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PLANE WAVES, BIREGULAR FUNCTIONS AND HYPERCOMPLEX FOURIER ANALYSIS 

F. Sommen 

Abstract. In this paper we construct a formula for the biregular 
extension of an analytic function in i?mxi?m. We apply these formulae 

i<tx> ~* ~* k 
to the exponetial function e ' , the polynomials <x,t> and to 

plane wave functions f(<x,t>). We show that the biregularity condi
tions for extensions of plane waves may be expressed by eight 
equations in five dimensions; the so Called biregular plane wave 
equations. 

The complexified biregular exponential function E(T,Z) is used to 

define a general hypercomplex Fourier-Borel type transform and we 

investigate a specialized version of this transform. 

Introduction. Let f_c.ffm 1xRm be open. Then a function fed(n;A), 
A being a complex Clifford algebra, is called biregular in fi if f 
satisfies Dxf(x,t)=f(x,t)Dt=0, where 

m a m a D = I e. •*—, D = I e. -<--— are generalized Cauchy-Riemann operators 
X j-« J Xj Z j-» 3 d t j 

(see [1] ,[ 2] ,[3] ,[5] ,[7]). 
For this theory of functions, there exists a Cauchy-Kowalewski type 
theorem, which allows us to construct a formula for the biregular 
extension of analytic functions in HmxHm. 
First we apply this formula in order to construct the biregular 
exponential function E(t,x) as the biregular extension of 
exp(i<t,x>), (t,x)GHmxHm. 

The explicit calculation of E(t,x) leads to hypercomplex generaliza
tions L, ,(t,x) of the classical Laguerre polynomials. Furthermore 
it turns out that E(t,x) depends only on the five variables 
(xo,t0,|x|

2,|t|2,<x,t>). 

This paper is in its final form and no version of it will be sub
mitted for publication elsewhere. 
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Next we define the fundamental biregular polynomials S - A t , x ) as the 
biregular extension of <x,t> , (x,t)eHmx.ffm.Furthermore we give 

the expression of Sv(t,x) in terms of the Dolynomials (<x,t>-x0t) 
-> k 

and the operators (<x,Vt>-x0D0 t) (see [7] ,[10]) and the Fueter 
polynomials (see [ 1] ,[5]). 
In the third section we establish the equations satisfied by bire
gular extensions of plane waves f(<x,t>). These equations are 
expressed in the five variables (x0,t0,|x|

2,|t|2,<x,t>). 
In the fourth section we recall some basic facts about hypercomplex 
analytic functioiials (see [ 1] ,[ 4] ) and we define the carrier of a 
hypercomplex functional. 
The final section is devoted to the Fourier-Borel transform of 
hypercomplex analytic functionals. We study the transform of a 
functional T : ^ _+ ^ 

FT(z)=<Tt,e
i<t:'z>(cht0[z]-^sht0[?])>, 

[z] 
-* m \ 16 

where [ z]=( I z? ) 1 / 2 . 
j = i J 

Furthermore we give estimates for this transform and we show that, 

if a holomorphic function f satisfies these estimates; then f is 

the Fourier-Borel transform of a functional T, for which we can 

study the carrier in terms of the given estimates of f. 

1. A biregular exponential function 
Let ficHm+1xl?m+1 be open and let f(x,t), (x,t)efl be a Ci-function 
in n. Then f is called biregular in Q if 

Dxf(x,t)=f(x,t)Dt=0, 

m -. m r, 
where D = I e. ^-f D = I e. ---f-, e0 = 1. 

J=o J 9xj t j-o J atj 

In the theory of biregular functions, the following Cauchy-Kowalew-
ski type theorem is valid. 

Theorem 1 Let f be analytic in an open set fic_i?mxHm. Then there 
exists a unique biregular extension f of f, defined in a neighbour
hood si of U in Rm+1xi?m+1. 

Put D =«--̂ -+D , D =---!--+D .; then it is easy to see that the x 9x0 o,x t £t0 o,t ^ _̂  _̂  _> 
biregular extension f(x,t) of f(x,t), x=x0+x, t=t0+t, is given by 

f(x,t)= Z ffrf(-D0 x)
kf(x,t)(-Do ' ) l . 

k,l=o K*i- 0>x ° > z 
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Notice that every entire analytic function f in HmxHm
 has an entire 

biregulier exentension f to Rm • xRm 

We now introduce the biregular exponential function by 

Definition 1. The biregular exponential function E(t,x) is the bi

regular extension to Rm lxRm l
 of the function f(x,t)=exp(i<x,t>). 

