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For a natural number k > 1 and a topological space X the following question is 
considered. If F > X is an infinite Fff-set that contains no point isolated in X, does there 
exist an exactly k-to-one functin f: X •-----> X whose set of all discontinuity points is F? 
The answer is given for k = 1 if X is a separable metrizable space, and for k > 1 if 
X = [0,1], 

A function is (exactly) k-to-one if the preimage of every point has exactly 
k elements. O. G. Harrold [1] showed that no two-to-one continuous function can 
be defined on the interval [0,1]. Jo W. Heath [2] proved that no two-to-one function 
from [0,1] into a Hausdorjf space has a finite number of discontinuity points. For 
each natural number k > 3 there is a k-to-one continuous function from [0,1] onto 
the circle, see [1]. H. Katsuura and K. R. Kellum [4] showed thai for k > 2 there 
is no k-to-one function f: [0,1] onto> [0,1] with finitely many discontinuity points. 
Several other authors have considered k-to-one functions, see a survey [3] by 
Heath. 

If f: X -> Y is a function into a metrizable space Y, then the set of all 
discontinuity points of f is an F^-set. For each k > 1 we prove that every infinite 
F0-set F <= [0,1] is the set of all discontinuity points of a certain k-to-one function 
f: [0,1] onto> [0,1]. In the crucial case of bijections (involutions) between infinite 
countable sets, we develop an idea of S. S. Kim and Sz. Plewik [5]. In fact, we 
prove that if X is a separable metrizable space and F c: X is an infinite FG-set 
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which has no point isolated in X, then there exists an involution cp : X —• X such 
that F consists of all discontinuity points of cp. 

Recall that a function cp : X -» X is an involution if cp o cp = idx. A metric 
space X is totally bounded if for every s > 0 there exists a finite cover 9/ of 
X which consists of open sets of diameters less thatn e. Every separable metrizable 
space has a totally bounded metric. 

Lemma 1. If (P, Q) is a countable, infinite, and totally bounded metric space, 
then P can be arranged into a one-to-one sequence x0, x b x2, ... such that 

limo(x2n,x2n+1) = 0. 
/ . - • oo 

Proof Let °UQ = {P}.For each n > 0 fix a finite open cover tf/n of P which 
consists of sets of diameter less than l/n. Let P = {ft,pbp2 , . . .}. Put x0 = p0 and 
choose Xi e P\{XQ}. Suppose that the elements Xo,xb..., x2n x have been defined. 
Let x2n = ph where p, e P\{%xb..., x2n j} and i is the least possible index. Take 
the greatest index k < n such that there exists an infinite set I e °Uk with x2n e I. 
Then choose x2n+1 e I\{XQ,xb..., x2n}. By induction the one-to-one sequence 
x0, x b x 2 , . . . has been defined. Clearly P = {xb,xbx2,,.,}. 

Fix a natural number m > 0. Take / > m such that 

(J {I e °Um : I is finite} .= {ft, p b . . . , p,}. 

If n > /, then x2n e { p + b p / + 2 , . . . } , and x2n belongs to an infinite set I e ^ w . Hence 
x2n and x2n+1 belong to a set Jetf/h where m < k < n. We have 
£?(x2n,x2n+1) < diam J < 1/k < 1/m. Therefore, limn^00^(x2n,x2n+1) = 0 since 
m could be taken arbitrarily. • 

Corollary, (cf. [5]). Suppose that X is a separable metrizable space, and 
P c= X is infinite and countable. Then, there exists an involution cp : X -> X 
such that P = {x e X : cp(x) =>-- x} and limr^x cp(t) = x for any non-isolated point 
xeX. 

Proof Since X has a totally bounded metric, we can arrange P into a sequence 
x0,X!,x2,... as in Lemma 1. Put cp(x2n) = x2n+1 and (p(x2n+l) = x2n for each n. 
Extend this function by putting cp(x) = x for every x e K\P. • 

Lemma 2. If (P, Q) is a countable, dense-in-itself and totally bounded metric 
space, then for every s > 0 there is 3 > 0 and an involution cp : P —• P such tnat 
(5 < Q(p,(p(p)) < £ for any p e P. 

Proof. Cover P by non-empty open subsets PbP2,..., Pn with diameters less than 
6 > 0. Put 

3 = - m i n {diamP^: k = 1, ..., n} > 0. 
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By induction, for every peP choose cp(p) such that p, cp(p) e Pk for a certain k, 
and 5 < Q(P, <p(p)). Put <p(<p(p)) = p. B 

Theorem 1. Suppose that X is a separable metrizable space, and F __ X is an 
infinite Fa-set which has no point isolated in X. Then, there exists an involution 
cp:X -> X whose set of all discontinuity points is F. Moreover\ if xeX\F, then 
cp(x) = xf and the set {xe X : x 7- <?(*)} is countable. 

