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OPERATORS IN NORMED ALMOST LINEAR SPACES

G. Godini

1. INTRODUCTION

The notion of normed almost linear smace (nals) is a genera-
lization of the notion of normed linear space. Such a space satis-
fies some of the axioms of a linear space and the norm satisfies all
the axioms of a norm on a linear space, as well as an additional one,
which is useless ina normed linear space. An examnle of a nals is the
set X of all nonempty, bounded and convex subsets A of a (real) norm-
ed linear space E for the addition A1+A2={al+a2:aleAl, angz}, the
element zero of X the set {0}, the multiplication bv reals MA={)a:aecA}

and the norm |IIA|I|=supa€Al|all. Besides the axioms of an usual norm
on a linear space, the above norm |||-]|| satisfies also the follow-
ing condition: if A,=-A, then I|lAIllS|!|A+AllI! for each AeX.

The normed almost linear spaces were introduced in [3] as a
natural framework for the theory of best simultaneous approximation
in normed linear spaces. In [3] and the subsequent pavers [4]-[6] we
have also begun to develop a theory for the normed almost linear smna-
ces similar with that of the normed linear spaces. It turned out that
some results from the latter theory were true in our more general
framework. Here we mention that we have introduced the "dual" of a
nals X, de;oted X*, (where the functionals are no lonamer linear but

"almost linear"), which is also a nals, and when X is a normed line-

ar space then X* is the usual dual space of X (see [31, [4]). In a
nals X for each xeX there exists feX*, ||1£fl]1=1 such that f(x)=
=llIxlll ([6]1), though the result which states that in a normed li-

near space X, given'a linear subspace MeX and feM* there exists a
norm-preserving extension to X is not true if we replace "linear"

by "almost linear" (see examples in [4]). The main tool for the theo-
ry of normed almost linear swaces was given in ([6], Theorem 3.2)
where we proved that any nals X can be "embedded" in a normed linear
space EX. Though the embedding mapping is not one-to-one, it has

enough nroperties to permit us the use of normed linear spaces tech-

This paper is in final form and no version of it will be
submitted for publication elsewhere.
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niques to prove certain problems’ in a nals.

The present paper is a continuation of the above cited na-
pers, providing results from the theory of bounded linear operators
in normed linear spaces which can be formulated and nroved in normed
almost linear spaces. )

When X and Y are two normed almost linear spaces, the defi-
nition of a bounded linear operator T:X - Y may be given as in the
case when X and Y are normed linear spaces, but the set of all such
operators may be the only operator T=0. Moreover, for Y=R we do not
obtain the dual space X*. To avoid these unnleasant facts we shall
work with bounded almost linear operators with resmect to a convex
cone CeY (see Section 4). The set of all such onerators, denoted
by L(X,(Y,C)), is #{0} when C#{0}, X*=L(X;(R,R+)) and when X,Y are
normed linear spaces, L(X,(Y,C)) is the set of all bounded linear
operators T:X - Y. Though L(X,(Y,C)) has some relevant nroperties,
it is not a nals for arbitrary CeY. For convex cones C havinq a
certain property (P) in Y (see Section 3), L(X,(Y,C)) is a nals.
Though property (P) of C is not necessary for L(X,(Y,C)) to be a
nals, it isha certain sense the best nossible (see Theorem 4.15).

In order to prove the extensions of some results from the
theory of bounded linear operators in normed linear svaces, the main
tool is given in Theorem 5.6, where we "embed" L(X,(¥,C)) in the

space of bounded linear operators T:EX - E,. As anplications we prove

)4
the Banach-Steinhaus Theorem and the inverse mapping Theorem in our

more general framework (Section 6).
2. PRELIMINARIES

For an easy understanding of this paper, in this section we
recall definitions and results from [3], [4], [6] which will be used
in the next sections. Some notations and general assumptions can be
also found here. The main assumption is that all spaces are over the
real field R. Let us denote by R _ the set {AeR:A20}and by N the set
{1,2,....}.

An almost linear space (als) is a set X together with two
mappings s:XxX - X and m:RxX - X satisfying (Ll)'(LS) below. We de-
note s(x,y) by x+y (or x+y) and m(A,x) by Aox (or Ax). Let x,y,zeX
and A,ueR. (Ly) x+(y+z)=(x+y)+z; (L,) x+ty=y+x; (Ly) There exists an
element 0ecX such that x+0=x for each xeX; (L,) lox=x; (Lg) 00x=0;
(L6) Ao (x+y) =Aox+Aey; (L7) Ao (nox)=(Aun)ox; (L8) (A+n) ox=Aox+uox for
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A,ueR+.

In an als X the following two sets play an imnortant role:
VX={X€X:X+(—10X)=O}

WX={X€X:X=—10X}(={X+(—10X):X€X})

They are almost linear subspaces of X (i.e., closed under addition
and multiplication by scalars), and by (Ll)_(LB)' Vg is a linear
space. Plainly, an als X is a linear space iff X=Vy iff WX={0}.

In an als X we shall always use the notation Aox for m(A,x),
the notation Ax being used onlv in a linear space.

An als X satisfies the law of eancellation if the relations
X,¥,2eX, xty=x+z implv y=z.

In what follows a cone in an als X is a set Ce X such that
AoxeC for each xeX and AeR, . The definition of a convex set in an

als X is similar with that in a linear snace.

A norm on the als X is a functional ||l-[]l|:X - R satisfving
(N;)-(N,) below. Let x,yeX, welly and AeR. (N)) Thix+yLLISTHIxTTI+
+Hy I (Ny) THIxTI1=0 1ff x=0; (N3) [lldox|II=IAl 111xI11; (N,)
[1Ix1TI<IlIx+wll|. By (Nl)—(Nd) it follows that I|lIx|1120, xeX. A

normed almost linear space (nals) is an als X together with
[11-111:X - R satisfying (Nl)—(N4). Here we note that in [3]-[5]1 we
gave another equivalent definition for the norm, the above one beinqg
used in [6].

In a néls X the following inequalitv holds:

(2.1) . [roxtti=ttiy i <itix+vil| (x,veX)
2.1. REMARK. Let X be a nals and x,veX. The function o(})=
=|||x+Aoyl| || is convex on [0,») and (-~,0].

