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Measurability of Classes of Lipschitz Manifolds with respect 
to Borel cr-Algebra of Vietoris Topology 

JIRI LHOTSKY 

Praha 

Received 20. March 2006 

The measurability of the classes of all k-dimensional Lipschitz manifolds with respects 
to the Borel <r-algebra of the Vietoris topology on the hyperspace of closed subsets of 
the d-dimensional Euclidean space is proved. By a k-dimensional Lipschitz manifold we 
understand a manifold without boundary locally representable by bi-Lipschitz images of 
closed half spaces in IRk or Uk itself, respectively. 

Introduction 

The classes of k-dimensional Lipschitz manifolds can be used as a domain of 
generalized curvature measures (cf. [3]). Further a kinematic formula for this 
general classes was proved. This enables us to consider the classes of Lipschitz 
manifolds as an object of interest of stochastic geometry. In this direction, 
measurability with respect to the usual a-algebra generated by the Vietoris 
topology, is needed. 

The first section provides an overview, where the Vietoris topology of a hyper­
space of all closed subsets of a locally compact, Hausdorff and separable space is 
introduced, semicontinuity is defined and a relationship between the Vietoris 
topology and the semicontinuity is briefly described. 

Further the class Jik of k-dimensional Lipschitz manifolds, the class Jt^k of 
k-dimensional Lipschitz manifolds with boundary are introduced. Next, the class 
e^gr^ i of d — 1-dimensional strong Lipschitz manifolds without boundary and 
the class ^#subgr^ of d-dimensional strong Lipschitz manifolds with boundary, 
defined in [5], are presented. The latest two classes are locally representable as 
a graph or a subgraph, respectively, of some Lipschitz function defined on Ud~l. 
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Czech Republic 
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The second section presents a proof of measurability of a general class, whose 
members are locally characterised by some measurable system (Theorem 10). 
Finally, measurability of the classes Jt\^ MSS\, and the classes JKgTd-u Jtsubgrd 

is proved in Theorem 13 and in Theorem 16, respectively, by checking assum­
ptions of Theorem 10. 

1. Preliminaries 

We operate in Rd, d > 1, in the whole article. The number k e N, a dimension 
of Lipschitz manifolds, is assumed to be between 1 and d. The case of k = 0, was 
already handled in the theory of point processes. Similarly, the case of d = 1, 
k = 1, was handled in stochastic geometry (cf. [4]), since Lipschitz 1-manifolds 
degenerate to countable unions of closed intervals and every closed interval is 
convex. 

Vietoris topology 

Let £ be a locally compact, Hausdorff and separable space. Then we denote by 
£F (E) and & (E) the classes of closed and open subsets of E. We omit the spaces 
argument if E = Rd, that is we write F = F{^f). 

Further for any A cz E we define 

FA = {F\FeF(E\ F n A # 0}, 
FA = {F\FeF(E\ F n A = 0}. 

Then the system of classes 

^ G„ = FK n jF G l n ... n &Gn9 

where K cz E compact and Gi, ..., Gne^(E\ constitutes a base of Vietoris 
topology TSF(E) on SF (E). It is possible to show, that the Borel d-algebra of i&(E) is 
generated by the single classes 2FK, K cz E compact, as well as by the single 
classes FG, Ge&(E). 

Theorem 1. A sequence {Fn} converges to F in 3F (E) if and only if the two 
following conditions are satisfied: 

1. For any xe F there exists a sequence {xn} with xn e Fn such that xn -* x in E. 
2. If {Fnk} is a subsequence, then every subsequence of points xnk with xnk e Fnk 

convergent to some xe E satisfies xe F. 

See [2, 1-2-2]. Note that all the sequences in this article are assumed to be 
generalized sequences, that is they are defined up to a finite number of members. 

Definition 2. Let Qbe a topological space and F a mapping from Q into 3F (E). 
We say that T is upper semicontinuous if for any compact set K cz E the set 

26 



r _ 1 (2FK) is open in Q. Similarly we say that Y is lower semicontinuous if for any 
Ge<#(E) the set T _ 1 (FG) is open in Q. 

It is not difficult to check that a mapping is continuous if and only if it is 
simultaneously upper and lower semicontinuous. 

