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to Borel o-Algebra of Vietoris Topology
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Received 20. March 2006

The measurability of the classes of all k-dimensional Lipschitz manifolds with respects
to the Borel o-algebra of the Vietoris topology on the hyperspace of closed subsets of
the d-dimensional Euclidean space is proved. By a k-dimensional Lipschitz manifold we
understand a manifold without boundary locally representable by bi-Lipschitz images of
closed halfspaces in R or R* itself, respectively.

Introduction

The classes of k-dimensional Lipschitz manifolds can be used as a domain of
generalized curvature measures (cf. [3]). Further a kinematic formula for this
general classes was proved. This enables us to consider the classes of Lipschitz
manifolds as an object of interest of stochastic geometry. In this direction,
measurability with respect to the usual o-algebra generated by the Vietoris
topology, is needed.

The first section provides an overview, where the Vietoris topology of a hyper-
space of all closed subsets of a locally compact, Hausdorff and separable space is
introduced, semicontinuity is defined and a relationship between the Vietoris
topology and the semicontinuity is briefly described.

Further the class .#; of k-dimensional Lipschitz manifolds, the class .# %, of
k-dimensional Lipschitz manifolds with boundary are introduced. Next, the class
Mgry 1 of d — 1-dimensional strong Lipschitz manifolds without boundary and
the class .#subgr; of d-dimensional strong Lipschitz manifolds with boundary,
defined in [5], are presented. The latest two classes are locally representable as
a graph or a subgraph, respectively, of some Lipschitz function defined on R?~!,
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The second section presents a proof of measurability of a general class, whose
members are locally characterised by some measurable system (Theorem 10).
Finally, measurability of the classes .#, .# % and the classes #gr,_, #subgr,
is proved in Theorem 13 and in Theorem 16, respectively, by checking assum-
ptions of Theorem 10.

1. Preliminaries

We operate in R% d > 1, in the whole article. The number k € N, a dimension
of Lipschitz manifolds, is assumed to be between 1 and d. The case of k = 0, was
already handled in the theory of point processes. Similarly, the case of d = 1,
k = 1, was handled in stochastic geometry (cf. [4]), since Lipschitz 1-manifolds
degenerate to countable unions of closed intervals and every closed interval is
convex.

Vietoris topology

Let E be a locally compact, Hausdorff and separable space. Then we denote by
& (E) and % (E) the classes of closed and open subsets of E. We omit the spaces
argument if E = RY, that is we write & = % (RY).

Further for any A < E we define

F1 = {F:FeF(E),Fn A+ 0}
F4={F-FeZ(E),FnA=0)

Then the system of classes

'g'—lél,...,Gn:g'_Kncg'—Glﬁ... NFg

n?

where K = E compact and Gy, ..., Gn€ %(E), constitutes a base of Vietoris
topology T#(z) on F (E) It is possible to show, that the Borel o-algebra of 14 is
generated by the single classes #%, K = E compact, as well as by the single
classes %, G € % (E).

Theorem 1. A sequence {E,} converges to F in & (E) if and only if the two
following conditions are satisfied:

1. For any x € F there exists a sequence {X,} with x, € F, such that x, — x in E.
2. If {E,} is a subsequence, then every subsequence of points X, with Xu, € Fu,
convergent to some x € E satisfies x € F.

See [2, 1-2-2]. Note that all the sequences in this article are assumed to be
generalized sequences, that is they are defined up to a finite number of members.

Definition 2. Let Q be a topological space and T’ a mapping from Q into & (E).
We say that T is upper semicontinuous if for any compact set K < E the set
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r-! (.97 K) is open in C). Similarly we say that T is lower semicontinuous if for any
G € % (E) the set T~'(Fg) is open in Q.

It is not difficult to check that a mapping is continuous if and only if it is
simultaneously upper and lower semicontinuous.

Proposition 3. Let Q be a separable topological space and I" a mapping from
Q into F (E).

1. The mapping I is upper semicontinuous if and only if for any w e Q, any
sequence {w.} convergent to w in Q and any sequence {x}, xn € T (wn),
convergent to some x in E it holds x € T ().

2. The mapping T is lower semicontinuous if and only if for any w € T (w) and
any sequence {w.} convergent to w in Q there exists a sequence {X}
convergent to x in E such that x, € T (w,).

For the proof see [2, 1-2-3; 1-2-4].

Lipschitz Manifolds

Definition 4. Let D be a metric space. We call a function Y:D — R
L-bi-Lipschitz, L > 0, if it satisfies the equation

Ix = XL < Y(x) — ¢ (x) < Llx — x|

for every x,x' € D.
Further we call the function Y bi-Lipchitz if there exists some L > 0 such that
the function \ is L-bi-Lipschitz.