The next result is from ([31]).

2.2. LEMMA. Let X be a nals and x,V,ZeX.
(1) If x+y=x+z then |llylll=1llzlll.
(i1) If x+veVy then X,veVy .

Let X,Y be two almost linear spaces. A mappina T:X - Y is
called_ailineqr operator if T(Alox1+xzox2)=A10T(xi)+l20T(x2), X eX,
A;eR, i=1,2.

The main tool for the theory of normed almost linear spaces
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is the following theorem ([6], Theorem 3.2).
2.3. THEOREM. For any nals (X,|11-111) there exist a normed

linear space (E g ) and a mapping wy:X = Ey with the following

ol
X X

properties:
(i) The set Xl=mX(X) 18 a convex cone of EX such that EX=X1—

=X, , and X, can be organized as an als where the addition and the
multiplication by non-negative reals are the same as in Eg.
(ii) For each zeEy we have:

(2.2) I|z|IEX=inf{|I|x1|l|+lllx2||l:x1, X eX, z=wy(x)) -0y (x,)]}
and the als X| together with this norm is a nals.
(iii) The mapping wy from X onto the nals X, is a linear opera-
tor and Ilmx(x)ll =llIx|Il for each xeX.
EX
In the sequel we shall not use the subscript X (resp. Ex)

g) when these will not lead to misunder-
X

for Ey and w, (resp. |1-11

X
standings.

2.4. REMARK. We have w(wx)=wxl and m(VX)=VX1.

1

2.5. REMARK. If w:X - X, is one-to-one then w ~:X; = X is a

1
linear operator.

The proof of the following lemma is contained in the proof
of ([6]1, Theorem 3.2, (iv), fact (I)).

2.6. LEMMA. Let (X,|11-111) be a nals and x,yeX such that
w(x)=w(y). Then for each €>0 there exist xs,ye,uesx such that
|l|xelll+lllyetll<e and x+ye+u€=y+xe+u€.

A consequence of Theorem 2.3 is the following result ([6],
Corollary 3.4).

2.7. COROLLARY. For any nals (X, |lI1*111) the function

P (x,y)=py (x,v)=llo(x)~w(y) | " (x,veX)
18 a semi-metric on X and we have:
(2.3) p(-lox, =-loy)=p(x,v) (x,veX)

In a nals X the semi-metric p generates a tonology on X
(which is not Hausdorff in general) and in the seaquel any topologi-
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cal concept such as closeness, completion, continuity, will be under-
stood for this topology. Clearly p is a metric on X iff w is one-to-
-one. Notice that even when p is not a metric on X we can use seauen-
ces instead of nets. Moreover the topologv on the normed linear space
(Vx,lll-l{l) generated by p is the same as the topologv generated bwv
the norm.

2.8. REMARK. If A is a closed subset of the nals (X,I1l1-lI1l)
then w(A) is a closed subset of the nals (Xl,ll‘ll).

We recall now the definition of the dual space of a nals X
and some of its properties used in the next sections.

Let X be an als. A functional f:X - R is called an almost
linear functional if 'f is additive, positively homogeneous and £ (w)2
>0 for each weWy. Let Xa be the set of all almost linear functionals
on X. Define the addition in X# by (f1+f2)(x)=f1(x)+f2(x), xeX and
the multiplication by reals (Aof) (x)=f(lox), xeX. The element Oex#.is

4

the functional which is 0 at each xeX. Then X¥ is an als. When X is

a nals, for st# define |II£]lll=sup{l£(x)I:11IxI11<1}, and let X*=
={st#:IIIfIII<m}. Then X* is a nals ([3]1) called the dual space of
the. nals X. The dual space X* is #{0} if X#{0} since the corollary
of Hahn-Banach Theorem extends to a nals (see the introduction and
the reference cited there). The next corollary is an immediate con-
sequence of the above mentioned result and ([4], Proposition 3.15).
We give another direct nroof using only the extension of the corol-
lary of Hahn-Banach Theorem.

2.9. COROLLARY. If X is a nals such that X#Vy then Wy ,#{0}.

Proof. Let wely Illwlll=1 and let feX*, ||1£]]I=1 such that
f(w)=I1lIwlll. Define for xeX, fl(x)=f(x+(-lox))/2, Then fleWX* and
FETE =1,

We conclude this section with some examples from [3], [4]
which will be used in the next sections. '

2.10. EXAMPLE. Let X={(a,B)eR%:BcR,}. Define the addition

2 and define

and the multiplication by non-negative reals as in R
-lo(a,B)=(-a,B). The element zero of X is (O,O)eRZ. Then X is an als
and we have VX={(a,0):acR} and WX={(0,B):BeR+}. Define for (a,B)eX,
Ill(a,B)IlI=lal+B. The als X together with this norm is a nals.

2.11. EXAMPLE. Let X=R,. Define x+v=max {x,y} and for A#0,
Aox=x and Oox=0. The element 0eX is OeR+. Then X is an als such that
WX=X. There exists no norm on X. . '

2.12. EXAMPLE. Let X=R. Define the addition and the element

0eX as 'in R and define Aox=|Alx. Then X is an als such that WX=X.
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There exists no norm on X.
s
If otherwise not stated, an als (nails) X will be supposed

#{0}.
3. CONES WITH PROPERTY (P) IN A NORMED ALMOST LINEAR SPACE

Let (X,I11+11!) be a nals and C a convex cone of X.
3.1. DEFINITION. The convex cone C has property (P) <n X if
the relations x,yeX, x+yeC and ceC implv that

(3.1) max {lIxIV1,lllyll1}Y<smax{llIx+cll|,]]ly+cl]|}

Note that if C’,C are convex cones of X, C’'<(C and C has
property (P) in X then C’ has also property (P) in X.

Clearly the cone C=WX has property (P) in X. The next re-
sult gives more information about the existence of cones with
property (P) in a nals X.

3.2. PROPOSITION. In any nals X there exists a maximal con-
vex cone C#{0} having property (P) in X and such that WX<:C.

Proof. Suppose WX#{O}. As we observed above W, has nromnertv

X
(P) in X. Let F be the set of .all convex cones CeX, having proner-
ty (P) in X and such that WgyeC. It is a paftially ordered set, or-
dered by set-inclusion, and by Zorn’s Lemma the conclusion follows.

