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SUPERSYMMETRY ALGEBRAS : EXTENSIONS OF ORTHOGONAL LIE ALGEBRAS

Zbigniew Hasiewicz

I. INTRODUCTION

The object of this note is to describe the supersymmetry algebras associated cano-
nically with orthogonal Lie algebras $o(%) ("| being the non-degenerate quadratic
form of (p,q) signature).

The above canonical correspondence is achieved by introduction of, an abstract but
natural, notion of the spinorial extension '5(‘\\ of the orthogonal Lie algebra.

In order to elucidate the way in which 5(1) corresponds to 50(1), let us consider
quite similar but much more familiar and simpler object associated with $©C%)
namely it’s vectorial extension E(4). It is defined as ZZ-graded Lie algebra, such
that the even subalgebra E,(.,(‘p does contain $0(4) and the odd subspace Een M)
is isomorphic with the module E(w), of the vector representation of $©(%). Moreo-
ver we assume that Ecep €M) = [ EnCP, Ecnly 1.

The above conditions are satisfied by the pair of Lie algebras; namely &(#%)

( (p,q)-signature of the form "1) is isomorphic with either so(p+1,q) or $o(p,q+1).
The geometrical meaning of such a correspondence is clear (e.g. [4]). The impor-
tant assumption we made in definition of E(%)was the irreducibility of E&en(4)
with respect to so(y). If we violate it, we can obtain infinite sequence of Lie
algebras satisfying remaining conditions.

Moreover, we could then also, permit the elements from &.,(«p to satisfy symmet-
ric structural relations (anticommutators instead of commutators) and we would get
the sequence of Lie superalgebras (e.g. from osp series) satisfying the axioms of
£('|). This is the reason, why we have to remain in power the assumption of irredu-
.cibility.

The spinorial extension SC"’.) is defined (see Def, 1,II) in almost the same way;
with the vector module E(4) replaced by the spinorial one S("').

The next modification consists in ( according with the spirit of supersymmetry)
admitance the odd elements of S(_.,(wp to satisfy symmetric structural relations.
However, it has to be stressed that we do not eliminate the Lie algebras from the

game .,

It is achieved by assuming that the spinorial extension $(%)is the element of the
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category of Z -graded € -Lie algebras [10]. ‘It is a good point to make a short

2
digression in order to fix some notions concerning the above category.
DEFINITION 1.I

- A Z,-graded vector space A = wheoy ® Ky, with bilinear operation

Jxat 3 CX,¥Y) = <X, ¥Y> e vk

preserving the Zz—graded structure of it i.e.

 keoy ' ukcj)) < \kﬁ*j)(modZ) v

is called a Zz—graded €-Lie algebra if for elements, homogeneous in sense of 22—
grading, following axioms are satisfied

1) £%,Y> = - ex LY, X>

ii) {x,LY,277 = KEX YD, 2> + €)Y LY, L%,Z>

where either € = 1 or e (X, ¥) = (1) dengng.

The category of Zz—graded € -Lie algebras consists of two separate subcategories:
the category of Zz-graded Lie algebras, which corresponds to first choice of the
function € and the category of Lie superalgebras, which corresponds to second cho-
ice of commutation factor. Notice that .the values of commutation factors for the

subclasses in the category of Z, -graded @-Lie algebras differ in sign only for two

2
odd elements, Further on, to shorten the notation, the commutation factor will be

understood as this very sign function which describes the symmetry of the opera-
tion £ , » for odd elements. There are two important mappings associated to each

Zz—graded &-Lie algebra.

A first one is the representation of Jk¢ey Lie algebra’on ke odd subspace

Koo 2a > HCad € End (vten) . (1.1)
where H(a) is given according to

thew dk > HCICK)ix La,kd> €uten .
A second mapping is generated by <, on A(1)XA(1):

Q@ ke 3t > Qb € ko , (2.1)
where @ is the universal extension of the following

A X ken ? (kK'Y > TR KD 1T KK,K> 6 o .
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It will be said the structural homomorphism of k.

Let us return to the heart of the fnatter. Fixing the spinorial extension
S(t')to be an element of the above category, means that the spinorially extended
orthogonal algebra is not necessarily Lie superalgebra, as it equally well might

appear that it is Z,-graded Lie algebra — the eventual choice is to be decided by

the form alone. ’ .
For this last problem to be well posed we are forced to assume S(n(“p - the odd
subspace of 5(‘1)‘ to be irreducible with respect to So(4). Otherwisely, as in

the case of vectorial extension E(4), the coupling between the metric structure 1
and the object '5(01) describing the associated supersymmetries, becomes weak enough

to admit almost every Z, -graded € -Lie algebra.

In order to avoid such i uncertainity we shall restrict our considerations to -the
algebras describing so called N=1 supersymmetries.
For the geometrical meaning of spinorial extensions and their connection with or-
dinarily used supere~xtensions to be stated ;;recisely, let us recall at first, so-
me essential properties of Lorenzian and Euclidean Lie groups: S0(p,q) with g=1
or 0 respectively and p>2. Every special orthogonal group SO(p,q) (rigorously it’s
connected component of unity) defines two series of finite dimensional representa-
tions of it’s own Lie algebra - due to biconnectedness of the group manifold.
These are integrable and non-integrable representations. A representation “ 3
t S0¢p,9) End(V) is said to be integrable iff there exists a homomorphism T3
: SO0Cpp W Aut (V), such that the following diagram
$0Crq) b-t-‘b End (V)
Exp + ¥ (3.1)
Soteq’ s aut (W)

does commute.