Definition 5. A closed set M = R is called a k-dimensional Lipschitz manifold
in R, k = 1, ..., d, if it is locally representable as a bi-Lipschitz image of an open
subset of R,

Similarly a k-dimensional Lipschitz manifold in R? with boundary is a set
locally representable as a bi-Lipchitz image of a relatively open subset of a closed
halfspace in R*.

The class of all k-dimensional Lipschitz manifolds (with boundary) will be
denoted by M (M By, respectively).

Further curvature measures for d — 1-dimensional manifolds without boundary
characterised locally by Lipschitz graphs and for d-dimensional manifolds charac-
terised by Lipschitz subgraphs were constructed in [3].

Definition 6. Ifd > 1, we denote by # grs— and M subgr, the classes of closed
sets in R? locally representable by graphs and subgraphs of real Lipschitz
functions, respectively, defined on R*~'. The members of M gti_, and Msubgr, are
called d — 1-dimensional strong Lipschitz manifolds and d — 1-dimensional
strong Lipschitz manifolds with boundary, respectively.
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The classes of strong Lipschitz manifolds of general dimension were introduced
in [5]. Every d — 1-dimensional strong Lipschitz manifold is also d — 1-dimen-
sional Lipschitz manifold and that every d-dimensional strong Lipschitz manifold
with boundary is also d-dimensional Lipschitz manifold with boundary as well.
However the converse does not hold, as is shown in the following counterexample.

Example. Consider a union of broken lines passing subsequently through the
points

1 11y /1 1 11 1 ;
(la 0)’ (17 1), <'2_5 0)5 <§9§>7 <Za 0)5 (AR ('271 0)3 (59?)7 (F,O)a ... JE N

and through the points

—1 —1 -1 -1\ /-1
(—1,0), (=1,1), <7,0), (7,0), (-2,-7> (Fﬁ), . jeN
complemented by the origin (0, 0).

Such a curve cannot be a graph of a function on any neighbourhood of the
origin. Hence it cannot be a piece of a d — 1-dimensional strong Lipschitz
manifold. However it can be naturally parameterised by arc to get bi-Lipschitz
parameterisation. Therefore it can constitute a local parameterisation of some
d — 1-dimensional Lipschitz manifold.

The curve used in this example can be easily extended to become a d-dimensio-
nal Lipschitz manifold with boundary not being any d-dimensional strong Lipschitz
manifold with boundary.

2. Measurability

For any open set G € % (R‘) we define the mapping
NeF - 7(G)
F— FnG.
Lemma 7. The mapping (¢ is continuous.

Proof. We will show using Proposition 3 that the mapping (¢ is simultaneously
upper and lower semicontinous.

To check the upper semicontinuity choose a sequence {F,} in & convergent to
some F € # and a sequence {x,,} in G, such that x, - x€ G and x,€ F, n G. (If
this is not possible, the upper semicontinuity follows trivially.) Then xe€ F
according to Theorem 1, that is xe F n G.

To verify the lower semicontinuity choose some x € F N G and a sequence {E,}
Z convergence to F, if both exist. Then, again by Theorem 1, there exists
a sequence {x,} convergent to x with x, € F,. Since x € G it holds x, € G for almost
all ne N, that is x, € F, n G for almost all n. O

28



Lemma 8. For any open set G = R and any closed subclass & of F the
system ﬂc(.?) is closed in F (G)

Proof. Choose a sequence {F} in N¢(<Z) convergent to some F in & (G). Thus
there exists a sequence {L,} in & < & with L, n G = F,. Then there exists
a subsequence L,, convergent to some L € & since & is compact and & is closed.
Due to the continuity of the mapping (¢ (Lemma 7) it holds

Fn= mG(Lnk)—"ﬂG(L)=F D

Corollary 9. For every open set G = R? and any closed subclass ¥ of F the
system (\g'(N¢(<&)) is a closed subclass of F.

Proof. Every pre-image of closed set under continuous map is closed by the
definition of continuity. The statement thus follows from continuity of the mapping
Ne (Lemma 7). O

Theorem 10. Let # be an F; subclass of &, and let Ml = & be a system of
closed sets locally representable by members of the subclass £, that is

M={MeF;NxeMIGe¥4R):xeGand MeN:'(Nec(L))} (1)
Then the system M is measurable in & .

Proof. For the purpose of the proof, let % denote a countable topological base
of R? consisting of balls. Given R > 0, we denote By the system of all finite
covers Br = & of the closed, centred ball Bx = R%. Then the system By is
countable.

