Acta Universitatis Carolinae. Mathematic et Physica

Pets Simon

An upper bound for countably splitting number

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 45 (2004), No. 2, 81--82
Persistent URL: http://dml.cz/dmlcz/702100

Terms of use:

© Univerzita Karlova v Praze, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

An Upper Bound for Countably Splitting Number

PETR SIMON

Praha
Received 15. March 2004

Countably splitting number cannot exceed the maximum of boundedness number and splitting number.

Let us recall three well-known cardinal invariants of continuum:
A family $\mathscr{S} \subseteq[\omega]^{\omega}$ is called splitting, if for every $X \in[\omega]^{(\omega}$ there is some $S \in \mathscr{S}$ such that $|X \cap S|=|X \backslash S|=\omega$. Define then

$$
\mathfrak{s}=\min \left\{|\mathscr{S}|: \mathscr{S} \subseteq[\omega]^{\omega} \text { is splitting }\right\}
$$

Order ${ }^{\omega} \omega$ by $f \leq^{*} g$ iff the set $\{n \in \omega: f(n)>g(n)\}$ is finite, and call a set $F \subseteq{ }^{\omega} \omega$ unbounded, if for every $g \in{ }^{\omega} \omega$ there is some $f \in F$ with $\neg\left(f \leq{ }^{*} g\right)$. A set $D \subseteq{ }^{\omega} \omega$ is called dominating, if for every $g \in{ }^{\omega} \omega$ there is some $f \in D$ satisfying $g \leq{ }^{*} f$. Define then

$$
\begin{aligned}
\mathfrak{b} & =\min \left\{|F|: F \subseteq{ }^{\omega} \omega \text { is unbounded }\right\} \\
\mathfrak{D} & =\min \left\{|D|: D \subseteq{ }^{\omega} \omega \text { is dominating }\right\} .
\end{aligned}
$$

The next definition is, up to our knowledge, due to Bogdan Wȩglorz. A family $\mathscr{T} \subseteq[\omega]^{\omega}$ is called countably splitting, if for every countable $\mathscr{X} \subseteq[\omega]^{\omega}$ there is some $T \in \mathscr{T}$ such that T splits all members of \mathscr{X}, i.e., for every $X \in \mathscr{X},|X \cap T|=$ $=|X \backslash T|=\omega$ holds. Define then

$$
\aleph_{0-\mathfrak{s}}=\min \left\{|\mathscr{T}|: \mathscr{T} \subseteq[\omega]^{\omega} \text { is countably splitting }\right\} .
$$

[^0]It is well-known (cf. [Va]) that $\mathfrak{s} \leq \mathfrak{D}$ and $\mathfrak{b} \leq \mathfrak{D}$. Also, it is easy to show that $\mathfrak{s} \leq \aleph_{0}-\mathfrak{s} \leq \mathfrak{D}$. In an attempt to give a sharper bound, we prove in this short note the following.

Theorem. $\mathbb{\aleph}_{0}-\mathfrak{s} \leq \max \{\mathfrak{s}, \mathfrak{b}\}$.
Proof. Fix a splitting family $\mathscr{S} \subseteq[\omega]^{(\prime \prime}$ of size \mathfrak{s} and and unbounded set $F \subseteq{ }^{\omega} \omega$ of size \mathfrak{b}. We may and shall assume that for every $f \in F, f(0)=0$ and the mapping f is strictly increasing. For $S \in \mathscr{S}$ and $f \in F$, put

$$
T(S, f)=\bigcup\{[f(n), f(n+1)): n \in \mathscr{S}\}
$$

Clearly, $|\mathscr{T}| \leq \mathfrak{s} \cdot \mathfrak{b}$, so it remains to show that the family \mathscr{T} is countably splitting. To this end, fix a countable family $\mathscr{X}=\left\{X_{n}: n \in \omega\right\}$ of infinite subsets of ω. Define a strictly increasing mapping $g \in{ }^{\omega} \omega$ by putting $g(0)=0$ and next, by induction, $g(k+1)=\min \left\{\ell \in \omega:(\forall i \leq k) X_{i} \cap[g(k), \ell) \neq \emptyset\right\}$. The set F is unbounded and so for a mapping h, defined by $h(n)=g(2 n)$, there is some $f \in F$ with $\{n \in \omega: h(n) \leq f(n)\}$ infinite.

Let n be such that $f(n) \geq g(2 n)$. The initial segment $[0, g(2 n))$ is covered by $2 n$ intervals $[g(k), g(k+1))$ and contains at most n points $f(i)$. Consequently, the number of intervals $[g(k), g(k+1))$ such that $[g(k), g(k+1))$ is not a subset of any $[f(i), f(i+1))$ is less or equal to n. All the remaining intervals $[g(k), g(k+1))$ must be contained in some $[f(i), f(i+1))$. So, $\mid\{k \in \omega:(\exists i<n)[g(k), g(k+1)) \subseteq$ $\subseteq[f(i), f(i+1))\} \mid \geq n$.

Since the set of those n 's which satisfy $f(n) \geq g(2 n)$ is infinite, we conclude that the set $\{k \in \omega:(\exists i \in \omega)[g(k), g(k+1)) \subseteq[f(i), f(i+1))\}$ is infinite. Therefore, also the set $Y=\{n \in \omega:(\exists k \in \omega)[g(k), g(k+1)) \subseteq[f(n), f(n+1))\}$ is infinite.

The family \mathscr{S} is splitting, thus there is some $S \in \mathscr{S}$ such that $|Y \cap S|=|Y \backslash S|=\omega$.

Let us conclude the proof by showing that for this f and S, the set $T(S, f)$ splits all $X_{n} \in \mathscr{X}$. Whenever $i \in Y$ is such that $|Y \cap i| \geq n$, then for $k \in \omega$ with $[f(i)$, $f(i+1)) \supseteq[g(k), g(k+1))$ we have $k \geq n$ and so, using the definition of the mapping g,

$$
[f(i), f(i+1)) \cap X_{n} \supseteq[g(k), g(k+1)) \cap X_{n} \neq \emptyset .
$$

But if $i \in Y \backslash S$, then $[f(i), f(i+1)) \subseteq \omega \backslash T(S, f)$, while if $i \in Y \cap S$, then $[f(i), f(i+1)) \subseteq T(S, f)$. So $\left|T(S, f) \cap X_{n}\right|=\left|X_{n} \backslash T(S, f)\right|=\omega$.

References

[Va] Vaughan, Jerry, E., Small uncountable cardinals and topology, Open Problems in Topology, (ed. by J. van Mill and G. M. Reed), Elsevier 1990, 195-218.

[^0]: Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 11800 Praha 1, Czech Republic

