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Seventh Winter School on Abstract Analysis 1979

RADON~NIKODYM TYPE PROPERTIES

FOR BANACH SPACES

L, Janicka, Wroctaw

Let X be a real Banach space and let <S,¥X3,A> de-
note a finite, positive, complete mecasure space. In the follow=-
ing G (X*,X) will stand for the weak* topology and Kyx for
the unit ball in X* ., We use the symbols X"-dei\ for the
Pettis integral of a ‘weak integrable function f : § —X and
X-fgdm for the weak* integral of a weak™ integrable function
g : s—x* . .

We write Borel (X¥, o(X*,X)) for the Borel o -algebra
on <X* o (X*,X)> , i.e. the © -algebra generated by
G (X*,X)~-open sets. By ca(X) we denote the space of all
A -absolutely continuous vector measures /w 3, — X with
finite variation I/“"l .

We shall consider the following properties of Banach
spaces: ;

(A) For every <S,23,A> and every /cha(X) therc
exists a Pettis-integrable function f : §—X such

that {w(A) = X*~ [ fdA for every A€ X .

(8) For every <S,23)A> and every /u,Eca(X) there exists

a Pettis-integrable function f : §—X**, such that

(w(A) = X”*-J fdx for every A€37 .,

(Cc) There cxists 2\ Banach space ZJX (isomorphically and

isometrically) such that for every <S,X], 2> and eve-



ry fLEca(X) there is a Pettis-integrable function
f : S—=Z such that Iu,(A) = Z"-I fdN for every
A€ T, A

(L) For every <5,5,A> thoro oxis.s a Banach space <2JX
such that 7or every ﬁusca(x there is a Pettis-into-
grable funct.ci1 f : S—+Z such that lw(A) = Z*-_ffd).
for evory A€, A

(E) For cvery <S,X7,1> and every ImEcn(X) there exist
a Banach space ZI‘VDI"'(Z‘) and a function f : s—-z'ﬂ,
such that [J.(A) = ZF‘, -A‘ fdA for overy A€,

Tho property of posscssing (A) was considered by Musial
[4] and it was called the Weak Radon-Nikodym Proporty (WRNP).
Propertics (B), (D), (E) was dofined in thc dissertation of the
author, Musial suggosted consideration of (C).

It is clcar that (A)==p(B)==>(C)==) (D) ==» (E), Goncrally
(A) and (B) are not equivalont. Indced, the space B construc=-
ted by Lindenstrauss and Stog-all [3] does not have property (A),
since it is separable without RNP, but it :.sntisfios (D) as Bs~
has WRNP [4] « As was proved by Drewnowski, (C), (D) and (E)
are equivalont, The question whother (C) implics (B) or not ro-

mains opcn,
Proposition. c¢, does not have proporty (C).

Proof, Lot {rn(t)} denotc the Rademacher system on the unit
interval 1 and considor a mcasurc e defined on the
G -algebra & of Lcbesgue moasurable subsets of I by

p‘,(A) a 11-J{rn(t)} dt ., Supposc (u has an 1:, -measurable de=-
' A
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g: I—1l, . Then {rn(t)} ad g(t) are 1,-equi-

t an , 1nce l1 is scparablc, these two functions are
- ' st ~verywhere, So the function [0,1] 3t-—¢{rn(t)}e
Y o yould have to be 1%, ~-mcasurable, which is impossible,
rn(t)+1 )
n c ic function [O,lJBt-—b{———z———-} is not 1% -measu-

rablec by a theorem of Sierpanski [7]. Thus c, cannot have
property (B). But ﬁv takes values in o and its rangc gene-
rawecs all €y Supposec there cxist a Banach space Zﬁ* D/u(ij)
and a function f : S-—’Zfb such that  w(A) = Zfb -j fdA  for

every AEG3Z , Then of course {u/(A) = Z/:,”’-j fda ® and since

A
Ll,, is an injcctive space, . would have a Pettis derivative

with values in 1, , which is impossiblec, So Vol cannot satis-

iy the condition appearing in (E). This compleées the proof.
Since (E) is hereditary, ¢, - cannot bc contained in a Ba-

nach space with property (E). In particuiar, we obtain the fol-

lowing Corollary which solves Problem 3 posed in [4] .