Notice, that if B, G are open with B < G, then

NG' (Ne (<L) = Ns* (Ns (<L)
Moreover there are some closed systems ., < &,ie N, with & = U,Sf’ i. Thus
the system (\¢'(Nc(<)) is F, subclass of #, since is satisfies

N&'(Ne)(U2) = Una' (s (),

where the summands of the right-hand side are close (see Corollary 9).
We wish to show that the following representation holds

=0 U (s (Ns(L)- ()

ReN BreBr BeZr

The measurability of .# would than follow from the measurability of the
right-hand side of the above equation.

To show that M is a subclass of the right-hand side of (2) choose some M € .
and R € N. The family ) {Be %#; M € N5'(Ne (%))} covers M due to represen-
tation (1) and because 4 is topological base. Similarly, there exists a system
Buc = B with M€ = | Jpean B, M€ = RAM, since M€ is open.
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Thus the system ) {Be % M e 5" (Ne (%))} | #uc covers Bg and there
exists a finite subcover %x such that for every B € #x

1. there exists G € % (R?) such that B = G, that is M € N5 (s (£)), or
2. BN M = @ which implies M € Nz (N (%)) as well

Hence we have proved that M € (\seer (N5 ' (Ne(Z))) and

Mi= () U () (05" (Ne(2))-
ReN ZreBr Be®r
To prove the converse inclusion consider some member M of the right-hand side
of (2) and choose x € M. Then there is some R € N such that x € Bz and some
finite cover %x of Br with M € (\sesr (N5"'(Ns(£)))- This means there is some
B € % such that x € B and M € N5 (s (%)), which gives M € . O

Classes of bi-Lipschitz images and Lipschitz graphs

Let R, denote the group of rotations on R? provided with the usual topology.
Thus R, is compact. For any k = 1, ..., d and any L > 0 we denote

* by &L= F the subclass of image of L-bi-Lipschitz mappings i: R - R?
supplemented by the empty set,
* by #%, the class of images of L-bi-Lipschitz mappings defined on R* or on
some closed halfspace of R¥, supplemented by the empty set as well.
* To define Zgr;, the class of closed sets representable as L-Lipchitz graph, we
need to introduce a class Lip-gr; of L-Lipschitz graphs, that is
Lip-gr, = {graph y; y: R*~! - R is L-Lipschitz},
L, = {oF; F e Lip-gr;, 0 € Ry}
* Similarly by Zsubgr;,, we define the class of closed sets representable as
L-Lipschitz subgraphs, that is
Lip-subgr, = {subgraph ; y: R*~' — R is L-Lipschitz},
Zsubgr, = {oF; F € Lip-subgr;, ¢ € R,}.

Lemma 11. Forany L> 0 and k = 1, ..., d the class &, is closed in & .

Proof. Consider a sequence {L,,} of nonempty L, € &%) convergent to some
nonempty closed set F € &. If x, € F then there exists a sequence {xo,,,}, Xon € L,
convergent to x, according to Theorem 1. Without loss of generality we may
assume that ¥/, ' (Xo,) =: g is independent of n € N, where y, are L-bi-Lipschitz
functions with L, = y,(R¥).

We will construct a convergent subsequence {xp,,j} of the sequence {y,} by
diagonal choice method.

For j = 1 take some x, € F different from x, and a sequence of {x,,}, x;,€ L,
convergent to x;. (Such a point x, exists due to the bi-Lipschitz property of the
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functions V,.) The bounded sequence {i;'(x,,)} has a subsequence {l//,;tl(xl,,,;‘)},
k € N, convergent to some point a, € R*. Hence
,}Hgd/ i(@) = x,i=0,1.
To finish the first step of our diagonal choice set ,, := ¥, .
Proceedmg by induction, for any je N we can take Xx; € F different from x,,

i=0,..,j— 1, to produce a subsequence {l// '(x, )} k e N, convergent to some
a;€ R¥ out of the bounded sequence {1//, 1 (x - 1} k e N. We have

’}Lr?ow (@) =x,i=0,..,}j.
To end up the j-th step of the diagonal choice set ¥, := /.
Thus we have constructed the sequence {q// } with propert’y, that for every je N
it holds

,}Hg 2% (aj) = Xj.

By letting x;’s to exhaust some countable dense subset of F we ensure that the
sequence {a} is dense in R¥. Namely if a € R¥, denote X; the set of all cluster points
of the bounded sequence {y/, ( )}, k € N. The intersection ();nX; is nonempty,
since the sets X; are nonempty, bounded and form a nested sequence, that is
X;o X1, j€ N

Next, choose some x € ();nX; = F and a subsequence {x,}, ke N, of {x}
convergent to x. Using bi-Lipschitz property of the functions ¥, it holds

. . ~1 _
1}1{2 aj, = /}Eg l//nl{k (xfk) = a.