Suppose WX={0}. Then X is a normed linear snace. Let xocX,

I|Ix0|ll=l and let C0={Ax0:keR+}. Then Cs has nroperty (P) in X. In-
deed, let x,yeX such that x+yeCo and let ceCy- If x+y=0 then (3.1)
is obvious. If x+y=AOxO R Ao>0, suppose |lIvIII<IIIxIIl. Let c=AlXo'
AleR+ and let A=A1/Ao. We have |1IxI1I=(1+A)I1IxIII=Al1IxI1I<

SELHA) LI I=AT iy IS (L+A)x+AvIi L I=1 | Ix+cl ||, whence (3.1) fol-

lows. As in the case wx#{O] (replacing WX by CO), the assertion from
the proposition follows by Zorn’s Lemma.

The next proposition vields a necessarv condition for a con-
vex cone to have property (P) in X.

3.3. PROPOSITION. If C ¢s a convex cone having property (P)

in the nals X then:
(3.2) lllcllllslllc1+c2I|I (cl,czeC)

proof. Let c,,c,eC. We ‘can sunpose 01yl I<tile I,
Case 1. lllc,IlI<lllec;lll. Choose 0<A<L such that (1+A)e
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'Illc2I||<IlIcl|l|. Since ¢ tc,eC, by propertv (P) of C in X we have:

l||Cl|IlSmax{!llcl+loc2|||, lllcz+koc2}||}

By the choice of A we must have Ifleyllisitlcy+roc, 11, and (3.2)
follows now by Remark 2.1. -
Case 2. Illeylhi=111c, I11. Let 0<u<l, Then Fiuoc, < le 1T

and by the above case we get I!Icllllslllcl+u007lll. Again by Remark
2.1 we obtain (3.2).

The necessarv condition for propertv (P) given abgve is not
sufficient as the following example shows.

3.4. EXAMPLE. Let X be the nals described in Example 2.10.
Let C={(a,B)eX:a,BeR,}. Then (3.2) is satisfied for c;,c,eC but C has
not property (P) in X. Indeed, let 0<e<1l/2 and let x=(-g,1), v=c=
=(g,0)eC. We have x+yeC, IIlyllI<llIxllI=1+g,||lx+c!||I=1 and
|l ly+cl|1=2e<1 and so (3.1) fails. ’

Let (X,I11l-11]) be a nals and (E,I|l*11), w, X
by Theorem 2.3 and Corollary 2.7.

' 3.5. LEMMA. Let (X,111-111) be a nals satisfying the law of

cancellation and let CeX be a convex cone having pronerty (P) in X
and such that WXGC. ‘

1 and p be given

(i) C;=w(C) <s a convex cone having property (P) in X,.
(1i) The closure C of C in X is a convex cone having pronerty

(P) Zn X.
Proof. (i). By the properties of w given in Theorem 2.3, Cy

is a convex cone. Let now X,veX, such that §+§=Elec1 and let EeCl.

Let x,yeX, c,c,eC such that w(x§=§, w(y)=y, w(c)=c and w(cl)=El.
Then m(x+y)=m(cl). By Lemma 2.6 and since X satisfies the law of can-
cellation, for each €>0 there exist xs,yesx such that |IIx€lII+
+l||yE|I|Se and x+y+y€=c1+x€. Hence, using the hynothesis WXCC, we
get x+y+y€+(—10xe)cc, and by (2.1) and the promertv (P) of C in X

we obtain

max {| LIxITI=111v 11, Pyt =11x 1113 <
smax {|lIx+y 111, FHy+(=lox ) 111}<
5max{ll|x+y€+c|l|, |l|y+(-10x€)+clll}s
-5max{!le+cl|l+|llyel|l, llly+c|||+l[lx€|lH

Letting € -0 we get (3.1), and the conclusion that Cy has pronertyv
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(P) in X, follows by the pronerties of w,

(ii) Clearly T is a convex cone of X. Let now x,yeX such that
x+yeC and let ceC. For e€>0 there exist c’,c"eC such that p(x+v,c")<e
and p(c,c’)<e. Since |lw(x)+w(y)-w(c")lI<e, by (2.2) there exist
X, ,¥,€X such that m(x)+w(v)-w(c")=w(x1)-w(yl) and Illxllll+lllvllll<
<e. Then m(X+y+y1)=m(xl+c“) and as in (i) above we find xe,yeex with
Illxelll+llly€|I|Se and such that X+V+Y1+V€=X1+C"+XE- Hence x+y+v, +
+y€+(—loxl)+(—lox€)ec. Using pronertv (P) of C in X and (2.1) we get:

max{llIxIl1I, |Ilyl|l)-2s§nax{ll|x+y1+vE|II,IIlv+(—l°x1)+(-l°x€)lll}s

(3.3) Smax{lllx+yl+ye+c'lll, lIly+(—loxl)+(—lox€)+c'|ll}s
<max{llIx+c’ 11|, |lly+tc’Il1}+2¢e

Now [llIx+c’llI=llIx+clli=llo(x)+o(c’)lI-]lo(x)+w(c) lIsllo(c’)-w(c)I=

=p(c’,c)<e and similarly |lly+c’|ll=llly+cl|i<e. Bv (3.3) we obtain:
max{llIxtll, Illylll}=-2esmax{l|Ix+cl ||, |llv+cl||}+3e

Letting € - 0 we obtain (3.1), i.e., C has property (P) in X.

We have not an example to show that the assumntion on X to
satisfy the law of cancellation is not superfluous in the above
lemma. )

We conclude this section with the following remark.

3.6. REMARK. Let cfle be a convex cone having pronertv (P)
in X,. Then w-l(C)={XEX, w(x)eC;} is a convex cone having propertv
(P) in X.

4., ALMOST LINEAR OPERATORS
Let X,Y be two almost linear smaces and C a convex cone of Y.