Notice that _̂  _̂  _̂  

E(t,x)=E(t,x)|
to
J

0
=e

i<t
'

x>
(ch|t|x

0
-4r-sh|t|x

0
), 

(see [ 7] , [10]). 

The calculation of E(t,x) may be done in terms of so called genera

lized Laguerre polynomials. 

Definition 2. The generalized Laguerre polynomials L, -,(t,x), 

(t,x)eHmxi?m, are determined by 

k 1 . -* -* 

*ot
OT

 a -N i<x,t> Б(t,x)- Z iŁІІL. Лt.xЭe-1 

k,l k!l!
 к > 1 

From the biregularity of E(t,x), D
x
E(t,x)=0 and E(t,x)D

t
=0, it 

follows immediately that 

L
k

+1
,l(t>*)=-(

D
.,x

+i
^

L
k,l(

?
>*) 

(D 
L

k ) 1 + 1
(t,x)=-L

k > 1
(t,x)(D

0 ) t +
ix) 

As L =1, we hence obtain that 

L
k>0
(t,x)=(-it)

k
, L

U)1
(t,;) = (-ix)

1
, 

and so, 

L k > 1 ( t , x ) = ( - D k + 1 i 1 ( D 0 j X + i t ) k x 1 

= ( - D k + 1 i k ? k ( D 0 > t + i x ) 1 , 

which is a polynomial of bidegree (k,l) in (t,x). 

Furthermore, we also have that 

L
k)1
(?,;) = (-D

k + 1
i

1
e-

i < 7
»

J >
D

k

) X
(;

1
e

i < t
^

>
), 

a formula which is similar to the definition of the Laguerre poly

nomials (see [ 6]) : 
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Ln(x)=HTx"aeX^)n(e"Xxn+a)-

As (DQ ' +it)
2=-A +|t|2-2i<t,V>, we obtain that 

-2 k f 2 i^.-:) t a(-nk(V i < t 'v >- i t l2 ik l5 l2 1 

= (.1)ke- i<t,S> A ^ ^ V ^ ' ^ ) , 

which is a C-valued polynomial, only depending on |t|2, |x|2 and 
-*• -• 

<x,t>. 
Hence, in view of the recursion formulae (1) and the definition 

of E(t,x), it follows that 

E(t,x) = A + xB + tC + XAtD, 
A,B,C,D being C-valued functions, depending only on five variables, 

namely (x 0,t 0,Ix|
2,|t| 2,<x,t>). 

Hence E(t,x) consists of a scalar part A, a vector part xB+tC and a 
bivector part XAtD, XAt=---(xt-tx) . 
Functions of the form A+xB+tC+XAtD> where A,B,C,D depend only on 
(x0,t0,|x|

2,|t|2,<x,t>)=(xo,to,p,T,0) are called biregular plane 
waves. 

2_. Fundamental biregular polynomials 

The fundamental biregular polynomials S,(t,x) are introduced by 

Definition 3. S j A t , x ) , k e N , is the biregular extension of the func
tion (x,t)-*<x,t> , and is called the k th fundamental biregular 
polynomial. 

The polynomials Sv(t,x) occur in the Taylor expansion of biregular 
°° k plane waves. Let f(z)= I c,z be holomorphic. Then the biregular 

k=o 
oo 

extension of the plane wave f(<x,t>) is given by I cvSv(t,x). 
k=o K K 

As an example , we have that 

oo . k 

(2) E(t,x)= I -i- Sk(t,x), 
k=o k! K 

We shall now derive several expressions for the polynomials Sk(t,x). 
First of all we have 

Proposition 1. The polynomials S, (t,x) are given by 
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Sk(u,x)=—(<x,Vt>-x0D0)t)
k(<t,u>-u0t)

k. 

Proof. It is clear that the above expression is biregular, since 

the functions (<t,u>-u0t) and (<x,Vt>-x0D0 ) are monogenic in u 
and x. Furthermore the restriction of this expression to x0=t0=0 
equals 

1 -• k -* -* k -• -• k ^j<x,Vt> <t,u> =<x,u> , 

and so, the conditions of Definition 3 are satisfied. • 

m m 

Next, let (ki,...,k )e^ be such that I k .=k. Then we may consider 

the Fueter polynomials 

. - - • - k - , - . . ^ 7km Zk,...km
(x)"Zl © '•• © zm m ' zj=xj-ejxo, 

k. k which are the monogenic extensions of xi...x m (see [1],[5]). We 

jiow give the expression of Sk(t,x) in terms of the Fueter poly

nomials. 

