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THE LEGENDRE TRANSFORMATION IN DIFFERENTIAL SPACES

Wiestaw Sasin, Piotr Multarzynski

In this paper we present the Legendre transformation on
differential spaces in the sense of Sikorski (101, (113, (41].
We investigate some properties of the Legendre transformation
for differential spaces with singularities. In Section 2 we

give a mechanical interpretation of this transformation.

O. PRELIMINARIES. Let (M,C) be a differential space [10],

[11], and let TM := l_l TM be a disjoint sum of tangent
PEM
spaces to (M,0). By TC we denote the differential structure on

TM (S]] generated by the set (foem: f € C> U Ldf: f € C>, where

n: TM ——» M is the natural projection and df: TM —— R is
defined by dfdvd = v(f), for any v € TM. A smooth tangent
vector field to (M,C) is a smooth section of the tangent
bundle (TM,n,M). By XCM) we denote the C-module of all smooth
tangent vector fields to CM,CD. ‘

A differential space is said to be of constant
differential dimension n if dimTpM = n and the C-module XUMD
is locally free and has the rank n.

A point p e M is said to be regular if there exists an
open neighbourhood U e T of p such that the subspace CU,CUD
is of constant differential dimension. A point p € M is called
singular if it is not regular.

If pe M is a regular point of (M,C then there exist a
set U e T, containing p, vector fields X’.....Xn € XXM for

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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some n e, and functions f“,. .. .f‘“ e C such that
X,qu)ij) = 6tj’ for any i,j =1,...,n.

One can prove [9]
LEMMA O.1. Let (M,C> be a differential space generated by a
set Co and p € M be an arbitrary point. Let W' C0 —— R be a

mapping satisfying the following condition:

(& 5] for any A,..., 0 C, we$, n e, if
1 n [e] n
weCai,. .. .an) = O then .‘-z:.ol‘,‘Ca‘Cp).. .. ,ath)) -WOCO(_‘) = 0.
Then there is the unique vector w e TPM such that w|C° =W
Sketch of the Proof. Let w: C —— R be the mapping
n
defined by wCfd = Zco'ltCt}CpD N .fnCpDD 'wo(ft) s for any
i=1
f € C, where f‘,. . ,fn € Co’ w e 8n are such functions that
there is an open neighbourhood U of P and
f|u = w°Cf1"" .fn)|U. One can verify that w e TpM is the

unique vector satisfying the condition w|Co = W,

1. MAIN RESULTS. Let CM,C) be a differential space. It is

easy to see that, for any p € M, the differential structure

TCT M induced from TC on TpM is generated by the set
p
<dpa: a e Cx, where dpa = doa|TpM. The tangent space
CTPM. TCT u) is a linear differential space i.e. the operation
P
M TPM x TPM —_ TPM of addition of vectors and

v: R x TpM E— TpM of multiplication of vectors by scalars
are smooth.
For an arbitrary p e M, let TPM be the set of all smooth

linear mappings w: TPM —— R. Denote by ™M = L] T M the
~ PEM
disjoint union and by m: T*M —— [R the natural projection.

For any X € #C(M>, let X': TM — R be the function
.defined by’

€1.1d X*Cw) = CXCACWII), for w € T'M.

Let T'C be the differential structure on T‘M generated by
the set <X": X € (M) U aent: o € C¥. Now, let v e TM be an
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arbitrary tangent vector to (M,C) at p e M. It is easy to see
that, for any vector w e€ TVCTPM). the mapping tva): C — R
defined by

1.2 £CwCad = wld o>,  for o eC,

is a tangent vector to (M,C) at the point p.

Now, in several lemmas we will prove the following
proposition.
PROPOSITION 1.1. For an arbitrary v e TPM, the mapping

tv: TVCTPM) E— TPM. W — tva). is a smooth isomorphism of
linear differential spaces.
From Lemma 0.1 it follows
LEMMA 1.2. For any vector v e TPM, there exists the unique
vector w € TOCTPM) such that depoO = v, for any a € C.
Procf. Let W {dpa: a € C ——> R be the mapping defined
by
€1.3 wld od = vCed, for a ec.