4.1. DEFINITION. A mapping T:X - Y is called an almost linear
operator with respect to C if the following three conditions hold:

(4.1) T(x1+x2)=T(x1)+T(x2) (xl,xzex)
(4.2) T (Aox)=A0T (x) (xeX, AeR+)
(4.3) T (Wy) €C

we denote by L(X,(Y,C)) the set of all T:X - Y satisfvina

-
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(4.1)-(4.3). We organize l(X,(Y,C)) as an als in the following wav:
for Tl,Tz,TeL(X,(Y,C)) and AeR we define T +T29L(X(Y,C)) and AoTe
el (X, (¥,C)) by

1

(T1+T2)(x)=T1(x)+T2(x) (xeX)
(AoT) (x)=T (Aox) (xeX)

The element 0el(X,(¥,C)) is the onerator which is zero at any
xeX. It is straightforward to show that L(X,(Y,C)) is anlals.

4.2. REMARK. If C’, C are convex cones of Y such that C'e
then L(X,(Y,C’)) is an almost linear subspace of L(X, (Y,C)).

Let us also denote by L(X,V) the set L(X,(Y,{0})) and by
A(X,Y) the set of all linear operators T:X - Y. Bv Remark 4.2 L(X,Y)
is an almost linear subspace of L(X,(¥Y,C)) for everv CeY. It is easy
to construct examples of Tel(X,(Y,C)) which are not linear operators
(see Example 4.7 below). Clearly if Tel (X, (Y,C)) then we have Te
eA(X,Y) iff S=-1oT where S:X - Y is defined byv S(x)=-1lo(T(x)), xeX.
Here we also note that the inclusion A(X,Y)el(X,(¥,C)) can fail,
but we always find cones CeY when it holds, as the following remark
shows. ' )

4.3. REMARK. The set A(X,Y) is an almost’ linear subspace of
L(X, (Y,Wy)) . '

4.4. REMARK. We have:

(4.4) A(X,VY)GVL(X' (Y,C))=L(X'Y)
(4.5) Ay Vel vy, (¥,C))

(4.6) Ay V) =L(Vy, (Vy,C))

(4.7) L(x, (R,R,))=x¥

Formula (4.5) shows that Definition 4.1 generalizes the no-
tion of a linear opnerator between two linear spaces and (4.6)  shows
that when X and Y are linear spaces then the cone C is superfluous
and Definition 4.1 is equivalent with the definition .of a linear
operator T:X - Y. Formula (4.75 shows that Definition 4.1 generali-
zes the notion of an almost linear functional on an als X.
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4.5. REMARK. Let Tel (X, (¥,C)). We have TeW

=T(-lox) for each xeX. Conseauentlv if TeW

L(x, (v,c)) L1FE T(x)=
L(x, (v,c)) then T(X)eC.

4.6. REMARK. If TeA(X,Y) then T(X) is an almost linear sub-
space of Y. 1f Tel(X,(Y,C)) then T(X) is a convex cone of YAwhich
can be not an almost linear subsvace of ¥ as the followina example
shows.

4.7. EXAMPLE. Let v={(a,B)cR%:BeR,} be the als described in
Example 2.10 and let X be the almost linear subsnace of Y defined
by X={(a,B)eY:B>]al}. We have WX=WY={(0,B):BeR+}. Let TeL(X,(Y,WY))
be defined by T((a,B))=(a,a+B), (a,B)eX. Then T(X)={(a,B)eV:B22a}
which is not an almost linear subspace of Y since (-1,0)eT(X) and
—lo(-1,0)=(1,0)#T(X). Clearlvy TAA(X,¥).

When Y is a nals then we can improve some of the above
statements.

4.8. REMARK. When Y is a nals, condition (4.2) in Definition
4.1 can be given only for AeR+\{0}. The fact that it holds for A=0
is an immediate conseaquence of (4.1) and Lemma 2.2 (i). This is no
more true when Y is not a nals.

4.9. EXAMPLE. Let X=R _ be the als described in Example 2.11.
Let ¥=C=X and define T:X - X by T(x)=max{l,x}, xeX. Then T satis-
fies (4.1), (4.3) and (4.2) for A#0 but T£L(X,(X,X)) since T(0)=1.

4,10. REMARK. Let Y be a nals. We have:

(4.8) L(X,Y)=A(X,VY)
(4.9) [TIVX:TeL(X,(Y,C))]GA(VX,VY)
(4.10) A(VX'VY)=L(VX' (ch))

The formulas (4.8)-(4.10) are not true when ¥ is not a nals.

4.11. EXAMPLE. Let X be the linear space R and let Y=R be the
als described in Example 2.12. Since VY={0} we have A(X'VY)=A(VX'VY)=
={0}. Define T:X - Y by T(x)=x. Then (4.8)-(4.10) do not hold for
this T.

Sunpose now that X and Y are two normed almost linear snaces.
For Tel(X,(Y,C)) define

(4.11) LTI I=sup {1 1IT(x) 11101 1x]]1s1}
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and let L(X,(Y,C))={Tel(X,(Y,C)):1IITIlI<=}. It is easy to show that
I11-111 defined by (4.11) satisfies (N;)-(N;), whence L(X, (¥,C)) is
an als. It is not always a nals for arbitrary convex cones CeY (see
Proposition.4.14 or the exammle given in the proof of Theqrem 4.15
below). Though we shall avoid the word "norm" ‘when (N4) does not
hold, in the seauel we shall always consider the als L(X, (¥,C)) eq-
quiped with the |||-||| defined by (4.11).

4.12., REMARK. If C#{0} then L(X, (¥,C))#{0}. Indeed, let
ceC\ {0} and let feX*\{0}. Define T(x)=f(x)c, xeX. Then Tel (X, (¥,C))
and |LITIII=I1IElllIllcllI<e and {IITII| #0, i.e., TeL(X,(Y,C))\{0}.
If C={0} then L(X,(Y,C)) mav be {0} (e.a., when X=WX). We. also note .
here that if C={0} then L(X,(Y,C)) mav be #{0} (e.g., when X and ¥
are normed linear spaces). .

4.13. REMARK. It is easy to show that if Tel(X,(Y¥,C)) and T
is continuous then TeL(X, (Y,C)). The converse will be pnroved in Re-
mark 5.5 in the next section.

We conclude this section with some necessarv and (or) suffi-
cient conditions on the convex cone CeY in order that L(X,(Y,C)) be
a nals. As we observed above, if X is a linear snace then the cone
CeY is superfluous and up to the end of this section we supposeX%VX.

