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Bydgoszcz*) 

Received 12. March 1997 

In the present paper we give a survey and extend a result in [5] which we call 
"a Morera type criterion for quasiregularity". Throughout the paper the following 
basic notations will be used. Q) will stand for a domain (i.e. open connected set) 
in RB, n > 2. By |-| we also denote the outer Lebesgue measure. Sets of the form 
o = [ai, bi] x ... x [a„, bn~\ will be called intervals and by do we denote the 
boundary of o oriented by the exterior normal. Cubic intervals are denoted by Q. 
Given a mapping / = (ji, . . . , /„): 9> -• R" and a subset £ c ®, we let N(f\E, •) 
be the multiplicity function of / \E and \\N(f \E)\\ : = sup N(f \E, •). We associate 
to / = ( / , . . . , / ) the differential forms 

coy = fdxi A ... A cbcj A ... A dxn, 1 < ij < n. (1) 

In this paper we also use the notion of the topological degree deg(y, / , Q) (of / at 
the point y with respect to Q) where Q is an open set, Q c c ®. 

Definition 1. ([1]). A continuous mapping / = (/ , . . . , fn)\3) -> Un is called 
quasiregular (or a mapping with bounded distortion) if the following conditions are 
fulfilled: 

(a) feW^®); 
(b) either J(f •) := det (dfjdxjfi) > 0 a.e. in Q or J(f •) < 0 a.e. in Q\ 
(c) there exists a constant K > 1 so that 

ii/'(x)ir<Ku(/,x)i 
for almost all xe@, where f'(x): IRn -> lRn is the linear operator whose 
matrix in the standard basis of IR" is (df/dXj(x)). 

It was shown in [1] that each non-constant quasiregular mapping is open, 
discrete, a.e. differentiable and satisfies the Lusin's condition (N) (see e.g. [2] for 
a survey of quasiregular mappings). 

*) Instytut matematyki WSP, plac Weissenhoffa 11, 85-072, Bydgoszcz, Poland 
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We consider first a sufficient condition for a mapping to be in the Sobolev class 
Wti{®),p>\. 

Theorem 1. Let f = (/,..., f,):9 -• Rn be a continuous mapping satisfying 
the following conditions. There exist a number p > 1 and a finite subadditive 
function (cf. [3], p. 206) of interval $ > 0 so that 

Vi,7 VQ c 9 : If ©J < <D(Q)p \Q\*f . (2) 
WQ I 

ThenfeW&{9). 

Proof. Consider the function of interval 

^;{(j):= f coij9 GE99 1 < i,j < n9 (3) 

which is obviously additive. Since each G with rational edges can be written in the 
form 

m 

G = [)QS9 Int Qs n Int Qr = 0, s #= r, (4) 
s = l 

we deduce from (2), (3), (4) that 

i ^ ) i ^ I *(&>• IG/T- < <%> k r V . (5) 
5 = 1 

Given an arbitrary interval G we may find a sequence {(7V} of concentric intervals 
of the type (4) so that GV C GV+U Int G = lim GV. Then from (3), (5) we get by 
continuity of / that 

V a c ® : |F;.(<7)| < <&(G)1> \G(T (6) 

Now let G0 a 9 be a fixed interval and {GS}9 1 < s < m, an arbitrary system of 
intervals in G0 without common interior points. Then by (6) we have 

p-i 
m 1 / m \ p~~ 

IIWI -WSW , (7) 
5=1 \S=1 / 

which means that Ftj is an absolutely continuous function of interval in G0. This 
permits to conclude (cf. [4], Th. 7.4, Ch. 4) that there exists a function 
htj e Lloc(99 U) such that 

V<7 c= 9:FJG) = [hijdx (8) 4°) = JЧ 
Since <X> is subadditive and finite we have (cf. [3], pp. 205 — 207) that for almost 
all x e 9 there exists a finite derivative 
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<D'(x) = lira <D(oy|oJ, diam Q -> 0, x e Q, (9) 

and moreover, 

Vff <= 2: fo'(x) dx < <%) < oo. (10) 

From (6), (8) we get for each cube Q cz 2 

Ißľ 'If^dx^^fiJ/lfiDF. (11) 