Proposition 2. The fundamental biregular polynomials Sk(t,x) are 
given by 

Sk(t,x)= I -i! Zk , (x)Zk k (t). 
K (k!,...,km) ki!...km!

 Kl'--Km K l - " K m 

Proof. The above expression is clearly biregular. Furthermore its 

restriction to x0=t0=0 equals 

I. (tixi)k ...(tmx )
km=<x,t>k. 

(ki...k) ki!...k! m 

Hence, again the conditions of Definition 3 are satisfied. • 

Next, let us recall that the functions 

(<x,t>-x0t) (<u,s>-u0s) 
are biregular in (x ,u )e l? m xRm , and this for every 
(t,s)eSm~1xSm~1. Hence we wonder if the polynomial Sk(u,x) may be 
expressed in terms of these polynomials. We indeed have 
Proposition 3. There exist real measures uk(t,s) on S

m~ xSm~ such 
that 
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Sk(u,x)=/m_1 m_l (<x,t>-Xot)
k(<u,s>-u0s)

Kdyk(t,s) . 

Proof. It is easy to see that span {<x,t> II tesm~ }contains all 

homogeneous polynomials of degree k. Hence there exist measures 

Pi, v (t) on Sm-1such that ki...km 

x^ l...xj m- / <x,t>kdyk k (t). 
sm-i i • • • m 

This leads to 

<x,t> =1 (xjUi) ...(x u ) m 
k. kx!...k !

 m m 

J m 

r ~* ** k -* -* k - •-*• -+N 

=Sm-1xSm"1<X,t> < U , S > d yk ( t , S )' 

dyk(t,s)-Z — dyv v (t)®dyv , (s) . 
K k. kx!...k !

 Kl-,,Km Kl--'Km 

Proposition 3 follows by taking the biregular extension of this 

formula. • 

3. The biregular plane wave equations 

Let PGA->D) be a differential operator, D=V for which a Cauchy-

type extension theorem with respect to t is valid. Then we can 

calculate Cauchy extensions f(t,<x,t>) of plane waves f(<?,?>), by 

expressing the system P(-A-,D)f=0 in terms of the variables t and 

<x,tT>. These equations are called the P-plane wave equations. 

a2 

Example 1. if p= A, the plane wave equations are simply given by 
9t2 

<J^-!l,f... 
at ax2 

a m a 
Example 2. Let p=—2—+ z e.T—. Then the plane wave type solutions 

ax0 j-i
 Jdxj 

of Pf=0 are of the form 

gl(<X,t>,X0|t|)—4-g2(<X,t>,Xo|t|), 
|t| 

where (gi,g2) satisfy the usual Cauchy Riemann equations in the 

plane (see [10]). 

Similar questions may be put for the biregular system. Let f(<x,t>) 
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be a plane wave; how to describe the biregular extension £(x,t) of 

this plane wave and which are the variables needed in order to give 

such a description? 

We shall show that this problem may be solved in five dimensions, 
namely (x0,t0,|x|

2,1112,<x,t>) = (x0,t0,p,T,9). ' 
Hence, we generalize the concept of biregular plane wave to 

Definition 4. A biregular plane wave is a biregular function of the 

form A+tB+xC+XAtD, where A,B,C,D are C-valued functions, depending 

on the variables-(x0,t0,P,T,0). 

The biregular plane wave equations are the biregularity conditions 
applied on a biregular plane wave and expressed in terms of the 

coordinates (x 0,t 0, p, T,e). 
We show that this is indeed possible. Let f=A+tB+xC+XAtD be a 
biregular plane wave. 

Then we have that 

3xo o ,x 

=^ A + D„.x p-!? + Do.x 6-|l 

+^B+Do,xP^lf+Do.xe^ll 

+^ c + D,.xP-^ + Do.xe-^ + Do x-c 

+^H7+D
u.xP(-t)M+Do>xe(x^)iS 

+ D 0 ) X ( X A ? ) . D , 

where 
Do,xP=2*' D„,x6=?> Do,x e^=- T> 

D0 xp.x=-2p, D0 xp.t=2xt=2(xAt-6), 

Do,x -x=t-x="(xAt+ )' D
o,x

x =
"

ш
' 

D
n v

p(xлt)=2x(xt+ )=2 ( x-pt), 

D
o x Cxлt)=-t(tx+ ) = (тx- t) 