4.14. PROPOSITION. Let C be a convex cone of the nals ¥. In
order that L(X,(Y,C))be a nals it is necessary that the elements of

C satisfy (3.2). If X=W, then this condition is also sufficient.

X
Proof. Suppose L(X, (Y¥,C)) a nals and supnose there are
€,+CoeC such that I'lley+cyl1I<illc,111. By Corollarv 2.9 there
exists fewx*, I11£111=1. Define Ti(x)=f(x)ci , XeX, i=1,2. By Re-
mark 4.5, TI'TZEWL(X,(Y,C)) and we have IIITllllélllclIII,
|IIT1+Tj!I=|||cl+c2III and so (N4) is not satisfied, contradicting

the hypothesis that L(X,(Y,C)) is a nals.

The other statement is obvious, since if X=WX then for each
T¢L (X, (Y,C)) we have T(X)eC and (N4) follows bv (3.2).

Now we show that nromerty (P) of C in Y introduced in Section
3 is a sufficient condition in order that L(X, (Y¥,C)) be a nals.
Though this condition is not always necessary (see examnle below),
it is in a certain sense the best possible, as one can see in the
next result. .

4.15. THEOREM. Let C be a convex cone of the nals Y.
L(X,(Y,C)) Zs a nals for each nals X Iff C has proverty (P) in Y.

Proof. Suppose C has property (P) in Y. Let TeL(X, (Y,C)).,

T, eW and xeX, |lIxI|Isl. Bv Remark 4.5 we have

L(X, (¥,C))
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T, (x)=T, (-lox)€C. Since T(x)+T(-lox)¢C and by hvpothesis we aet

max {| 11T(x) 111, 11IT(=lox)III}<
gmax {| HIT(x)+T, (x) 111, FTIT(=1ox)+T) (x) [ 11}<I HIT+T, ||

whence (N4) follows, i.e., L(X,(Y,C)) is a nals.

" If C has not propertv (P) in Y, there exist yl,yzeY,
Illy2III<I|Iyl||I and ceC such that vl+v2eC and max[l||y1+c|||
Illy2+clll}<llly1|||. Let X be the almost llnear subspace of the als
described in Example 2.10, ‘defined by X= {(a,B)eR :Bzlal}. Define
I11(a,B)I11=B for (a,B)eX. Then (X,II1-1Il) is a nals. Let TeL(X, (Y,C))
T, eW be defined hvy

L(X, (Y,C))
T((a,8))=23By B2y, : ((a,B) eX)
T, ({(a,B))=Bc ((a,B)eX)

Since B2lal for (a,B)eX, we have:

T Ca, 8 2Ry B5 iy, sy

2
and since IIIT((l,l))III=Il|yllII it follows that ||IT|II=IIIy1|II.
Furthermore,
+ -a .
) (a, ) 1H=111258 (v +e) 1B (v prer 1115
spmax {l 1y +clll, Illvytclil}
whence |IIT+T, Il l<max{Illy ;+clll, Illyy+clI1}<IllvyI1I=11ITII| which

shows that L(X,(Y,C)) is not a nals.

We give now the example promised before Theorem 4.15.

4.16. EXAMPLE. Let X be the nals described in Examnle 2.10
and let C={(a,B)eR2:a,BeR+). In Example 3.4 we showed that C has not
property (P) in X. Let v=(1, O)s:VX , w=(0, llgwx. For (a,B)eX we have
(a,B)=aov+Bow. Let T,eL(X, (X,C)) and T 2°%L(x, (x,c))* BY (4.9) and
Remark 4.5 we get T, ((a B))=aoT (V)+B°T (w), T,(v)evy , 1=1,2 and
Tz(v) =0. Let T (v)—(YO 0) and T (w)—(yl 8 )y ,6 eR, , i=1,2. Then
T, ((a,B))=(ay +BY1,56 ) and T ((a.B))=(BY2'BG ) Let (a,B)eX,

llI(a,B)I|I<1. If ay, 20 then |||T ((a,B)) I I=ay otBY+B6, <
Slll(T +T )((a;B))lll<lllT +T2|l| If ayo<0 then IaYo+BY1|<-aVO+BY1
and by the above case we get I1IT, ((a,B)) I1ISIIIT; ((-a,B)) IS



OPERATORS IN NORMED ALMOST LINEAR SPACES 321

SIIIT1+T2|||, i.e., we have (N4) and so L(X, (X,C) is a nals.
4.17. REMARK. By Pronosition 4.14 and Theorem 4.15 we immedia-
tely obtain another proof for Provosition 3.3.

5. -MAIN RESULT

Let X and Y be two normed almost linear smaces and C a convex
cone of Y. Up to the end of this paper we shall use the followina

notation:

X1=wx(x)
Yl=wY(Y)

Cl=mY(C)

Even when L(X, (Y,C)) is not a nals, it has certain pronerties
which we give below.

5.1. LEMMA. (i) For each TeL(X,(Y,C)) there exists (a unique)

TeL(Xy, (¥14C))) such that wo,T=Toy and LIF11=111T111,
(ii) The mapping I:L(X,(Y,C)) = L(Xl’(Yl'cl)) defined by I(T)=
=T, s a linear operator such that |I1I(T)I1=111TII], TeL(X,(Y,C)).

(iii) I1f L(Xl,(Yl'Cl)) s a nals, then L(X,(Y,C)) Zs a nals.
(iv) If wy is one-to-one then I is one-to-one and onto
L(X,,(¥;4C))» and L(X,(Y,C)) s a nals iff L(Xl,(Yl,Cl)) is a nals.
(v) We have I(L(X,(Y,C))NA(X,¥))eL(X;,(¥,,C;))IOA(X,,Y,) and
the equality sign holds <f wy 18 one-to-one.
Proof. (i) Let TeL(X,(Y,C)). For xEx1 let rP(x)—co (T(x)),
Xe (x). To show that T is well defined, let X)rXyeX such that
mx(xl) wx(x )=X and let €>0. Bv Lemma 2.6, there exist xe, e ueex
such that Illxéll|+l||xglll<e and x1+x;+u€=x2+xé+ue. Hence T(x1)+
+T(xg)+T(u€)=T(x2)+T(xé)+T(ue) and so mY(T(xl))+mY(T(xg))=n&iT(x2H+
& (T(xg)) - Then |, (T(x ))—mY(T(XZ))lI=I|wY(T(x'))-w (T(X"))II<
<IIITII|(I|Ix'II|+II!X"III)<I|ITI|I€, whence 51nce e>0 was arbitra—
ry, we obtain a, (T(x ))—mv(T(X )), i.e., T is well 'defined. Using
the fact that w (W ) =ty it is easy to show that TeL(Xl,(Yl,C )) .