Let x e 2f be a Lebesgue point of hij9 1 < i9 j < n, at which O'(x) exists. Then 
letting diam Q -> 0, x e Q, in (11) we obtain that 

lM*)l <$'(*) '> 1 < U < " , (12) 

holds for almost all x e Q. Now fix an interval <70 cz Q) and for each 0 < ^ < 
dist (<70, dS>)9 x e <70, let 

fe(x) = |B(x,£)|-1f fly) Ay 9 :-.«)ľ*f л»« 
JB(x,e) 

**ijє\ ,t(x) = \B(x,e)\-l[ h^dy, 
jB(x,e) 

where B(x9 E) = {y: ||y — x|| < s}9 and 

Mije = fie dXl A ••• A 3X; A ••• A dxn . 

It is well-known that fie e C^CTQ), hijB e C(CT0). Combining (3), (8) and applying 
Fubini's theorem we get 

Vcr cz cr0: f coije = ( \ e d x , 
Jd<r Jtr 

whence by Stokes' theorem 

V<7 cz CT0: fdfjdxjdx = ( - i y + 1 | \ e d x . 
J<T J<7 

By continuity of integrands we infer that the equality 

dfe/dxj = ( - i y + 1 hije9 1 < i,j < n9 (13) 

holds everywhere in <70. Obviously fie e Whp((T0) and since fie -* f in C(<70) and 
hije -> fty in L(°o) as 2 -• 0, we conclude immediately by (10), (12), (13) that 
f|cr0e WUp((70) which completes the proof. Note that df/dXj = (—iy+1/il7 a.e. in 
Q) and that 
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V<7 c 9: f o)tj = {- iy+ 1 f dfjdxj dx. (14) 

This assertion is used in proofs of theorems 2, 4. 

Theorem 2. ([5]). Let / = ( / , ...y fn): S> ^ Rn be a continuous open discrete 
mapping. Then f is quasiregular if and only if there exists a constant M > 0 such 
that the following condition holds: 

VQ^@ VU: If ad < M(\\N(f\Q)\\ • \f(Q)\ • IgP"1)^. (15) 
Dag I 

Sketch of the proof. The necessity of (15) is almost straighforward. To this end 
we use Stokes' theorem and the properties of quasiregular mappings that have been 
mentioned at the beginning. We also make use of the relation 

V<7 c 2 : f | J(f x)\ dx = f N(f\<r, y) dy (16) 
Jo Jun 

which holds for continuous a.e. differentiable mappings satisfying Lusin's condi
tion (N) and which is important in getting the estimate (15). It is also important to 
note that given a continuous open discrete mapping / : Q) -> Rn, one has 
dim /?(/) < n — 2, where /?(/) is the set of branch points of / (cf. [6], [7]). From 
this fact it can be deduced that the topological index i(f x) (i.e. the local 
topological degree of / ) has no zeros and is of the same sign in the domain Si. 
This allows to prove that 

VQ c=cz ®:||JV(/|n)|| < oo 

so that the right-hand part in (15) is always finite. The proof of sufficiency of (15) 
begins by showing that / e W^(@). This follows by Theorem 1 applied to each 
domain Q c=cz 3) if we let p = n and define the subadditive function of interval by 

0>(c7) = Mw||iV(/|Q)||V(/,Int(7). 

Here V(f Int a) denotes the variation (in the Banach sense) of / on Int a (cf. [3], 
pp. 202, 279). So we have f\Qe Wln(Q) and thus / satisfies condition (a) for 
quasiregularity, i.e. / e W^(3i). Since / is open, this implies that / is differen
tiable a.e. in Q) [1] (see [5] for an alternative proof). Now again fix any open set 
Q czcz Q. By (14), (15) we may write 

VQ <= Q :lf co0-| = If df/dxjdx\ < M(\\N(f\Q)\\ • \f(Q)\ • IQ r 1 ) ^ (17) 

Let x e fi be a Lebesgue point of all dfJdXj and / differentiable at x. Dividing 
(17) by \Q\ and letting diam Q -*• 0, x e Q, we obtain that 