It is enough to verify that Yo satisfies the condition (3 of
Lemma 0.1, for the point O e TpM Cthe zero vectord. Let

Qsecra € C, we th be such functions that
1.4 woelat ,...,aa 3 = 0.
1 n

Without loosing of generality we can assume that dpa‘.. .. .dpotn
are linearly independent. One can easily see (cf. (1210 that
there exist vectors VipeeosV € TPM such that v,LCaJ,) = 6,‘j.
for 1,J =1,...,n. Substituting the vector rvj to (1.4>, where
r € R, one obtains
1.5 w€0,...,0,r,0,...,00 =0,
for any reR, j=1,...,n. Hence w’leO.....OD = 0, for

n .
J =1,...,n. Thus Fw{.(d oC0,...,d a€OIdw (d aad = O.

M L P o Tpi

So the condition (%) is satisfied. In view of Lemma 0.1, there
exists the unique vector w e TOCTpM) such that
w|<dpa: a el =w, or, equivalently.-w(dpa) = v(od.

LEMMA 1. 3. 'For an arbitrary vector v e TPM. the mapping
tv: TM — T M defined by
P P .



38 WIESEAW SASIN - PIOTR MULTARZYNSKI

c1.6> t.vCu) = v + u, for u e TPM.

is a smooth isomorphism of linear differential spaces.

Proof. It is easy to see that t_v is the inverse map to
t.v. It is enough to show that t,v is smooth, for any v e TPM.
In fact, for any a € C,
1.7 dpot ° t.v = vCod + dpa.

Hence d a = t € TC » for any generator d a. Thus t and t
P v P v -v

T M

are smooth isomorphisms.

Proof of Proposition 1.1. By simple calculation one can
check that
1.8 ¢ =¢.ctd ' =2r.0ct >,
v (] v *O (] -v ¥y
1.9 da o« & =ddd o0,
P v v P

for any aa € C. From (1.9) it follows that, for any v e TPM,
the mapping Jv is smooth. It remains to show that to and
Ct_v)*v are smooth linear isomorphisms. It is easy to see that
50: TOCTOM) —_— TPM is a2 monomorphism. From Lemma 1.2 it
follows that to is an epimorphism. Thus {o is an isomorphism

of linear spaces. From (1.9) it follows the following equality
C€1.10 d ¢d el =d a, for any a € C.
o P o P

Thus J:; is smooth and to is a smooth linear isomorphism. The

smoothness of Ct D follows from
-v Wy

C1.115 d (dad o Ct D =d dd o, for any a € C.
o p -v %y v p

From Lemma 1.3 it follows that CL_VD*p is an isomorphism. Thus
tv is a smooth isomorphism as a composition of smooth

1

isomorphisms. Of course £ ' =¢Ct > o &' Hence &' is an
v v #*O v

()
isomorphism in the category of linear differential spaces.

Now, let L: TM ——» R be a smooth mapping. The mapping
£: TM — T'M defined by

c1.12> 2Cvd = dCL|T__ M « £', for v e TM,
. v V) v

is called the Legendre transformation on (M,C) corresponding
to L.

PROPOSITION 1.4. The mapping £ defined by (1.12) is smooth
and the following diagram
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commutes.
Proof. From C1.12> it follows

~

C1.13> n o £ = m.

It is enough to show the smoothness of £. Since L € TC, for an
arbitrary v € TM there exist functions Aoy € C, we sz
and an open set 7w s v, where U e Te is a neighbourhood of

the point MMCv) such that

€1.14>  L|n'cW = 6 o Cda,...,doy, & om,. .. ,0 0m [ CWD.

From C1.12), for any X € ¥(M) and v € TM, it follows
1.15 cx"'o BOCvI = t"CXCrth)))CLIT M.

v UV
From C1.145 and (1.15) it follows that

x"o 2|nlcvd =

’ i o o —1 . o -‘
_i}-:imliCda‘,.. . .dak, ERLUITRRRL, m |n W CXOl‘_' ) |n W,

Thus Xo £ is smooth for any X € (M. By €1.13
Aol e £ =a e n, for any a € C. Therefore £ is smooth. This
ends the proof.