D
0>x
(xлt)=D

0>x
(?t+<x,t>)=(1-m)t. 
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As a similar expression holds for f (-r-r—+DQ ) , one can easily show 

that the biregular plane wave equations are given by 

9A ?A9B 9B ? 9C ft9C m r _ n 

33E7"2e97-' 9e-2pH5-e9e-mC-° 

9B ,9A ? 9D ft9D+ri m^-n 

9 3 ^ + 9 8 - 2 p - 9 T - 8 I e + ( 1 - m : ) D - 0 

9C + ?9A+ ? f l9D 9D_n 
33ET 29p" 2 69P T 96-° 

9D _9C ? 9B n 

9x0~96 9p 

9A ?ft9C 9C ? 9B ft9B . n 

9t7' 2 e3T" p9^' 2 T9T' e9e' m B- 0 

9B 9A ?_9D ft9D+ri . n _ n 

9C _.79A_-09D_.9D_-

n T + 2 9 T + 2 0 ^ P96"° 
9D _^+79C=n 

9t0"9e 9T 

We hence obtain two groups of four equations in five dimensions. 

The second group follows from the first by replacing x0 by t0, p by 

T, T by p, C by B and B by C. 

Next we can wonder whether we can describe biregular plane waves 

in less than five dimensions.Of course they depend on the variables 

(x0,t0,<x,t>). Without the proof we state 

Theorem 2. For m>1 , the biregular plane wave equations can't be 

formulated in less than five dimensions. 

. 4. Elementary duality theory 

Let KC_.m+1 be compact and M,,JK;A) the left A-module of right 

monogenic functions on K. Then we have the duality theorem (see 

[4]) 

Theorem 3. The strong dual MJ...̂  (K;A) is isomorphic to the space 
,-m+i. .,. ... — - _,-_ ___._ /- _., ,_ -.m+iv ,- ___._-__ 

:e 

Mr s (_?m+ \K;A) of left monogenic functions in Hm \K, tending to 
^r j , o 

zero at infinity. 

The isomorphism.is obtained using the Cauchy-Fantappie indicatrix 
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f of TGM1
( 1 ,(K;A), which is given by (see [4]) 

T(x)=-1-<T *"? -.>-
wm+i y |x-y|m+1 

Furthermore for fEM̂ -.̂  (K,A) (see [ 4] ) 

<T,f>= / f(x)daxT(x), 

K being a suitable e-neighbourhood of K. 

Next, we have .that M,^ (i?m+1 ;A)cMn) (K;A) 
Hence to every TeM!^ (K,A) we can associate 6 (T)EM^ (i?m+1 ;A) in a 

natural way and we have Rungefs theorem (see [1]) 

Theorem 4. 9 is infective if and only if K is simply connected in 

the sense that R \K has only one connected component. 

This leads to 

Definition 5. Let TGM^. (l?m+1 ;A) . Then a compact set K is called 

a carrier of T if 

(i) K is simply connected 

(ii) T is extendable to M ^ (K;A) . 

Notice that the indicatrix t admits a unique extension to i?m \K. 

Of course the notion of carrier differs from the notion of support. 

The carrier is not unique. Take e.g. T=6B ,Q 1)
=efr)<S m m+i' 

Bm(0,1) the unit ball in i?
m, Sm the unit sphere, in i?m+1, 

l?m+1 = {xel?m+1llxo>0} and e,. the unit normal on Sm. Then T is carried 
by both Bm(0,1) and SmnHm+1

 b u t n o t b y S
m_1 =Bm(0,1 )nsmnI?m+1 , since 

T is not extendable to H^^S111"1 . 

Hence, in general , the intersection of two carriers of T is itself 

not a carrier. There is however a very important exception, which 

is stated in 

Theorem 5. Let TeMl-. Q?m+1 ;A) be carried by Kj and K2 and let 

KXUK2 be simply connected. Then T is carried by KjnK2. 

5. The Fourier-Borel transform 

The general hypercomplex Fourier-Borel transform is introduced as 
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follows. Let E(T,Z) be the complex extension of the biregular expo

nential function E(t,x) and consider the dual Mr, N (Cm+1 ;A) of the 

space of complex right monogenic functions. Then we introduce 

Definition 6. Let TeM^. (O m + 1,A). Then the general Fourier-Borel 

transform FT(z) of T is given by FT(z)=<T ,E(T,Z)> 
T 

Notice that F transforms analytic functionals in complex monogenic 

sense into left monogenic functions. 

