U) = 1 and 7 answers O each time after this move,
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so nothing more is needed with respect to Tp. Thus each position of Player I is
legal and Player II looses.

Now suppose a € 4y N C and fix y such that (e, y) € F,. There is a sequence u, of
minimal length k, such that « € C,,, that is g(uo) = 1; but, by minimality, this move
is the first one where t answers 1. So Player II can play s, and m, = (0); then
(s0» mo) € Tp and the move is legal.

Since uy"my is (r, a)-legal and o € C there is a u, of minimal length k; > k,
extending u,"mj such that ¢(u;) = 1, and, by minimality, it is the second time ©
answers 1. So Player II is expected to play s;, and m, such that ((s, s), (mo, my) € To,
and Player II can choose m; = y(1). Repeating this argument, Player I can play
legally, and wins against t. This completes the proof. [J

Remark 4.6.

There is an explicit mapping ¢ : 1t — (E,,(r)) which assigns to each strategy t for
Player II a countable family of closed sets in ®w® such that the union of the E,,(r)’s
separates A, from A, whenever t winning in the game H(A,, 4;; Fo, F)).

5. The strategic basis Theorem for closed games

We consider only games on o.

5.1. Families of games

We shall now present a theorem of Martin which roughly speaking, asserts the
following: In a closed game G(A), if Player II (who is trying to go in the open
set A) has a winning strategy, then he has a winning strategy depending in a Borel
way on A.

To give a precise statement we shall replace the set 4 by a set A(p) depending
on some parameter p. Or in other terms we fix some auxiliary space P and a set
A c P x w”, so that for all p € P the section A(p) is a subset of w* and we can
consider the the game Gy(p) = G(A(p)). Notice that if A is closed then all the
games G(A(p)) are also closed.

5.2. The space of strategies

For simplicity we shall consider only strategies for Player II. Let S, (respectively
S,) denote the set of all finite sequences in w with odd (respectively even) length.
A strategy for Player II can be viewed as a mapping 7 : S; — S, of the form:

t>t(t)=t"a
A sequence (a,) is compatible with 7 if:
T(<%’ Ay eeey a2,,>) = (<aOr ai ..., a4y, a2,,+1>)
So the set X of all strategies (for Player II) can be viewed as a subset of the

space S3'. We endow this space with the product topology of the discrete topology
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on S,. Thus S§! ~ w®, and it is easy to see that X is a closed subset of this space.
Hence X is a Polish space.

Theorem 5.3. Let P be a Polish space and A be a closed subset of P X w®”. Then

a) The set Q = {pe P: such that Player II has a winning strategy in G,(p)} is Ij.

b) There exist ®; and ®, two L} subsets of PxX such that for all pe Q,
dil(p) = éz(p) = {(p(p)} where (p(p) is a winning strategy for Player Il in GA(p).

c) If Q is Borel then there exists a Borel mapping ¢ : Q — X such that for all
p€Q, ¢(p) is a winning strategy for Player II in G4(p).

Of course c) is an immediate consequence of b). In fact the most useful case
will be for us the case where Q = P. The proof of a) can be derived from the
proof of the Gale Stewart Theorem, where it follows from the arguments that in
a closed game G(B), the question whether Player II has a winning strategy can be
reduced to the question whether some tree — depending continuously on B — is
well founded. The proof of b) requires some nontrivial descriptive arguments.

We now give several applications of the previous Theorem.

Theorem 5.4. Let P be a Polish space and A be a X} subset of P x 2. Then

a) The set Q = {pe P: A(p) is countable} is II;.

b) If A(p) is countable for all pe P (i.e. if Q = P), then A is the union of
a countable family of Borel graphs (in particular A is Borel).

To prove these results, fix a closed set F in P x 0“ x 2® which projects on A.
Then consider the family of closed games G*(A(p), F(p)) for pe P. Then the
Theorem is an immediate consequence of Theorem 3.5 and Theorem 5.3 (see
Remark 3.3.a).

In a “similar” way, using Theorem 4.5 and Remark 4.6, one can prove the
following:

Theorem 5.5. Let P be a Polish space, and let Ay, and A, be two disjoint
analytic sets in P X w®. Then

a) The set Q = {pe P:3C a X}-set with C > A(p) and C n A\(p) = 9} is TI}.

b) If for all p € P there exists a X3-set containing Ayp) and disjoint from A,(p)
(i.e. if Q = P), then there exists a Borel set B containing A, and disjoint from A,,
and of the form B = | ),B, where each B, is a Borel set and all its sections B,(p)
are closed. []

The main argument in this proof is the following observation: If & is the
mapping defined in Remark 4., then for all n the set {(¢, 7)€ 0” x X : a € E (1)} is
closed in the space w” x X.