Proposition 3. Let Q be a separable topological space and T a mapping from 
Qinto ^(E). 

1. The mapping F is upper semicontinuous if and only if for any co e Q, any 
sequence {co,} convergent to co in Q and any sequence {xn}, xn e T (con)f 

convergent to some x in E it holds xeF(co). 

2. The mapping T is lower semicontinuous if and only if for any co e T (co) and 
any sequence {con} convergent to co in Q there exists a sequence {x^ 
convergent to x in E such that xn e T (con). 

For the proof see [2, 1-2-3; 1-2-4]. 

Lipschitz Manifolds 

Definition 4. Let D be a metric space. We call a function \j/: D -> R 
L-bi-Lipschitz, L > 0, if it satisfies the equation 

\x - x'|/L < \${x) - ij/(x')\ <L\x- x'\ 

for every x, x' e D. 
Further we call the function \j/ bi-Lipchitz if there exists some L > 0 such that 

the function \// is L-bi-Lipschitz. 

Definition 5. A closed set M a Rd is called a /c-dimensional Lipschitz manifold 
in Rd, k = 1,..., d, if it is locally representable as a bi-Lipschitz image of an open 
subset of Rk. 

Similarly a /c-dimensional Lipschitz manifold in Rd with boundary is a set 
locally representable as a bi-Lipchitz image of a relatively open subset of a closed 
halfspace in Rk. 

The class of all k-dimensional Lipschitz manifolds (with boundary) will be 
denoted by Jlk (Jt88ky respectively). 

Further curvature measures for d — 1-dimensional manifolds without boundary 
characterised locally by Lipschitz graphs and for d-dimensional manifolds charac­
terised by Lipschitz subgraphs were constructed in [3]. 

Definition 6. Ifd> 1, we denote by Jtgu-i and J^subgTd the classes of closed 
sets in Rd locally representable by graphs and subgraphs of real Lipschitz 
functions, respectively, defined on Rd~l. The members of JtgXd-\ and JisubgTd are 
called d — 1-dimensional strong Lipschitz manifolds and d — 1-dimensional 
strong Lipschitz manifolds with boundary, respectively. 
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The classes of strong Lipschitz manifolds of general dimension were introduced 
in [5]. Every d — 1-dimensional strong Lipschitz manifold is also d — 1-dimen­
sional Lipschitz manifold and that every d-dimensional strong Lipschitz manifold 
with boundary is also d-dimensional Lipschitz manifold with boundary as well. 
However the converse does not hold, as is shown in the following counterexample. 

Example. Consider a union of broken lines passing subsequently through the 
points 

(1,0), (1,1). (1.0), (i.i), (i.0),.... (|,0), ( i^) , (^ .0), ... Je N 

and through the points 

(-1,0), (-1,1), ( ^ , 0 ) , ..., (-=*,(>), ( - ^ , - ^ ) , ( ^ , 0 ) , . . . jeN 

complemented by the origin (0, 0). 
Such a curve cannot be a graph of a function on any neighbourhood of the 

origin. Hence it cannot be a piece of a d — 1-dimensional strong Lipschitz 
manifold. However it can be naturally parameterised by arc to get bi-Lipschitz 
parameterisation. Therefore it can constitute a local parameterisation of some 
d — 1-dimensional Lipschitz manifold. 

The curve used in this example can be easily extended to become a d-dimensio-
nal Lipschitz manifold with boundary not being any d-dimensional strong Lipschitz 
manifold with boundary. 

2. Measurability 

For any open set G e <$(Rd) we define the mapping 

f]G:^ -» JF(G) 

F 1—> F n G. 

Lemma 7. The mapping f]G is continuous. 

Proof. We will show using Proposition 3 that the mapping f]Gis simultaneously 
upper and lower semicontinous. 

To check the upper semicontinuity choose a sequence {Fn} in 3F convergent to 
some F G 3F and a sequence {xn} in G, such that x „ - > x e G and xne Fn n G. (If 
this is not possible, the upper semicontinuity follows trivially.) Then xeF 
according to Theorem 1, that is x e F n G. 