Hence, the L-bi-Lipschitz mappings ¥, converge pointwise on the dense set {aj;
j€ N} and due to their bi-Lipschitz they converge uniformly on any compact set
to an L-bi-Lipschitz limit iy defined on R*, which satisfies the equation

Y(RY) = F. O
Lemma 12. Forany L > 0 and k = 1, ..., d the class X%, is closed in &

Proof. Consider some sequence {L,} of L,€ £%, convergent to some nonempty
set F € & and denote by , the L-bi-Lipschitz functions parameterising L, with
¥, (H,), where H, = R* are closed halfspaces or the whole R*. Further denote 6H,,
the relative boundaries of the halfspaces H,. We consider 0H, = @ if H, = R

1. Assume first that the sets H, = R* are closed halfspaces for almost all n e N
and that the sequence of the images {y,,(0H,)} converge to a nonempty set
F' c F.

Then there is an L-bi-Lipschitz limit y’: R*~!' — R? of the mappings
V¥, partialised to 0H, according to Lemma 11 if k > 1. If k = 1, the assertion
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is trivial. Moreover for any x € F’ there exists a sequence of X, €, (aH,,)
convergent to x and we may, without loss of generality, suppose that
Yot (x,) = ¥ (x) = 0, that is 0 € dH,, for almost all n € N. Further we may
suppose that H, = H < R* since rotations preserve distance. The proof in
this case then follows using the same method as in Lemma 11, replacing R¥
by H.

2. Assume now, that the sequence {H,} may contain both R* and closed
halfspaces in R* and that limit of the sequence {y;,(0H,)} is empty set.
Thus we may, without loss of generality, assume that for some sequence of
{x.},x, € L, convergent to some x € F, {,, ' (x,) = 0, independently of n e N.
Hence d(0,0H,) — oo (we define d(0,0) = o0), since existence of any
subsequence H, with d(0,0H,,) < K would imply, using Lipschitz proper-
ty, that every cluster point of y, (0H,,) would be nonempty (every ¥, (0H,,)
would have nonempty intersection with the centred ball of diameter LK).
That is H, - R* in # (R").

Every function v, has an L-Lipschitz extension ¥/, to R* due to the theorem
of Kirszbraun and Valentine [1, 2.10.43]. Moreover the sequence of the
images {y(R)} has a cluster point F' € # due to compactness of Z.
A Lipschitz parameterisation ¢ of F’ can be constructed in the same way as
in the proof of Lemma 11, being a limit of some subsequence {y,}.

It holds y;, = ¥, on H,, ne N, that is {y,} converges to ¢ on every compact
set, considering, that every compact is contained in almost all H,. The
L-bi-Lipschitz property then follows easily.

3. Otherwise, there are at least two different subsequences of {y,(0H,)} having
different limits F', F” < F and satisfying assumption of 1. or 2. Then the
cases 1., 2. imply existence of two different L-bi-Lipschitz parameterisation
V', ¢” of F. But in such a case would F have two different relative
boundaries. '

Hence only cases 1. or 2. are of possible and it was shown that F e ¥%,;. [

Theorem 13. The classes M, (ﬂ%() k=1, ..., d, of k-dimensional Lipschitz
manifolds in R? (with boundary, respectively) are measurable.

Proof. For any k = 1, ..., d the classes | JicnZir, \JrenZ By, are F, in
& according to Lemma 11 and Lemma 12.

The statement then follows from Theorem 10 since representation (1) holds for
M and for ./ %, substituting the classes | JrenZLirs (JrenZ B 1, respectively. [

Lemma 14. For every L > 0 the classes Lip-gr; and Lip-subgr; are closed in
F.

Proof. This statement easy to check since convergence of graphs or subgraphs
of L-Lipschitz functions in the Vietoris topology implies locally uniform conver-
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gence of these functions. The statement then follows since locally uniform limit of
L-Lipschitz functions is L-Lipschitz as well. O

Lemma 15. For every L > 0 the classes Lgr | and ¥subgr; are closed in & .

Proof. The map
I Rd X% - F
(e.F) - oF

is continuous (cg. [4, 1.2.4]) and therefore the set I“"(Lip-gr,) is closed in the
product space R; x &. Further the projection Ilz:R; x & — &% is a closed
mapping since R, is compact. Thus the set I, (I~ (Lip-gry)) is closed as well.
The closeness of the class Zgr; of L-Lipschitz graphs then follows by checking
that Zgr, = I4(I'~'(Lip-gr.)). The closeness of the class #subgr, of L-Lip-
schitz graphs proceeds in the same way. O

Theorem 16. The classes Mgr,_,, Msubgry; of d — l-dimensional strong
Lipschitz manifolds and d-dimensional strong Lipschitz manifolds with boundary,
respectively, are measurable.

Proof. The proof proceeds in a similar matter as a proof of Theorem 13, using
closeness of the classes £gr; and #subgr; implied by Lemma 15. O
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