For the sake of simplicity, we shall not consider this general 

transform, but only a specialized version.To that end, notice that 

the maps 

p:M(1)(C
m+1;A)-M(1)(tf

m+1;A) 

K:M(1)(C
m+1;A)-0(1)(c

m;A) 

induced by the restrictions f| and f| of a complex monogenic 

function f are isomorphisms. Hence, the spaces 
Ml 1 ) ( C , m + 1 ; A ) , M f . ( l ? m + 1 ; A ) and 0',(Cm;A) are in fact the same, but 

the notion of carrier is of course different (see also [3]) . Fur

thermore, FT(z) is completely determined by K(FT(Z))=FT(z), so 

that, in principle, it is sufficient to study FT(z) for 

TeMf. (H m + 1 ;A) or to study FT(z), Te0 ' (Om ;A). The last transform 

has already been studied in [ 10] . In this paper we study the first 

specialized Fourier-Borel transform, which is given by 

. - * • - * • - * -

FT (z)=<Tt,e
1<t,z>(cht0[z]~

z
r-sht »[?])>, 

* i [-1 
-> n ~ 

where [z]=( I z2)2 , Re[z]>0. 
j = i J 

In order to study this transform, we make use of the splitting 

E(t,z)=E+(t,z)+E (t,z), where E+(t,z)=1(1+i|-)exp(i<t,z>+t0[z]), 
J l [z] 

and the corresponding transforms 

F+T(z)=<Tt,E+(t,z)>. 

Let Kf be a cilindrical domain of the form Kf=Kx[a,b], a<b, KCRm 

-*• -• -> 
being compact. Then we call HK(y)=sup(-<t,y>), the supporting 

teK 
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function of K. 

Making use of the fact that Re[z]<|x| , one can easily obtain the 

following estimates. 

Theorem 6. Let T be represented by a measure in Kx[ a,b] . Then 

F
+
T(z) and FT(z) satisfy 

(i) |zF
+
T(z)|<C|z|exp(H

K
(y)+b|x|) 

(ii) |zF_T(z)|<C|z|exp(H
K
(y)-a|x|) 

(iii) jFT(z)|<C(1+|z|)exp(H
k
(y)+max(-a,b)|x|). 

Notice that, if T is carried by K'; then for every e-neighbourhood 

K
1
 of K

f
, T is represented by a measure in K

f
. 

We now prove some converse results to Theorem 6. To that end, we 

shall make use of the classical Fourier-Borel transform, studied 

by Martineau in [8] and [9]. Let TeO f

m
 (Cm;A) be carried by a 

convex compact set KCC , let H
K
(z)=sup(-<t,y>-<s,x>), T=t+is 

TGK 

and consider the classical Fourier-Borel transform 

FB(T)=<T
т
,e

1<т
'

z> 

Then we shall apply Martineau's theorem to compact sets of the form 

K+iB(0,X), KCHm
 being convex compact. 

For the general theorem, see [ 8] and [ 9] . 

Theorem 7. Let feO(c
m
;A) be such that , 

|f(z)|<Cexp(H
K
(y)+x|x|). Then f=FB(T) for some TeO'.(K+iB(0,X);A), 

Proof. It is sufficient to notice that H
f K
 .-w

0
 •*s(z)=H

K
(y)+X|x| 

and to apply Martineau
1
s theorem. • 

Next, consider the isomorphism 

Ko, p-1 :Ma)(itn+1 ;A)+0 a)(cm;A) . 

Then we shall study the extension of this map to 

M ( 1 ) ( ^ ;A) ,1^ -{ xe/?m+11 | x01
 2 +d(x,K) 2<X 2> , 

which, in view of Runge's theorem, i s unique. 

Lemma. Let \>0 and KC£m be convex compact. Then 
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Kop (M(1)(Kx;A))c0(1)(K+iB(O,X);A). 

Proof. Let \'>\ and K be an e-neighbourhood of K and let 

f€M(1)(Ke>XI;A). 

Then in a'neighbourhood of K in Cm, 

Kop"
1(f)(z)=f(l)=lr!— / f(u)dou -I-"" 

m+i 3K ,, " [z"-u]m+1 

e, A 
As Re[ z-u] 2=UQ +|x-u| 2-|y| 2 , a necessary and sufficient condition for 

-• 

- *~U _.. to be holomorphic in K+iB(0,X) is Uo+d(u,K)2>X2. As this 
[z-u]m 

condition is fulfilled on 8K .. , , f(z) is holomorphic on K+iB(0,X), 
e, A 

and this for every Xf>X and e>0. • 

From this, we obtain 

Theorem 8. Let feO(Cm;A) be such that | f (z) |.<Cexp(HK(y)+ |x|), X>0, 

KCi?m being convex compact. Then f is the Fourier-Borel transform of 

a functional TeM^JK^jA). 