Corollary 5.6. If B is a Borel set in P x w® with X3 sections then B = | J,B,
where each B, is a Borel set with closed sections.
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Compact covering

Consider aset X = 2°x2” and Y = n(X) < 2” its projection on the first factor.
We shall denote by

TL'X:X—> Y

the restriction of the projection mapping to X. We are interested in the comparison
of the following two properties for f = ny:

(CC): “VYL compact < Y, 3K compact = X such that f(K) = L”
and
ap): “3X’ < X such that f (X’) = Y and VL compact c ¥,

the set X’ N f~Y(L) is compact.”

the mapping f is said to be compact covering if it satisfies (CC) and inductively
perfect if it satisfies (IP). Notice that since f is continuous, (IP) states exactly
that the restriction of f to some (necessarily closed) subset of X is onto and
perfect.

Clearly “(IP) = (CC)”; the problem whether the converse holds was first raised,
for some particular cases, by E. Michael. In fact the implication “(CC) = (IP)” is

now known to be true under several different supplementary hypothesis among
which:

(Hy): “X is Polish”
or
(H)): “Y is K,”

The case (H,) was proved several years ago (1972) independently by J. P. R.
Christensen and the second author, and (H;) more recently (1990) by A. V.
Ostrovsky and in the particular (already non-trivial) case where Y is countable by
W. Just and H. Wicke. Notice that none of these two cases can be derived from
the other; moreover the methods of their proofs are completely different.

On the other hand, one can construct counter-examples to “(CC) = (IP)” using
the Axiom of Choice; but in these examples the spaces X and Y do not have nice
definability properties. It is then natural to ask whether the implication
“(CC) = (IP)” holds under the hypothesis:

(H): “X and Y are Borel.”

or under the weaker hypothesis:
H): “X is Borel.”

In fact, assuming (Det (Z})), we shall prove the following.
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Theorem 6.1. (Det (X1)). Suppose that X is 1}, and that Y is either I} or Z}.
Then my : X — Y is compact covering if and only if ny is inductively perfect.

Corollary 6.2. (Det (X})). Suppose that X is Borel. Then ny : X — Y is compact
covering if and only if ny is inductively perfect.
These results will be obtained by considering the following game.

6.3. The game G(X,Y)
For any X < 2°x2” and Y < 2°, we define a game G/(X, Y). A run in this
game is always infinite and goes as follows:

I ke ko ke, k..
I S, S, .. S,
where k,€{0,1} and @ + S, < {0,1}" is such that T,, = | ) S, is a tree (where

0<p<n
by convention S, = {(b}).A run in this game will be identified with the sequence

(Kn S)near although S, = {@}is not formally “played” by Player II. Let:
y= (kn)nea) and T = U 'I:, = US” .

new new

Player I wins the run if:
yeY and 3ze[T] suchthat x = (y,z)¢X.

Notice that there is no relation a priori between X and Y, but obviously if
Y ¢ n(X) then Player I wins the game.
Theorem 6.1 is now an immediate consequence of the following result.

Theorem 6.4. If Player I has a winning strategy in G/(X, Y), then ny is not
compact covering.
If Player II has a winning strategy in GC(X , Y), then 1y is inductively perfect.

Proof. Suppose that Player I has a winning strategy, and let L be the set of all
possible y = (k,,),,e(,, € 2” played by o (in all possible runs). Since Player II has at
each step only finitely many possible choices (322”) then L is compact, and since
o is winning then necessarily L < Y.

Suppose that L = 7(K) for some compact set K = X. For any u € 2<* let:

S(u) = {ve2<“:|v| = |u| and K n(N,xN,) = 0}.

Consider the run where Player I follows ¢ and Player II answers S, = S(u,) where
u, = (ko, ..., k,) is already played by Player I; then (with the notations of 6.1) we
have:

yeLcY and {y}x[T]cKcX

so Player II wins the run which is a contradiction. [J
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Suppose now that Player II has a winning strategy t. For any y € 2” let T(y)
denote the tree constructed by Player II in the run where Player I plays y = (K,),cw
and Player II follows t. Then

H = {(y,2)e2°x2": ¢ [T())]}

is clearly closed (compact) in 2 x 2* and since t is winning, then for any ye Y
we have:

H, = (x[T0)] = X. D
Remark 7.1.

Assuming the existence of an uncountable IT} set which contains no perfect
subset, we construct in [2] a IT} set X < 2 x 2 such that Y = n(X) is also IT} and
Ty is compact covering but not inductively perfect.
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