Since for XEw (x) we have IIT(x)II-lIm (T(x))II=11IT(x)|1| and
||x||=|||x|l|. it follows that I[TII—IIITI|I<w.
(ii) Bv (i) above we have |II(T)II=||IT||| for each

TeL(X,; (Y,C)). It is straightforward to show that I is a linear
operator.

(iii) If TEWL(X,(Y,C)) then by Remark 4.5 we qet that
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I(T)eW Now (N4) for Ill-1ll on L(X,(Y,C)) follows bv

L(Xl'(Yl'Cl))
(N4) for the norm of L(Xl'(Yl'Cl)) using (ii).

(iv) Suppose Wy
to show that I is onto L(X,,(¥,,C;)), let TeL(Xl,(Yl,Cl)). Define

one-to-one. Plainly, I is also one-to-one and

(5.1) T (x) =ay " (T (0y (x))) (xeX)
By Remark 2.5, Tel (X, (Y,C)) and since I||T(x)|||=|li(mx(x))l|s
<UITIIIIx1 1] for each xeX, it follows |IITIII<IITII<=, i.e.,

TeL(X,(Y,C)). By the definition of T we have that I(T)=T, i.e., I
is onto L(xl,(YI;Cl)); For the last assertion in (iv), by (iii)
above it remains to show that L(Xl’(Yl'Cl)) is a nals if L(X, (V,C))
is a nals. The proof is similar with the proof of (iii), observing

if T (Y i I(T)=T th
that if TEWL(Xl:(YlICI)) and TeL(X,(Y,C)) is such that I(T) then
TeW

L(X,(Y,C)) ° -~
(v) Let TeL(X,(Y,C))NA(X,Y) and let I(T)=TeL(X;,(Y;,C,)).

Let §exl and xeX such that mx(x)=§. We have i(—lo§)=T(mX(rl°X))=
=wY(T(—l°§))=-lomY(T(x))=—10T(x), i.e., TeA(Xl,Yl). If w, is one-to-
-one and TeL(Xl,(Yl,Cl)M\A(Xl,Yl) then T defined by (5.1) belongs

to L(X, (Y,C))NA(X,Y) and we have I(T)=T.

5.2. REMARK. Let Ab(X,Y)={TeA(X,Y):I.IITI|I<°°} where 1Tl
is given by (4.11). Using Remark 4.3 and the fact that L(X,(Y,WY))
is a nals (by Theorem 4.15), it follows that Ab(X,Y)=A(X.Y)I\
hL(X,(Y,WY)) is a nals. By Lemma 5.1 (v) for C=W, we have that
I:A(X,Y) = Ap(X,,Y;) is a linear onerator such that II(T) 1=
=lHITiil, TeAb(X,Y), and when Wy is one-to-one, then I is one-to-
-one and onto Ab(Xl,Yl).

Let K be the convex cone of the linear snace L(Ex'EY) defined
by

K={TeL(?x,EY):T(X1)cY1 , T(le)ccl}
and let
K=KnL(EX,EY)

5.3. LEMMA. For TeK let T=TIX . Then Tel(X,,(Y},C;)) and
HITII=11TI].

Proof. Clearly feL(Xl,(Yl,Cl)) and |IT!I<IITIl. Let now zeEy
I1z11<1. There exist xl,ngxl such that z=X, "X, and l|x1I|+lele51.

L
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We have 11T (z) I1SIIT (X)) 11+11TX) 1I=1TE)11+11TE,) 115
SUIELECHIX HI+11R, 1 1) <HITH, whence [ITHISTITII.

5.4. LEMMA (i) The cone K can be organized as an als where
the addition and the multiplication by non-negative reals.are as in
L(EX'EY)'A

(ii) K Zs analmost linear subspace of K and the als K together
with the morm 11-11 of L(Ey,Ey) satisfy (Nj)-(Nj). .

(iii) The mapping J:K = L(X;,(Y,,C;)) defined by J(T)=TIX, ,
TeK, ©s a linear operator such that ||J(T)I|I=1ITI|, TeK, and J zs
one-to-one and onto L(Xl,(Yl,Cl)). '

(iv) (K, 11-11) Z8 a nals Zff L(Xl,(Yl,Cl)) 18 a nals.

Proof. (i) Observing that if Tl,T2,TsK and AeR+ then T1+T25K
and AoT=ATeK, it remains to define -10TeK. For zeEy, z=§l—§2 ’

X;eX, 4 i=1,2, let (—1oT)(z)=T(—1-§1)-T(-1o§2).cEY-. It is easy to
show that -1oT is well defined-and that -1oTeK. Now a simpnle verifi-
cation shows that K is an als.

(ii) Let TeK. Since (-1oT)|X1=—lo(TIXl)r bv Lemma 5.3 it
follows that |l=1oT||=I1(=10T)IX,II=IITIX;|I=IIT|I<=. The proof of
the assertions in (ii) is now obvious.

(iii) By Lemma 5.3, for TeK we have J(T)eL(Xl,(Yl,Cl)) and
[1I(T)II=11TIl. It is straightforward to show that J is a linear
operator which is one-to-one. Let now ieL(Xl,(Ylicl)) and for zeEx ’
z=§l—§2 , Eiexl , i=1,2, define T(z)=§(§i)—f(§2)eEY . This mapping
is well defined and Tel(Ey,Ey). Clearly TeK and T1X,=T. By Lemma
5.3 we get |ITI|=]ITl|<=, i.e., TeK and since J(T)=T it follows that
J is onto L(Xl,(Yl,Cl)).

