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Seventh Winter School on Abstract Analysis 1979 

RADON-NIKODYM TYPE PROPERTIES 

FOR BANACH SPACES 

L. Oanicka, Wroclaw 

Let X be a real Banach space and let <S,Z3,A> de

note a finite, positive, complete measure space. In the follow

ing C5(X*,X) will stand for the weak* topology and l<xA for 

the unit ball in X*" . We use the symbols X*- ffdA for the 

Pettis integral of a weak integrable function f : S —>X and 

X- f gdm for the weak* integral of a weak* integrable function 

g : S—>X* . 

We write Borel (X*, cr(X*,X)) for the Borel rj-algebra 

on < X*, cj(X*,X)> , i.e. the <T-algebra generated by 

CT(X*,X)-open sets. By ca(X) we denote the space of all 

A-absolutely continuous vector measures M/ : X L — + X with 

finite variation |ylv| . 

We shall consider the following properties of Banach 

spaces : 

(A) For every <SfZU, A> and every /U,Gca(X) there 

exists a Pettis-integrable function f : S —* X such 

that MA) = X*- f fdA for every AG ZZ . 

(B) For every <S,ZL, A> and every /K,Gca(X) there exists 

a Pettis-integrable function f : S—*X**, such that 

Û,(A) « X***- f fd> for every A ^ B . 

A 
(C) There exists a Banach space Z D X (isomorphically and 

isometrically) such that for every < S , . E , X > and eve-
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ry AtGca(X) there is a Pettis-integrablo function 

f : S-»Z such that yu(A) « Z*-J fclX for every 

A€ 2 . A 

(U) For every <5,.C,A> thoro exists a Banach space ZDX 

such that for every AL€ca(X) there is o Pottis-into-

grable funct-c \ f : S—*Z such that Au(A) « Z*-.J fdA 

for every A€23 • 

(E) For every <S,Z3tA> and every /lu€co(X) there exist 

a Banach spaco Z AV 3/U<(Z1) a n d a function f : S —•Z^ 

such that /»x(A) • Z^-ffdA for overy AGZ3 • 
' A 

The property of possessing (A) was considered by Musial 

[4] and it was called the Weak Radon-Nikodym Property (WRNP). 

Properties (B), (D), (E) was dofincd in the dissertation of the 

author. Musial suggested consideration of (C). 

It is clear that (A)—>(B)—>(C)—•>(D)—*(E). Generally 

(A) and (B) are not equivalent. Indeed, the space B construc

ted by Lindenstrauss and Stogall [z] doos not hove property (A), 

since it is separable without RNP, but it satisfies (B) as B** 

has WRNP [4] . As was proved by Drewnowski, (C), (D) ond (E) 

are equivalent. The question whether (C) implies (B) or not re

mains open. 

Proposition. cQ does not hovo property (E). 

Proof. Lot {r^C1)} denote the Rademachcr system on the. unit 

interval I and consider a measure AU defined on the 

C -algebra X of Lebesguc mcasurablo subsets of I by 

At(A) a l̂ -J {rn(t)/dt • Suppose pu has an 1^ -measurable dc-



g : I — - - 1 ^ . Then {r n(t)} a,,d g(t) are l^equi-

t an , m c c 1 1 is separable, these two functions are 

1 st everywhere. So the function [o,lj9t—*{r (t)}E 

n
M vould have to be 1^, -measurable, which is impossible, 

n c ic function L° - ̂ J -=* *—*{ 5 } is not --eo -measu-

iable by a theorem of Sierpinski [7J # T n u s c cannot have 

property (B)# Dut /tv takes values in c and its range gene

rates all c . Suppose there exist a Danach space Z ^ D/u,(5Z) 

and a function f : S — * Z ^ such that /lc(A) = Z% - ( fd.>. for 

every A € SZ # Then of course Ac(A) » zl^^mm j fdA and since 

--oo is an injective space, AU would have a Pettis derivative 

with values in 1^ , which is impossible. So AJJ cannot satis

fy the condition appearing in (E). This completes the proof. 

Since (E) is hereditary, c cannot be contained in a Ba-

nach space with property (E). In particular, we obtain the fol

lowing Corollary which solves Problem 3 posed in [4] . 

Corollary 1. c cannot be isomorphically imbedded into any 

Danach space possessing IVRNP. 

Theorem.. For an arbitrary Danach space X the following condi

tions are equivalent: 

(i) X*€(A) 

(ii) X*E(B) 

(iii) x*e(C) 

(iv) x*e(D) 

(v) X*€(E) 

(vi) X ^ . 
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Proof. Of course it will be enough to prove that (v) implies 

(vi) and that (vi) implies (i). 