To verify the lower semicontinuity choose some xe F n G and a sequence {Fn} 
2F convergence to F, if both exist. Then, again by Theorem 1, there exists 
a sequence {xn} convergent to x with xn e Fn. Since x e G it holds xn e G for almost 
all n e N, that is xn e Fn n G for almost all n. • 
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Lemma 8. For any open set G cz Rd and any closed subclass 5£ of 3F the 
system nG(^) ^ closed in & (G). 

Proof. Choose a sequence {Fn} in f]c(^) convergent to some F in J^(G). Thus 
there exists a sequence {!.*} in S£ a gF with Lnr\G = Fn. Then there exists 
a subsequence Lnk convergent to some L e J5f since 3F is compact and J? is closed. 
Due to the continuity of the mapping f)G (Lemma 7) it holds 

Fn = f]G(Lnk) ^ f]G{L) = F. • 

Corollary 9. For every open set G a Ud and any closed subclass !£ of 3F the 
system f)Gl(f]c(^)) is a closed subclass of 3F. 

Proof. Every pre-image of closed set under continuous map is closed by the 
definition of continuity. The statement thus follows from continuity of the mapping 
f]G (Lemma 7). • 

Theorem 10. Let !£ be an Fa subclass of SF, and let Jt cz J^ be a system of 
closed sets locally representable by members of the subclass 5£f that is 

Jt = {Me ^;^xe M 3G e^(Rd): x e G md M E ^(^G^))}^ (1) 

Then the system Jt is measurable in 3F. 

Proof. For the purpose of the proof, let 38 denote a countable topological base 
of Rd consisting of balls. Given R > 0, we denote 93R the system of all finite 
covers 3SR cz & of the closed, centred ball B^ c Rj. Then the system 23R is 
countable. 

Notice, that if B, G are open with B c G, then 

()Gl(()G(#))<=m;1{M&)). 

Moreover there are some closed systems J.?* a ^ , / e t \ l , with J5? = (J J?,. Thus 
the system f)Gl(f)c(^)) is Fa subclass of J^, since is satisfies 

ncHncMU^HUncMnc^)), 
where the summands of the right-hand side are close (see Corollary 9). 

We wish to show that the following representation holds 

i = 0 U n (n-'tnB (*)))• (2) 
ReN @Re*BR Be@R 

The measurability of Jt would than follow from the measurability of the 
right-hand side of the above equation. 

To show that M is a subclass of the right-hand side of (2) choose some M e Jt 
and R e N. The family (J {B e 28\ M e (]B l (QB (if))} covers M due to represen­
tation (1) and because £& is topological base. Similarly, there exists a system 
38Mc cz 36 with M c = (JBe^McB, M c = R<\M, since Mc is open. 
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Thus the system ( J { B e ^ ; Me ()£1(()B(&))} \J % covers BR and there 
exists a finite subcover S8R such that for every B e ^ 

1. there exists G e(S(Rd) such that B c G, that is M e f)'1 (f]B (^)), or 
2. B n M = 0 which implies M e f)~l (f|B(^)) as well 

Hence we have proved that M e ()B<=®R(C)B 1(C\B (<&))) and 

^ = f 1 U (KnirMn-M). 
To prove the converse inclusion consider some member M of the right-hand side 

of (2) and choose xeM. Then there is some ReN such that xeBR and some 
finite cover 38R of B* with M e H B ^ * (P|B * (OB (<-5?))). This means there is some 
B e f t such that x eB and Me f|B *(P|B(^)), which gives MeJi. ~~ 

Classes of bi-Lipschitz images and Lipschitz graphs 

Let Rd denote the group of rotations on Rd provided with the usual topology. 
Thus Rrf is compact. For any k = 1,..., d and any L > 0 we denote 

• by £?KL cz & the subclass of image of I^bi-Lipschitz mappings \j/: Rk -• Rd 

supplemented by the empty set, 
• by jSf^fcLthe class of images of L-bi-Lipschitz mappings defined on Rk or on 

some closed halfspace of Rk, supplemented by the empty set as well. 
• To define J§?grL, the class of closed sets representable as L-Lipchitz graph, we 

need to introduce a class Lip-grL of L-Lipschitz graphs, that is 
Lip-grL = {graph if/; ij/: R4'1 -> R is L-Lipschitz}, 

^gr L = {QF; F e Lip-gr^ Q e Rd}. 
• Similarly by J^subgr^ we define the class of closed sets representable as 

L-Lipschitz subgraphs, that is 
Lip-subgrL = {subgraph^; ij/: Rd~l -• R is L-Lipschitz}, 

JSf subgrL = {QF; F e Lip-subgr^ Q e Rd}. 