Proof. If F is countable, then Corollary works. In the other case, let G0, Gl9... 
be pairwise disjoint sets such that G0 u G{ u . . . = F and each union 
G0 u Gi u ... u G„ is closed. As F is uncountable, it contains a convergent 
sequence, and hence, we can assume that G00 is closed, scattered, and infinite. For 
n > 0 divide Gn into the scattered part and the dense-in-itself part. The de-
nse-in-itself part of Gn denote by Hn. Let P be the union of the scattered parts of 
all Gn. The set P __ G0 is countable and infinite. 

Since X has a totally bounded metric Q, Lemma 1 works in the same way as in 
Corollary. There exists an involution ij/ : P -» P such that t/>(x) 7- x for every xeP 
and \imt_y\j/(t) = 0 for any cluster point y of P. 

If Hn is non-empty, find a countable dense subset Qn a Hn such that Hn\Qn is 
dense in Hn, too. By Lemma 2 there is 5n > 0 and an involution £n: Qn -+ Qn such 
that dn < Q(X, Cn(x)) < 1/n for every x e Qn. Put: cp(x) = \j/(x) if x e P; cp(x) = 
= C„(x) if x e Qn; and cp(x) = x if x e X\Q{ u Q2 u ... u P. 

If xe X\F and lim,,.^ xn = x, then x = cp(x) = lim,,..^ (p(xn), and hence cp is 
continuous at x. 

Any point of Gn\P is a cluster point of the set Hn\Qn __ [xe X: cp(x) = x}, 
and is a cluster point of Qn. But cp moves points of Qn at distance greater than Sn, 
and hence, it can be continuous at no point of F\P. 

Finally, no point of P is isolated in X, and cp moves each point of P. Hence cp is 
discontinuous at any point of P. B 

Theorem 2. If k > 1 and F __ [0,1] is an infinite Fa-set, then there exists 
a k-to-one function f: [0,1] ---^-> [0,1] whose set of all discontinuity points is F. 

Proof. Let 0 = b0 < bx < ... < bk = 1 be such that each interval (6,-1,6,) 
contains at least two points in F. Fix an interval (bj_h bj) which contains a con

vergent one-to-one sequence {x0,x1,x2,... j c F . Any At = F n(bi_l,bl)\{x0,Xi,x2,... } 
is an Fff-set. If At is infinite, choose an involution cpt: : [b,_i, bj ____!> [b._1? _>.] 
whose set of all discontinuity points is Ah and which is the identity on [b,_i,b,]\^4, 
(use Theorem 1). If At is finite, let cpt: [b,_i,b,] -2n -̂» [b,_i, bj be a bijection such 
that cplx) 7- x for every xeA{. Since bt^ Atu Ai+l, we have <D,(b,) = b, = 
= (pi+i(bl) for 0 < f < k. Hence cp = cpx u cp2 u ... u cpk is a bijection from [0,1] 
onto [0,1]. 

Consider the continuous function g : [0,1] -» [0,1] such that g(0) = 0 and 
g maps each interval [b,_i,b,] linearly onto [0,1]. We shall define a function 
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a : [0,1] ---^ [0,1] so that the desired k-to-one functions is / = g o cp O a. 
Denote B = F n {^,bi-.., bk} n {^x^..} = {b^b,-.,..., bim,x09xu...}. If F n 

n {bb,bl9..., bj = 0, take m = - l . Let a be the identity on [0,1]\B. Put: 
a(btj) = Xj and a(x,) = btj if 0 < j < m; and a(xj+k {) = Xjif j > m + 1. Finally, 
choose a(xw+1),..., a(xm+/c_!) _ {bb^i} s o that the preimages / !(0) and / !(1) have 
exactly k elements. 

By the definition, the composition f = g o cp O a is a k-to-one function. If 
x e B, then x ^ a(x) e B, Therefore, the composition cp O a is continuous at no 
point of B, and hence, / is discontinuous at any point of B. The function cp is 
continuous at no point of Ax u ... u A^, and hence, / is discontinuous at any point 
of __! u ... u Ak. Thus, / 4 1 u . . . u 4 u B = F consists of all discontinuity point 
of/ • 
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