(a) Suppose X 3 1 1 and take the measure Ai>: fc£ —>c defined 

in Proposition. Using Theorem 1 of [5J we can find a measure 

«& : \sL— '* X"* such that T*ae = /&, , where T denotes the embedd

ing of 11 into X , It is a standard calculation to show that 

0£ does not satisfy the condition appearing in (E). 

(b) Suppose X .p11 and consider an arbitrary measure 

yiLEca(X) 0 We can restrict ourselves to measures which have 

average range Ayu,(S) =- {•ffigy : B E X3 , A(B)>o} contained 

in Kv* .So A^,(S) is relatively compact in the weak* topolo

gy. By a theorem of Rybakow [GJ there exists an X-mcasurable 

function fQ : S—* X* such that At(A) = X- f fQdA , fQ(S)C 

A 
CKvJf for every ACZ3 . Now we can use a theorem of Ioncscu-

/V 

-Tulcea [2,p.5l] , and choose such a function f : S—>X* 

which is X-equivalcnt to f , measurable from 52 to ^ o 

Borel (X*, (?(X*,X)) and for which the measure Ar : 

Borel (X\ vJ(X*,X))-*/R defined by Af(B) = A(f1(B)) is 

regular (for the generalization of this theorem sec [*-*])• 

Since )i was supposed to be complete, f is measurable 

from Z2 to the completion of Borel (X*, cj (X"" ,X)) with respect-

to the measure Ac . 

» 

By [lj , Theorem 4.2, the function x**of is measurable 

for every ;s**€XM , which means that f is X**"-measurabic. 

Now, for every AGZZ with A(A)>0 let fl A denote the 

restriction of f to the set A . Then ;;^*ofK is measurable 

since x^ofL = (x**©f)|A . Let ;;? denote the baryecntro of 
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the probability measure \{A\ ^f « where A. is defined 

by A^(B) = A(f"1(B)HA) for every BGBorel (X\ <y(X\X)) . 

Consider the point y* = MA)x£ . Then by [l] , Theorem 4.2 

wo can write: 

<-*\y£> = MA)<x»\x*> = 

- MA) J<x*>.x* >-7^--y AA(dx-) = 

к
x
. 

=
 J <x",x*>A^(dx*) . 
K

X
A. 

Now, using the changc-of-variables formula we have: 

J <x*\x* >A^(dx\ = f <x*\f(s)> A(ds) = 

V '
 f

fi(
K
x*) 

= J<x*\f(s)> A (ds) . 
A 

i}0 y* = X * A - J f ( s ) A ( d s ) and y * = /u,(A) s i n c e X i s t o t a l 

A 
f o r X*" . T h i s c o m p l e t e s t h e p r o o f . 

C o r o l l a r y 2 . For an a r b i t r a r y Banach space X : 

X * € WRNP <=>X £ l a . 

The above equivalence was proved in [4] under the additio 

nal assumption that X is separably complementablc. Moreover 

it was proved in [s] that X ~pl^ if X*G WRNP. Let ub also re

mark that Theorem gives the affirmative answer to Problems 0 

ana C posed in j_4j , The following Corollary solves Problem 7 

from [4] . 

Corollary s. Let X be an arbitrary Banach space and suppose 

that X*(EWRNP. Then every weak*" closed subspace Y of Xh 

possesses WRNP as well. 
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Proof. Every weak* closed subspacc of X* is of the form 

(X ,-.)>- for some Z C X
 #
 So, suppose X'*G WRNP. Then X/>1

1 

and, as is easy to see, */zfi^i a s w e l l
«

 B v o u r
 Theorem, 

(X
/Z
)»G WRNP. 

Let us only remark that using Theorem 2 we can also give 

the affirmative answer to Problem 4 from [4J . 

Last of all I would like to call attention to the comple

te analogy between characterizations of dual Banach spaces 

with RNP and WRNP (for references see [l] ). Namely, X* has 

RNP (WRNP) if and only if any of the following conditions is 

satisfied. 

for RNP for WRNP 

1 / Every separable subspace 1/ X contains no isomorphic 

of X has a separable copy of l^ . 

dual. 

2/ Every norm cloced bounded 2/ Every wcak* closcd bounded 

convex subsct of X* is convex cubset of X*" is the 

the norm cloccd convєx norгn closcd convcx hull oí 

hull of its extreme its cxtrcm points. 

points. 

3/ The identity map from 3/ The idcntity map fгom 

<K
x l t f

 eҶX*
f
X)> into <K X Á f <5(X***)> into 

<Kx*f||. || > is universol- <KX>,||. 1 > is scalarly 

ly Lusin-measurablc. universally measurable. 
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