Lemma 11. For any L > 0 and k = 1, ..., d the class 3?KLis closed in 3F. 

Proof. Consider a sequence {1+} of nonempty Ln e <£kL convergent to some 
nonempty closed set F e 3F. If x0 e F then there exists a sequence {XQ^}, X0,M e Ln 

convergent to x0 according to Theorem 1. Without loss of generality we may 
assume that t/^T1^,*) = : ao is independent of n e N, where \j/n are L-bi-Lipschitz 
functions with Ln = i//n (Rk). 

We will construct a convergent subsequence {i//nj} of the sequence {\j/n} by 
diagonal choice method. 

Forj = 1 take some x^eF different from x0 and a sequence of {xhn}9 xhn e Ln 

convergent to xv (Such a point Xi exists due to the bi-Lipschitz property of the 

30 



functions \j/n.) The bounded sequence {\j/n
 1(xi/)} has a subsequence {^-/(xi,-,1)}, 

keN9 convergent to some point ax e Rk. Hence 

lim \l/ i (a,) = xi9 i = 0,1. 

To finish the first step of our diagonal choice set i/tMl := i/tni. 
Proceeding by induction, for any j eN we can take Xj e F different from xi9 

i = 0,..., j — 1, to produce a subsequence {^nV(xnj)}? fc e f̂ , convergent to some 
dj e Rk out of the bounded sequence {\fc-i (xnj-i)}^ keN. We have 

lim \j/nj(a) = xi9 i = 0, ..., j . 
fc-KX) k 

To end up the ;-th step of the diagonal choice set \j/n.: = \j/nj. 
Thus we have constructed the sequence {ij/n.} with property, that for every j eN 

it holds 
lim \l/nk(aj) = Xj. 
fc-*oo 

By letting x/s to exhaust some countable dense subset of F we ensure that the 
sequence {a,} is dense in Rk. Namely if a e Uk

9 denote Xj the set of all cluster points 
of the bounded sequence {\j/nj(a)}9 keN. The intersection Q/GN-^/ is nonempty, 
since the sets Xj are nonempty, bounded and form a nested sequence, that is 
XjZDXj+l9jeN. 

Next, choose some xe f\e\Xj cz F and a subsequence {xjk}9 keN9 of {;*•} 
convergent to x. Using bi-Lipschitz property of the functions ij/n it holds 

lim ah = lim ^ J f o J = a. 
Jt-,00 ^->°o k 

Hence, the L-bi-Lipschitz mappings \j/nj converge pointwise on the dense set {a-9 

je N} and due to their bi-Lipschitz they converge uniformly on any compact set 
to an L-bi-Lipschitz limit \j/ defined on Rk

9 which satisfies the equation 
*k) = F. • 

Lemma 12. For any L > 0 and k = 1, ..., d the class 3?&k,L is closed in 3F. 

Proof. Consider some sequence {Ln} of Ln e JS?^L convergent to some nonempty 
set F e 3F and denote by \j/n the L-bi-Lipschitz functions parameterising Ln with 
\j/n (Hn), where Hn cz Uk are closed halfspaces or the whole Uk. Further denote 8Hn 

the relative boundaries of the halfspaces Hn. We consider dHn = 0 if Hn = Uk. 

