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SEVENTH WINTER SCHOOL (1979) 

ROUGH AND STRONGLY ROUGH NORMS ON BANACH SPACES 

BY 

J.H.M. Whitfield 

Let X be a real Banach space whose dual is X*. Their 

closed unit balls and unit spheres will be denoted B, B* 

and S, S*, respectively. A norm on X is said to be rough 

(resp., strongly rough) , if there is z > 0 such that for 

all x c X and n > 0 there are x,,x2 c X, u c S, (resp., 

for all x £ X there is u c S such that for all n > 0 

there are x,,x2 c X) such that ||x.-x||<n.r i = I/2 and 

i j j l -a+l lxj l ( d + | | x 1 | | - d + | | x J | ) (u) 2 c , where 

đ + | | x . | | ( u ) = lim H*+--IHI*I1 
-" 4--4.Г.4. t 

a MX, .. - -

t+o+ 

(This limit exists for all x c X, u e S.) 

If X admits an equivalent rough (resp., strongly rough) 

norm, then there is no real valued Frechet differentiable 

(resp., continuous Gateaux differentiable) function with 

bounded nonempty support on X. Also, the existence of an 

equivalent rough norm on X ensures that there is a separable 

subspace Y of X with nonseparable dual. [4,5,10]. 

Theorem 1: The following are equivalent: 

(i) || • || is not rough, 

(ii) B* is weak* dentable, i.e., for each e > 0 there 

is x e S and a > 0 such that diam{f e B*: 

f(x) > 1-a} < e. 
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(iii) B is strongly smoothable, i.e., for each e > 0 

there are x / B and f c S* such that {x e B: 

f(x) > c} c cl U{t(B-x): t >. 0}. 

(iv) || • || is malleable, i.e. for each e > 0 there are 

x c S and 6 > 0 such that for 0 < A < M5 and for 

any y e B it follows that || x+Ay || + || x-Ay ||-2 < sA. 

The equivalence of (ii) and (iv) is essentially due to 

Sullivan [9]; (ii) equivalent to (iii) is due to Anantharaman, 

Lewis and Whitfield [1]; and, John and Zizler [4] showed that 

(i) and (ii) are equivalent. John and Zizler also give the 

following. « 

Theorem 2: The following are equivalent: 

(i) || • || is not strongly rough. 

(ii) B* is weak* weakly dentable, i.e., for every e > 0 

there is x e S such that diam{f c B*: f(x) = 1} < e. 

(iii) || • || is weakly malleable, i.e., for each e > 0 there 

is x c S such that for all y e B there is 6 > 0 

such that, for 0 < A < 6, ||x+Ay || + ||x-Ay|| -2 < eA. 

It is easily seen that the dual statement of both theorems 

obtains. 

Problem 1: Is there a geometric condition on B, e.g. 

similar to strong smoothability, that is equivalent to || • || 

failing strong roughness? Or equivalently, a geometric con­

dition dual to weak dentability? 
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X is called an Asplund (resp.f weak Asplund) space if 

every continuous convex function on X is Frechet differenti­

ate (resp.f Gateaux differentiable) on a dense G. subset 

of its domain. For several properties of such spaces see [6] 

and [7]. A fairly immediate consequence of Theorem 1 is the 

following characterization of Asplund spaces. 

Theorem 3: (John-Zizler [4]) X is an Asplund space if and 

only if X does not admit a rough norm. 

Some immediate consequences are 

Corollary 1; (Namioka-Phelps-Stegall [6f8]f see also [1] and 

[7]) X is an Asplund space if and only if every separable 

subspaces of X has a separable dual. 

Corollary 2: (Leach-Whitfield [5]) If Y is a subspace of 

X such that dens Y < dens Y*f then X admits an equivalent 

rough norm. 

Corollary 3; (Ekeland-Lebourg [2]) If there is a real valued 

Frechet differentiable function with bounded nonempty support 

on Xf then X is an Asplund space. 

Problem 2: Does the converse of Corollary 3 hold? 

A related, but possibly different, problem is: 

Problem 3: Does an Asplund space admit an equivalent Fre­

chet differentiable norm? 
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Less is known about veik Asplund spaces. In our sotting 

we have only 

Theorem 4; Ir X is a weak Asplund space, then X does not 

admit an equivalent strongly rough norm. 

Problem 4: Is tho converse of Theorem 4 true? 

Problem 5;. If X admits an equivalent Gateaux differenti-

able norm, .is X weak Asplund? Converse? 

Problem 6: Does the existence of a real valued Gateaux 

differentiable function with bounded nonempty support on X 

imply that X is weak Asplund? Converse? Recall that no such 

function exists if X admits an equivalent strongly rough norm. 

X is said to have property (w) if every bounded sequence in 

X* has a weak* convergent subsequence.. 

Theorem 5: (Hagler-Sullivan [3]) If Y is a subspace of X, 

Y has (w) and X fails to have (w), then there is an 

equivalent strongly rough norm on X/Y. In particular, if X 

is smooth, then X has (w). 

Also, Stegall [8] has shown that X has M whenever X 

is weak Asplund. However, the presence of (w) ensures neither 

smoothness nor weak Asplund as shown in an example of 

J. Bourgain. (See [3]). 
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