Proof. By Theorem 7, f=FBTf for some T'efl' (K+iB(0,^);A). Let us 

consider T=K°p-1(Tf), where <K°p_1(T1),f>=<T*,K°p~1(f)>, f beinp 

monogenic. Then of course FT=FBT' and by the previous lemma, 

TGM'(1)(KX;A). • 

. Next, we shall assume that f is the Fourier-Borel transform of an 

analytic functional T and we consider the decomposition f=f++f_, 

where ^ 

1 [t] . -

- The"main result of this section is the following 

Theorem 9. Let feO(Om;A) be the Fourier-Borel transform of an 

analytic functional T and assume that 

(i) |f+(x)|<c exp(b|x|) 

•. (ii) rf.(x)|<c exp(-a|x|). 
Then T is carried by a subset of i?mx[a,b] . 

Proof.. Let T be carried by K,c/?m+1 and choose R>0 and a<a<b<3 such 

that K1 is in the interior of Bm(0,R)x[ a,31 . Then f is defined on 

r=a(Bm(0,R)x.[a,3] ) and so 
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£ + ( x ) 4 / ( 1 5 i 4 r ) e i < 1 P ^ > ± t 8 1 5 1 da t f(t ) . 
I | x | 

First substract from T the first term in the Laurent expansion of f 
a+b about the point —y- and call this function F. Then we put 

f;(x)4/(1U-4)e i < t^ >- t o | 5 |da tF(t) 
- 2 Z |x| t 

and as F(t)=0(| 11 ~ m ~ 1 ) if 111-»-oo . by Cauchy's theorem 

f;(x)4 / (Ui-|-)e i < : t' x > + BlxlF(t)dt 
1 2 t0=6 |x| 

4 / ( 1 T i 4 - ) e i < : t ' X > - a | x l F ( t ) d t . 
t0=a |x| 

But f+(x)-f;(x)=FS, where S is of the form c 6 a + b , ceA . Hence f; 

satisfies the same estimates as f+. Let us investigate f;. First 
of all, by Cauchy's theorem, 

£•6)4 / ( 1 - 4 x ) e i < t ' x > + e l x l F ( t ) d t 
to-B | x | 

so that 

e - B l x | f ; ( x ) 4 / r a ( 1 - i - | - ) e i < t . x > F ( t + B ) d t . 
R lxl 

Furthermore, again by Cauchy's theorem, 

\ J m(l +i T

x

T)e
i < t' x >F(t + «dt-0, 

so that 
ł |X| 

e-Я x l f + ( x >/ m e 1 < t > x > ғ(t + e)dt . 
R 

Assume that 3-b=e>0. Then, as 

^ ( U ix ) e-ß|x| f ; c-). 0 j 
2 |x| 

F+(t)=—L_ f e-^^-t'l^le-^^lfl^dx + (2iOm km . 

is left monogenic for to>-e, since e"B'x'f+(x) is of exponential 
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growth exp((b-3)|x|). Furthermore, 

F + ( ? ) — ! _ f e"i<?'5> fei<?^>F(^+3)dsdx 
(2Tr)m Rm Rm 

-F(t+B), 

which implies that for t0>-e, F+(t)=F(t+$) and so F is extendable to 

t0>3-e=b. 

Similarly, by investigating f̂  , one finds that F is extendable to 

t0<a+e=a. 

Furthermore, as T=F+c6a+b, T is extendable to i?
m+1\(B(0,R)x[ a,b]).• 

By combining Theorem 8, Theorem 9 and Theorem 5 we obtain 

Theorem 10. Let £eO(Gm;A) be such that ' 

(i)|f(z)|<C exP(HK(y)+X|x|) 

(ii)|f+(x)|<C exp(b|x|) 

(iii)|£,(x)|<C exp(-a|x|). 

Then f is the Fourier-Borel transform of an analytic functional T 

carried by Kxn(i?
m
x[ a,b] ) . 

Notice that if X=a=b, T is carried by Kx{a}. This result is very 

usefull in the theory of boundary values of monogenic functions, 

where X=a=b=0 (see [11],[12]). 
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