1. Assume first that the sets Hn <-= IRfc are closed halfspaces for almost all n e N 
and that the sequence of the images {\j/n(dHn)} converge to a nonempty set 
F cz F. 
Then there is an L-bi-Lipschitz limit i//': IR*-1 -> Ud of the mappings 
\j/n partialised to dHn according to Lemma 11 if fc > 1. If fc = 1, the assertion 
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is trivial. Moreover for any xeF' there exists a sequence of xn e \j/n (dHn) 
convergent to x and we may, without loss of generality, suppose that 
^nX(xn) = tA'-1 {x) = 0, that is 0 e dHn for almost all n e N. Further we may 
suppose that Hn = H cz Uk since rotations preserve distance. The proof in 
this case then follows using the same method as in Lemma 11, replacing Uk 

by H. 
2. Assume now, that the sequence {Hn} may contain both Uk and closed 

halfspaces in Uk and that limit of the sequence {\//n (dHn)} is empty set. 
Thus we may, without loss of generality, assume that for some sequence of 
{x^,xn e Ln convergent to some x e F, \l/n

1(xn) = 0, independently ofneN. 
Hence d(0,dHn)-+ oo (we define d(O,0) = oo), since existence of any 
subsequence Hkn with d(0,dHk>n) < K would imply, using Lipschitz proper­
ty, that every cluster point of \j/kn (dHkn) would be nonempty (every \j/kn (dHkn) 
would have nonempty intersection with the centred ball of diameter LK). 
ThatisHn-> Ukm^(Uk). 
Every function \j/n has an L-Lipschitz extension \j/'n to IR̂  due to the theorem 
of Kirszbraun and Valentine [1, 2.10.43]. Moreover the sequence of the 
images {\l/'n(U

k)} has a cluster point F' e 3F due to compactness of # \ 
A Lipschitz parameterisation (f> of F' can be constructed in the same way as 
in the proof of Lemma 11, being a limit of some subsequence {iA/n}. 
It holds \j/'in = \l/in on Hin, neN, that is {i/>,J converges to 4> on every compact 
set, considering, that every compact is contained in almost all Hin. The 
L-bi-Lipschitz property then follows easily. 

3. Otherwise, there are at least two different subsequences of {il/n(dHn)} having 
different limits F\ F" cz F and satisfying assumption of 1. or 2. Then the 
cases 1., 2. imply existence of two different L-bi-Lipschitz parameterisation 
i//', (/)" of F. But in such a case would F have two different relative 
boundaries. 

Hence only cases 1. or 2. are of possible and it was shown that F e ^£MkL- • 

Theorem 13. The classes Jik(Jt&k\ k = 1, ..., d, of k-dimensional Lipschitz 
manifolds in Ud (with boundary, respectively) are measurable. 

Proof. For any k = 1, ..., d the classes {JLEN^KLI [JLEN^^KL are Fa in 
3F according to Lemma 11 and Lemma 12. 

The statement then follows from Theorem 10 since representation (1) holds for 
J4k and for Jt88k substituting the classes {JLEN^KLI {JLEN^&KLI respectively. • 

Lemma 14. For every L > 0 the classes Lip-grL and Lip-subgrL are closed in 
# \ 

Proof. This statement easy to check since convergence of graphs or subgraphs 
of L-Lipschitz functions in the Vietoris topology implies locally uniform conver-
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gence of these functions. The statement then follows since locally uniform limit of 
L-Lipschitz functions is L-Lipschitz as well. • 

Lemma 15. For every L > 0 the classes !£gr L and J£?subgrL are closed in #". 

Proof. The map 
T: R̂  x & -> F 

(Q,F) -» QF 

is continuous (eg. [4, 1.2.4]) and therefore the set r_1(Lip-grL) is closed in the 
product space Rd x 3F. Further the projection 11^-: Rd x 2F -* 3F is a closed 
mapping since Rd is compact. Thus the set IIj-(r-1(Lip-grL)) is closed as well. 

The closeness of the class J5fgrL of L-Lipschitz graphs then follows by checking 
that i?grL = njr(r-1(Lip-grL)). The closeness of the class J5?subgrL of L-Lip­
schitz graphs proceeds in the same way. • 

Theorem 16. The classes Jigvd_u J?subgrd of d — \-dimensional strong 
Lipschitz manifolds and d-dimensional strong Lipschitz manifolds with boundary, 
respectively, are measurable. 

Proof. The proof proceeds in a similar matter as a proof of Theorem 13, using 
closeness of the classes ^grL and !£subgrL implied by Lemma 15. • 
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