Now, for a smooth function L: TM —— R and for vectors

u,v e TPM, p € M, let §uv: R ——> R be given by

1.1 $ v(t) = LCu+tvd, for t € R.’
One can check that
diu v
C1.17 ZCwdvd = Tt |i=0’ for any v,u € TPM, p € M

Now we prove
PROPOSITION 1.5. Let g be a smooth Riemannian metric on (M,
and L: TM —— R be the smooth function defined by

c1.18) LCw = 15 oCu,uwd, for u e TM.

Then the Legendre transformation £ corresponding to L is a
‘bl jection and satisfies

Cil.1e0 ZCuwCvd) = glu, v, for any Cu,v) e CTM?Z.
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If (M, is of constant differential dimension then £ is a
di f feomorphism.

Proof. To prove (1.19 1let us notice that, for any
u,v € TPM. p €M, the function §uv defined by (1.16

s

satisfies

=1 2 1
c1.200 §u,VCt) =3 glv,vdt"™ + gCu,vwt + > gCu,w.
Hence d§u y
J.?Cu.v? = =t |0 = gCu,vd.

It is evident that £ is a bijection. )
Now, let C(M,C) be of constant differential dimension n. We
shall show that £ is a diffeomorphism. It is enocugh to show
that £ is smooth. We should prove that, for an arbitrary
o € C, the compositions daef™? and cene£™? are smooth. It is

evident that oenef ™ = aen e'T*C. It remains to show the

smoothness of das£™*. Let W,....,W €2 be.a local vector

basis given on an open set U e T and let W:,. .. .W: be smooth

1-forms such that W:Cp)CWij)) =6, 1,5 =1.....n We will

verify the smoothness of the composition dael’-iew, where

w: UxR" ——» T*U is a di ffeomorphism defined by
. n

c1.21> IS S =>£r‘iw:(p).

1=1

One can see that there exist the unique vector fields

Ai,. .. ,An e ¥(UD such that W:CX) = gCAt.X). for any X € X¥C(W,
i =1,...,n. From (1.19) it follows that x“cw’:Cpn = A,‘CpD,
for any p € U. Now, by simple calculation we obtain

n n
Cdae ™ oydCp,rd = ¢ zr,‘.‘.’—’CW‘:Cp)))CaJ = ErACpXo,
i=1 i=1

for any Cp,r) € UxR. Therefore doaef ey is smooth.

Now we prove
PROPOSITION 1.6. Let (M,C) be a differential space of class
Do and L: TM —— R be a smooth function. If the Legendre

transformation corresponding to L is a local diffeomorphism
then (M,C) is regular Chas locally constant differential
dimensiond. -

Proof. Let p eM be an arbitrary point. Assume that

dimTpM = k. Let v‘.....vk be a vector basis of TPM. There
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exist functions Or...ha € C such that viCajD = 6,”,. for
i, g =1,....k. Of course, da.,...,da is a basis of T M. Any
p 1 n P X P
element 6 € TPM has a form @ =}:7\‘dpa4‘., where A*, ..., \" e R
i=1

no.

and € can be prolonged to the covector field }:K"dal. Since £
' i=1

is a 1local diffeomorphism, every vector v e TPM can be

prolonged to a smooth vector field X € (M), i.e. XCpd) = v. In
fact, if w is a smooth covector field such that £ % = wpd,
then X = £*ew is a smooth vector field such that XCpd = wv.

Now, let Xi. .o .)(lt be such smooth vector fields that
X,le) = Vo for 1 =1,...,k. Clearly, XiCp)CaiD = 6”. for
i, =1,...,k. There exists an open neighbourhood V of p such

that deLCX_‘Cq)Caj)D # O, for gq € V. Therefore the vectors
X1Cq).. . ,Xqu) are linearly independent and dimTqM =z k, for
any q € V. Since (M,0 is of class Do’ there is an open
neighbourhood U of p such that dimTqM <k, for gqeU [13].
Thus dimTqM =k, for g e UnV. Now, it 1is clear that
X1|UnV._. .. .xk|UnV is a 1local vector basis of XM in a
neighbourhoed of p. Thus p is regular. This ends the proof.