(iv) Using Remark 4.5 and the definition of =1loT for TeK it
is easy to‘show that TeWy iff J(T)eWL(xl,(Yl'cl)) . The assertions
of (iv) follow now immediately.

We can now prove the converse statement in Remark 4.13,

5.5. REMARK., If TeL(X,(Y,C)) then T is continuous, Indeed,
let T1=J_II(T)eK, where I and J are given by Lemmas 5.1 and 5.4. Then
I(T)=J(T1)=T1|X1. Now let xn,XeX such that limn*mpx(xn,x)=0. e have

DY(T(xn),T(X))=Ile(T(xn))-wY(T(x))II=lII(T)(wx(xn))—I(T)(wx(x))II=
=|ITl(mx(xn))-Tl(wx(x))ll -~ 0, since TleL(EX,Ey) and IIwX(xn)-
—0y (X) | I=py (x, ,x) = 0. '

The main result of this paper is the next theorem which aives
(E,I1°11) and w from Theorem 2.3 for L(X,(Y,C)) when it is a nals.
Unfortunately we are able to nrove it under the stronger assumption
(in view of Lemma 5.1 (iii)) ‘that L(X;,(¥,,C;)) is a nals. Let I
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and J be given by Lemmas 5.1 and 5.4, and denote by K1 the following
subset of L(EX,EY):

K, =3 'I(L(x, (¥,0)))

5.6. THEOREM. If L(Xl’(Yl'Cl)) <8 a nals, then for the nals
L(X,(Y,C)) the following assertions are true:

(i) EL(X,(Y,C)) is a linear subspace of L(Ey,Ey) and we have

=K. -K. . , o .
EL(X,(Y,C)) K,-K, The norm on EL(X,(Y,C)) 18 defined for

TeEr (x, (v,c)) P¥

IITHI =inf{lIT, +lIT

ErL(x, (¥,0))

]'L(EX,EY) 2"L(EX,EY)}

where the inf is taken over all Tl,TzeKl such that T=T,-T,. Moreover

T =11TII

(TeK,)
EL(x, (¥,C)) !

L(EX'EY)

(11) We have © =37 and op (x (v cy) (DX (¥,C))) =K,

)
i L(Fy,Ey)
is a nals.

(iii) If wy i8 one-to-one then the conclusions of (i) and (ii)

L(x, (¥,C))
is an almost linear subspace of the als K such that (Kj,Il-1I

hold for¥;=K and the mapping @ (x, (Y,c)) 8 mow one-to-one.

Proof. As we have noted above, since L(X,,(¥,,Cy)) is a nals,
by Lemma 5.1 (iii), L(X,(Y,C)) is also a nals. Usinm Lemmas 5.1 and
5.4 together with the observation that since J-lI is a linear opera-
tor then K, is an almost linear subsvace of K, it is easv to show

that the linear svace Kl—K endowed with the norm defined at (i)

above, and the linear oper;tor J-II satisfv all the requirements of
Theorem 2.3 for the nals L(X, (Y,C)), as well as (i)-(iii) above.

Even when Wy is one-to-one, we have not the eauality siqn in
the inclusion K4§CIAEX,EY), as the followipq examnle shows.

5.7. EXAMPLE. Let X be the nals described in Examnle 2.10,
Y=R2 endowed with the Euclidean norm and CE€Y be the convex cone
{(a,0) :aeR,}. Since C has pronerty (P) in Y, bv Theorem 4.15,
L(X,(Y,C))‘is a nals. We have X=X1' Y=Y1=EY and EX=R2 endowed with
the norm || (a,B) I 1=lal+IBl, (a,B)eRz. Let TeL(EX,EY) be defined bv
T((a,B))=(a,B), (a,B)eEx. Supnose T=T,-T, , T,eK, i=1,2, Then for
the element (O,I)EWX , we must have Ti((O,l))=(ai,0)eC, i=1,2. Hence
T((0,1))=(0,1)=T1((0,1))—Tz((O,l))=(a1-a2,0), which is not nossible.
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6. APPLICATIONS

The aim of this section is to obtain certain classical theo-
rems from the the theory of operators in normed linear spaces, within

the framework of normed almost linear spaces, For the proofs we
shall use Theorem 5.6, the correspondinc theorem known in normed 1li-
near spaces, as well as the following result.

6.1. LEMMA. A nals (X,111°111) <s comDZete ifF (E I1=11 )zs

a Banach space and X, is norm-closed in Eyg.

Proof. Suppose X complete. Then X, is comnlete in the [||°]]|

1

of E and so closed in Ey. We show now that E_, is a Banach space.

X

Let {zn}n_ :.EX be a Cauchy sequence. We can sunnose (passing to a

subsequence if necessary) that for each neN we have

, 1
Ilzn zn+p|'<2n+l

for- each p21
Let z.=x.-y,, X,,Y eX, . Since Ilz -z ||<1/22,,there exist x ,y eX
1 71 71 1741 2 24257
such that zz—zl=?{2-y2 and2|Ix2II+|lyle<l/2 . Then zz=(xl+x2)-
—(y1+y2) where lezll<l/2 |Iv2l|<1/2 . By induction on n we find
two sequences {x }°° y {v. }lzlc}ﬁ_such that for each ncN we have
z —(zl 1 i)-(zl 1y ) and for n22 we have |lx, 1<1/2", My, I1<1/2"
For each neN, let xn"2i=1 eX. and yn_zi=1 yieX Clearlv, x1>

i= "1 1° -~ n’ n=1

and {yn}:=l are Cauchy sequences and since X1 is comnlete, there

exist X,yeX; such that lim __I1X -XI1=0 and lim___11Y_-¥I =0. Then

n-o

for z=§—§eEX we have limn*mllzn—z||=0, i.e., E, is a Banach space.

X
The "if" part is obvious.
Simple examples show that the assumntion~(EX,|I'|I) be a

Banach space does not imply that X, is norm-closed in EX .

We can now prove e.qg. the éxtensions of Banach-Steinhaus
Theorem and the inverse manping theorem from the theorv of normed
linear spaces.

6.2. THEOREM. Let X be a complete nals, Y a nals such that
Wy i8 one-to-one and Ce€Y a closed convex cone such that L(X,(Y¥,C)) is
a nals. Let {T }n 1
limn*¢pY(T (x),T(x))=0 for each xeX. Then the sequence {HIT IH}

18 bounded and TeL(X, (Y,C)).