\df/dxj(x)\ < M||iV(/|n)||i • \J(f X)\n (18) 
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holds for almost all x e Q. Since the topological index i(f x) preserves its sign in 
Q) it follows that sign i(f x) = sign J(f x) at each point x where f is differentiable 
and J(f x) 4= 0. Thus f satisfies condition (b), i.e. J(f •) does not change its sign. 
From (18) we obtain that f|Q is quasiregular whence |/?(f) n Q| = 0 (see [1]). 
Since Q c c ® was chosen arbitrarily we conclude that |j8(f)| = 0. Finally, letting 
ft in (18) be any open set off /?(/) such that f|Q is injective, we get ||IV(/|ft)|| = 1 
whence x 

\dfJdXj{x)\<M\J{f,x)\n (19) 

for almost all x e i This completes the proof since (19) is obviously equivalent 
to the condition (c) for quasiregularity. 

In order to establish the next result (Theorem 4) we shall make use of the 
following notion analogous to that given in [8]. 

Definition 2. A continuous mapping is called pseudomonotone if 

3C > 1 VQ cz 0:diamf(Q) < Cdiamf(dQ). 

We should note that in [8] this definition was formulated considering balls instead 
of cubes. 

Theorem 3 ([8]). Let f \ Q) -> Rn be a continuous pseudomonotone mapping of 
the class Wx^(Si). Then f satisfies Lusin's condition (N). 

Remark. Though this assertion was proved in the case of the pseudomonotoni-
city defined by balls, the analysis of the proof shows that the result is valid if balls 
are replaced by cubes. The required inequality in the oscillation lemma ([8], 2.1) 
also holds for cubes: 

diam f(dQ)n < Anr f \\f'(y)\\ndSy (20) 
JdQ 

where r is the length of the edge of Q and An is a constant depending on n. This 
inequality can be readily deduced for instance from Lemma 6.3 in [1], Ch. 2, § 6. 

Definition 3. A continuous mapping / : S> -> lRn is orientation preserving (resp. 
reversing) if 

VQ cz Q) Vy $ f(dQ) \ deg (y, / Q) > 0 (resp. deg (y9 f Q) < 0). (21) 

Theorem 4. Let f \ @> -> Rn be a continuous pseudomonotone and orientation 
preserving (or reversing) mapping. Then f is quasiregular if and only if there 
exists a constant M > 0 such that 

V Q c S V/,j: f <otj < M ( f N{f\ Q, y) dy)" |<2pr < oo . (22) 
JdQ \JUn / 

Proof follows mainly the same pattern as in the case of Theorem 2, so that we 
shall single out only new points in it. To fix ideas, assume that / is an orientation 
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preserving mapping. The necessity of (22) can be shown in the same way as (15) 
(cf. [5]). Note that the right-hand part in (15) is merely an upper estimate of the 
middle term in (22). Now we pass to the sufficiency of (22). Letting p = n and 
defining 

<%) = Mn f IV(/|lnt a, y) dy (23) 
JlRn 

we may apply Theorem 1. Thus we get from (22), (23) that / e Wj£(9). But since 
/ is pseudomonotone, this implies that / is differentiable a.e. in 2f. The proof is the 
same as for monotone (e.g. open) mappings. Moreover, by Theorem 3 the mapping 
/ satisfies Lusin's condition (IV). Hence we may write (cf. [3], Th. 2, p. 363) 

V e ^ S : f J(/,x)dx = f deg(y,/Q)dy. 
JQ jRn 

This yields, since / is orientation preserving, that J(f x) > 0 for amost all x e S>. 
Furthermore, using (16) and Stokes' theorem we may rewrite (22) in the form 

I 

ІÖГ Г дfjдxjdx < M Í Гj(f,x)dx 

Let x e ^ b e a Lebesgue point of J(f •) and all df/dXj. Letting diam Q -> 0, x e Q, 
we obtain that l 

\df/8xj(x)\<MJ(fx)n 

holds for almost all x e @> which clearly completes the proof. 

Remarks, (i) Theorem 4 remains valid if instead of (21) we assume for instance 
that / is a.e. approximately differentiable and det /,'p does not change its sign, 
(ii) Theorems 2, 4 remain also valid if in (15) and (22) we consider only cubes of 
the form Qk(x) = x + Qh x e ® , (i.e. translates of Qk) where {Q,) is a fixed 
sequence of cubes centered at x = 0, diam Qk -> 0. 
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