Now, let L: TMxR —— be a smooth function. The mapping
£: TMxR — T MxR, defined by

c1.22 £Cv,td = Cd CL |T, ML ', td,
v t 24 v

v)
where Lth) = LCv,td), for veTM, t e, is called the

time-dependent Legendre transformation corresponding to L.

Analogously as in Proposition 5.1, one can verify the
smoothness of £. Let p € M be a regular point of (M, 0. Let

Wi.... .Wn be a local vector basis of (M) defined on an open
neighbourhood U of p. Let X : %Y — R, i =1,...,n, be
the functions defined by '
c1.23) v =ES<_‘Cv)WiCrt(v)D. for v € 1 'cW,

i=4
and let Y, E-l’CU) — R, i =1,...,n, be the functions given
by .
<120 ® = Ly W, Cncvdd,

i=1

where W:.. . ..W: is the dual basis to W‘.... .WF. One can verify
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(12] that the mapping Cm|U,%.....%): n U —— UxR" and
CE|U.y1....,yn): 'l — UxR" are’ diffeomorphisms. Denote
by W.....W the lifts of W,...,W onto ' CWxR. From

definition (1.22> it follows that
n
LCv,td = C ECG‘; LDCvit)'W:CnCv)D,tD,

i=1 i
for v e ndCU). t € R, or equivalently
n
c1.25> ZInTCBOXR = CLo; LW emt , [ncxR,
1=1 1 v T M

where 7 _ : T*MXR —— R is the projection onto R. Now, it is

nTM
obvious that
C1.260 y'o pre £ =9 L, for i = 1,...,n,
i
c1.287> T . ° £ = L ™ e pr e £ = n.
: M

2. PHYSICAL INTERPRETATIONS. The fundamental equations of

dynamics may essentially be expressed in the two forms,
closely related with each other. One can follow either
Lagrange and formulate the equations in terms of a set of
generalized coordinates and velocities, or Hamilton who gave
them an alternative form in terms of generalized coordinates
and momenta. One needs both forms to work with. The postulate
of the relativistic invariance can easily be discussed within
the framework of the Lagrange formulation, and for the purpose
of quantum theory the Hamiltonian form is required.
Geometrically, the two formulations are organized on the
tangent and cotangent Dbundle, correspondingly, and are
connected with each other by the so-called Legendre
transformation.

The macroscopic spacetime of contemporary relativistic
physics should be doubtlessly modeled by a four-dimensional
differentiable manifold, but sufficiently near to cosmological
singularities or at extremely small scales the differentiable
manifold model is commonly believed to break down. Also the
space of states of many physical systems does not allow for
the differentiable manifold structure. It turns out that the
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differential space approach is a very efficient tool in
dealing with the above mentioned problems.

Analogously as it was for the differentiable manifold
case, one can consider dynamical systems on differential
spaces. In particular they may by Hamiltonian or Lagrangian
dynamical systems. Generally, a Hamiltonian dynamical sysﬂem
on a differential space (M,C) may be defined in the following
way. Let €:,*>: CxC — C be a mapping such that CC,<-,->) is
a real Lie algebra and <fg,h> = f{g,h> + g{f,h>, for any
f,g,h € C. Then, of course, Xh :=<-,h> is a smooth vector
field on (M,0, for h e€ C. The pair (C(M,C,<-,->) is called

the Poisson differential space.