Corollary 1, ¢, cannot be isomorphically imbedded into any

Banach space possessing WRNP,

Theorem, For an arbitrary Banach space X the following condi-
tions are equivalent:
(L) X*¥€ (A)
(i1) X*e(B)
(iii) X*e€(C)
(iv) X*€ (D)
(v) X*e(E)
(vi) xPL, .
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Prooi, Of course it will bec cnough to prove that (v) implies
(vi) and that (vi) implies (i),

(a) Suppose XDOl, and take thc measure /u ¥ —c, defined
in Proposition, Using Thcorem 1 of [_5_] we can find a measure

& : —r X" such that T*® = M where T denotes the embedd-
ing of 1, into X ., It is a s’tandard calculation to show that

® does not satisfy the condition appearing in (E).

(b) Suppose X;bll and consider an arbitrary measure
fpeca(X) . We can restrict ourselves to measures which have
average range A(,‘,(S) ={'%‘§'§' : BE X, A(B)>0} contained
in Ky» .So A{w(S) is relatively compact in the weak* topolo-
gy. By a theorem of Rybakow [GJ there cxists an X-mcasurable
function f, : S—»X* such that w(A) = x-f fdA , f (S)C
CKX,.. for every ACZ3XS , Now we can use a tﬁeorem of Ionescu-
-Tulcea [2,p.51] , and choose such a function f ; S—X¥*
which is X-equivalcnt to fo , measurable from X to

Borel (X*, ¢(%*,X)) and for which the measurc )\f s

Borel (X*, &(X*,X))—R defined by A(B) = A(f7(D)) is
regular (for the gencralization of this thcorem sec [8_]).

Since A was supposed to be complete, 7 is mcoasurable
from 3° to the completion of Borel (X*, o (%7,X)) with respect
to the mcasurc Af .

By [1] , Thecorem 4,2, the function x**of is mcasurablc
for cvery x**€X"™ , which mcons that + is X*"-measurable.
Now, for every AE€SS with A(A)>0 let fl"‘\ denote the
restriction of T to the set A . Then ;;*'cflA ic mcasurable

since x'*of'A = (x**of)lA . Let ;;7\ denote the burycentre of
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the probability mcasurec WIA_) 7\? , wherc )\? is defined
by A(B) = A(fH(B)NA) for every BEBorel (X*, &(X*,X)) .

Consider the point y;{ = AA)x

X . Then by [1_] , Theorem 4,2

we can write:

;;**,yA’">

A(A)(:{"‘,::K) =
AA) J<xmran > s AR(dx?) =

ka

_[(x"*,x*))\"f\(dx*) .

KX’

Now, using thc changc-of-variables formula'wchhave:
J € >7\?(d;:*) < x** f(s)> A(ds) =
Ky ' fi'/]i(Kx,-,)

j(::**,f(s)) A (ds) .
A

So yR:X**-jf(s))\(ds) and yX: {u,(A) since X is total

A
for X* , This complctes the proof,
p P

Corollary 2, For an arbitrary Banach spacc X

APEVIRNE <= X DL,

The above cquivalence was proved in [4] under the additio
nal agsumption that X is separably complementable, Morcover
it was proved in [5] that X]Sll if X¥EWRNP, Let us also re-
wark that Theorem gives the affirmative answer to Proulens o

anu U posed in [4_] . The following Corollary solves Problem 7
iron [4] .

Corollary 3, Let X be an arbitrary Banach space and supposc

that X*E€VRNP, Then cvery weak® closed subspace Y of X"

posscssces WRNP as well,



Proof., Every weak* closed subspacc of

(X, )%
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X* is of the form

for some ZCX ., So, suppose X" € WRNP, Then XZ)l1

and, as is easy to see, '/22511 as well, By our Theorcn,

(x/z)" € VIRNP,

Let us only.remark that using Theorem 2 we can also give

the atfirmative answer to Problem 4 from [4] .

Last of all I would like to call attention to the comple-

te analogy betwcen characterizations of dual Banach spaces

with RNP and WRNP (for rcferences see [1]). Namely, X* has

RNP (WRNP) if and only if any of the following conditions is

satisfied,
for RNP for VRNP
1/ Every separable subspace 1/ X contains no isomorphic
of X has a separable copy of 1, .
dual,
2/ Every norm closed bounded 2/ Every wcak¥* closed boﬁnded

convex subsct of X* is
the norm clogsed convex
hull of its extrecme

points,

3/ The identity map from

- * .
<Ky €(X¥,X)>  into
<Kyn |

ly Lusin-measurablc.

." > is universal-

3/

convex subset of X¥* is the

norm closced conve:: hull of

its cxtreme points,

The identity map from
<'<x"' G(X*,X)>
<kl 1>

universally measurable.

into

is scalarly
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