Proof. Since Wy is one-to-one and C closed, it is easy to
show that Tel(X,(Y,C)). Now for each xeX, |1IxI[I<1 we have
|||T(x)l||=Iwa(T(x))IISIIwY(T(x))-wY(Tn(x))II+|ImY(Tn(x))||=
=DY(Tn(x),T(X))+IIITn(x)IlISDYGTH(X),T(X))+IIITnIII for each neN,

be a sequence in L(X,(Y,C)) such that
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and so if we show that {|IIT II’I}n 1 is bounded, then TeL(X, (¥,C)).
Since Wy is one-to-one, by hypothesis and Lemma 5.1 (iv),
L(Xl,(Yl,C )) is a nals. By Theorem 5.6, @, (x, (Y ,C))(T )eK, neN. Then
)(T )IX =T eL(X ,(Y 'Cy )) and wyT —Tnmx , neN. Hence and
n»wa(Tn(X)'T(X))=

IITn(wx(x))4wY(T(x))I| and so

“L(x, ¥,C)
by hypothesis we have for each xeX.that 0=lim
=limn*wlIwY(Tn(X))~wY(T(X))II=lim

for each §sx1 the sequence [Tn(§B: converges to an element of Y.

Let z¢Ey , z=X

n->co

1-§2, X, (-:Xl ’
‘T (x )= T (x ) and so the sequence {mL(X ¥, C))(T )(Z)}?L | converaes

i=1l, 2. Then 9L (x, (¥, C))(T ) (z)=

to an element of E By Lemma 6.1, E, is a Banach smnace, whence bv

Y* X
Banach-Steinhaus Theorem the seauence (Ile(x,(Y,C))(Tn)II}n=1 is

bounded. Since | lw I=||ITn1l| for each neN, the se-

L (x, (v,0)) (Tn) !
quence {IIITnIII}n= is bounded.

6.3. THEOREM. Let X,Y be two complete normed almost linear

spaces such that both w, and w, are one-to-one., If TeLO((Y‘V)) is

X Y
one-to-one and onto Y and T(WX)=WY , then the inverse operator T eL(Y (X,W )).
Proof. By Remark 2.4 we have wx(WX)=WX1 and wY(WY)—WYl. By
Theorem 4.15, L(X,(Y,WY)), L(Xl,(Yl,WY )), L(Y,(X,Wx)) and
L(Yl,(xl,wx )) are normed almost linear spaces. Let TeL(X, (Y, W )) be

1 o
one-to-one and onto Y and T(W )=W, , and let T wL(X (Y,W ))(T)eK.
Then TllXIFTeL(xl,(Yl,W )) and To,=w,T. We show that the bounded

Y XY
linear operator T4 E - Ly is one-to-one and onto EV. Let zl'ZZEEY
such that Tl(zl) =T, (z ). Let X eX, 1<i<4, such that z, =0y (x ) wx(xz)

and'zz—w (x3) -0y (x4). Then T, (z ) T(m (xq))- T(w (x, )) =w, (T(x ))-
-wY(T(x )), and similarly, T (zz)—m (T(x3))—w (T(x )) ., and so
mY(T(xl+x4))-wY(T(x2+x3)). Since Wy and T are one- to one, it follows

that xl+x4=x2+x3 , whence zl=mx(x1)—mx(x2)=wx(x3)—mx(x4)=z2 , i.e.,

T, is one-to-one. Let now uecE, and y,,v,eY¥ such that u=wY(yl)m&(v2L
Since T is onto ¥ there exist X rX,eX such that yi=T(xi), i=1,2.
Let z=wx(x1)-mx(x2)eEX . We have Tl(z)=T(mx(x ))-T(w (x5))=
=mY(T(x1))-mY(T(x2))=mY(y1)—wY(y2)=u, i.e., T1 is onto Ey. Bv the
inverse mapping theorem, there exists TIleL(Ey,u ) such that
(Tl(z)) =z for each ZeE . We show now that the following inclu-~

sions hold:
(6.1) 7 Y, ex
° 1 1 1

(6.2) T (W
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, and zeEy such that‘T;1(§)=z._Let
yeY such that y=0,(y) and let xeX such that T(x)=v. Then T, (z)=V=
=mY(T(x))£¥(mX(x))=Tl(mx(x)) and since T, is one-to-one, it follows

that z=u, (x)eX;. For the proof of (6.2), let Wlewy . By (6.1) we get

. 1
T, (wl)—xsxl. By Remark 2.4, there exists Wy ey, with w —wY(w ).

hypothesis there exists wely such that wl—T(w) We have T, (x)—w

=0y (T(W))=5(m (w))=T (w (w)), and since T

x—m (w) . Again by Remark 2.4, er .

For the proof of (6.1), let yeY

1
1 is one-to-one, we get

Using (6.1), (6.2) and the %vnothe51s that w, is one- to one,

X
by Theorem 5.6, there exists T'eL(Y, (x‘v)) such that @ (y, (X,W ”(T)—
- 14 14
—Tll. It remains to show that for each xeX we have T’ (T(x))=x, i.e.,

T’=T 1. Let us denote by I’:L(Y, (X,W )) - L(Yl,(xl,W ) the mappning

given by Lemma 5.1 (ii). Let xeX and y—T(x). We have & (T' (T(x))=
=0y (T" (y))=(T" (T’ ))(w (y))=w O (v, (X, Wy ))(T )(mv(v))—T (w (y))=

T, (mY(T(X))) T (T(w (x))) T (T (w (X)))—m (x).’Since Wy is one-
-to-one, we get T (y)—x, whlch‘completes the proof.

As one can see in the abové Theorems 5.2‘and 5.3, the for-
mulations in our more general setting of some results known in the
theory of operators in normed linear spaces is not difficult. The
above method may be used to nrove other results., We can not prove or
disprove in the framework of normed almost linear spaces the closed
graph theorem and the open mapping theorem. We also do not know '
whether a nals L(X,(Y,C)) is complete if Y is complete. It is easv

to show that if V, is 4 Banach space then V.

v L(x, (¥,C)) is a Banach

space.
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