EXAMPLE. Let X,‘, Yi.' i =1,...,n, be smooth and commutative
vector fields on C(M,0, i.e. t)(‘,_,xk] = [Xi.Yk] = [Y-‘.'Yk] = 0,
i,k =1,...,n. Then the mapping {-,->: CxC —— C, defined as

{f.gi =¥ )(,‘f‘-Y,L - Y,‘f-xig. is a Poisson structure on C(M,C).
)
From the physical point of view, a Poisson structure

defined on a differential space determines certain kinematic
conditions on the space, i.e. it determines the general form
of the equations responsible for the evolution of a process
whose states are considered to be points of the differential
space in question. A chosen function h € C, which is assumed
to be fixed for further considerations, determines the
so-called Hamiltonian dynamical system )(h :=<:,h> on CM,0.
The differential space C(M,C) is called then the space of
states or the phase space of the Hamiltonian system Xh. The
chosen function h, the so-called hamiltonian, is responsible
for the dyﬁamics of our system. A function f € C is called the
Casimir function of the given Poisson structure <-,:> {if
{g,f> = 0, for any g € C. Two distinct functions hi. hz e C
determine the same dynamics if the difference ha_ hz is a
Casimir function, i.e. Cf.h‘— hz} =0, for any f € C.

Let Xh = <-,h> be a Hamiltonian system with a hamiltonian
h € C. Then the time dependence of states of the system
Cevolution of the process) is described by the integral curve
¥: I —» M of the field Xh. i.e. }Ct) = dyCet) = xhC;v(L)).
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where e := cdl_s o=t € T"I. I cR is an interval in R considered
here to be a differential subspace of the differential space
of real numbers CIR.CwC[RD). The functions of the family C we
call the dynamical quantities or observables. The time
dependence of a dynamical quantity f € C along a trajectory py
of the system )(h is determined by the function f: M — R,
defined as fCpyCtdd := eth*oyD. One can easily check .that the
function f fulfills the equation f = {f,h>, which is known as
the evolution 'equation‘.for the dynamical quantity f.

The above presented approach to Hamiltonian dynamical
systems is far beyond the domain of Hamiltonian systems
formulated with the help of a chosen symplectic form on the
space of states. In particular, the above formulation allows
us to consider Hamiltonian systems on a phase space of odd
dimension (3], infinite dimension, or even variable Cdepending
on a pointd dimension.

Let CM,C) be a differential space of constant differential
dimension n. If a symplectic form w is given on C(M,C), then it
defines a relation a = ixw X = )(a) of smooth vector fields
and 1-forms. A form w equips (M,C) with the Poisson structure
{f,g>» := - wCde.ng}. f,g € C. There |1is the particulaf
situation when the space of states (M,C) is a cotangent space
of some (configurational) differential space (Q,Fd>, i.e.
M= T*Q. The Legendre transformation, defined above, allows us
to pass from the Hamiltonian formulation of the problem on T‘M )
to the corresponding Lagrangian formulation on the tangent
space TQ. Let L: TQ —— R be a smooth function, the so called
lagrangian. The Legendre transformation £: TQ —— 'T*Q allows
for the definition w o= £%. If L is a regular. lagrangian,
i.e. if £ is a diffeomorphism, ® 1s a symplectic form on TQ.
For the lagrangian L we define its action A: TQ — R,
ACV) := C¥CVIOCV), and the energy E := A - L. The vector field
XL: TQ —— TCTQ) is said to be the lagrangian vector field {if

txw = -~ dE.
L

If L is a regular lagrangian, the hamiltonian corresponding to
L is given by H = Ee£™*, and the Hamiltonian dynamical system
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xu = {-,H> is related with the Lagrangian system XL by
Z*XL = XH.

In principle, we can consider an abstract Hamiltonian
system on a tangent space TQ to a differential space CQ,F)
which is assumed to be specified with the help of a chosen
Poisson structure <-, '}'ra on TQ. Namely, for a lagrangian L we
define the energy E = A - L, and the dynamical system
XL HES <-.E}TQ. If the lagrangian L is regular, the Legendre
transformation &£ allows us for the equivalent formulation on

the cotangent space T*Q:
H:= £'E,
L] L] e
{£f,¥ g>‘r*a 1= £ (f'g>1'o’ for f,g € F,

X :=<-,H> = ,
H T @

Thus we see that, for a regular lagrangian case, the Legendre
transformation turns out to be the isomorphism of Poisson

spaces, also called the canonical transformation.
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