Otherwisely the representation ® is said to be non-integrable. In the last case

a r.h.s, exponent of (3.I) provides the representation of Spin(pq> group (rigoro-
usly it’s connected component of unity). Naturally Spin(fq) is a twofold - hence
universal (q = 1,0 and p>2) covering of S0(pi9).

All finite dimensional representations of Spin('l) group are realized on subspaces

of the tensor algebra:
P .
®8c = ?o( ®% St) %.1)

where the tensor product is meant over reals and S(’]) denotes spinor module. Ob-
viously (4.I) contains all finite dimensional $0(m) Lie algebra representations.
The (4.1) decomposes onto two subspaces carrying integrable and non-integrable

representations of SO(M) Lie. algebra and it is this very‘ direct sum decomposition,
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which coincides with the one induced by the natural Zz—grading of the tensor pro-
duct. In light of the above, our spinorial extensions (when represented on the
subspaces of (4.I)) are to be interpreted as the algebras of infinitesimal trans-
formations, which map mutually one onto another the objects belonging to integra-
ble and non-iniegtable representations of a given orthogonal Lie algebra. This
mixing is achieved since the spinor module S(ﬂ) (generating whole (4.I)) is inclu-
ded into the structure of extension. The Zz-gradation of 5(17 is the direct con-
sequence of the same property of (4.I).

Within the above context there is a possibility of a purely geometrical gene-
ralization of the notion of supersymmetry, The supersymmetry might mean not the
symmetry between bosons and ferm{ons (these are rather phenomenological notions)
but the symmetry between the geometric objects (fields) belonging to integrable
and non-integrable representations of orthogonal Lie algebras. This point of view
is universal independently of the dimension (p+q) and also makes sense for clas-
sical fields,

Within the framework of quantum field theory in Minkowski spacetime, due to gene-
rally believed spin-statistics theorem [5], the above is equivalent to usual un-
derstanding of supersymmetry.,

In the case, when the conditions q=1,0 and p>2 are violated i.e. when SO(h‘l) has
fundamental group larger than Z, (actually infinite) (4.I) does not contain all ir-
reducible representations modules. It means that the algebra 5(?&) is able to des-
cribe infinitesimal transformations between objects belonging to integrable repre-
sentations of $0(p,q) and objects belonging to rather poor subclass of non-integ-

rable ones - exactly that contained in (4.I).
I1. SPINORIAL EXTENSIONS OF ORTHOGONAL LIE ALGEBRAS - GENERAL PROPERTIES

Let us now formulate an exact definition of the object we have roughly described
in introduction. All the properties of the spinorial extension we have mentioned
and used above are collected within following

DEFINITION 1,II,

A Z,-graded €-Lie algebra (Def. 1.I) BN = B (I ®Sw () is called a spinorial
extension of 8o(%) orthogonal Lie algebra iff the following axioms are satisfied:

i) There exists a R-linear bijection

St » ¥ > P)<c Swnly)

and non-zero homomorphism

soC 3 Z > L(L) ¢ S
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such that the following diagram, with %¢ being the spinorial representation and H
that of (1.I)

Tz B > 8
e .
So(p sz a | S A~ ¥
N

Hol )(D): Sc.)(“)) > S
does commute

ii) 01 (") = < Sen ), Senl> .

Axiom i) of the above definition, forcing the existence of immersions @ and & of
S(wl) spinor space and Soly) orthogonal Lie 'algebra into S(‘l‘) , establishes the
equivalence of spinorial representation %¢ of so(y) Lie algebra with that induced
by homomorphism H. In other words the condition, the above axiom imposes on 8(4y) ,
means that the structure of spinorial module’ is built in the structure of exten-—
sion; consequently the extension is essentially spinorial. .

It should be stressed that we do not assume '5(.,(01) to be isomorphic with SO
as it might appear to be inconsistent with the axiom ii). This last axiom exclu-
des, in turn, a trivial extensions with <S¢u('|’, SenCPD =0 and soty) ¢ S ).
Moreover it denotes minimality of %(4) .

For the form %) being chosen, each of the objects satisfying the conditions of de-
finition 1.II, have odd subspaces isomorphic with spinorial module S(ﬁ|), therefo-
re they can differ only in the commutation factors and S(,,(-') even subalgebras.
We are going to show firstly that all 8(4) €-Lie algebras are "almost" simple.
For that purpose we introduce a universal homomorphism, transporting faithfully

the representations H (1.I) of S(.,(‘]) on S(u(“‘) onto S(‘\) spinor module:
Se3(M) 2m > Lim) e Endg ( SC)) , (1.11)
where the transforn;ation L(m) is defined according to
SO 8¢ = Limcpr s (GloHm e @I ¢ S
Almost imediagely from the homomorphism property of L and ii) Def.1.II. one can
show the following

LEMMA 1.11.
Ker L is central abelian ideal in ().



82 ZBIGNIEW HASIEWICZ

It is then natural to identify all S('ip € -Lie algebras which differ by abelian
ideal, expecially in light of the following
LEMMA 2,1I.

The quotient algebra S(“\) /kerL is simple
PROOF: ’
The representation H of 3(.)(1)/kerL on ®¢y(v) module is faithful, which combi-
ned with it’s irreducibility (forced by the same property of So(4)) and condition

ii) Def. 1.1I., ensures ([6]) simplicity of quotient structure. s

The above mentioned identification is realized by the following equivalence rela-

P .
tion in the set $(~|) of all spinorial extensions (for n being chosen);
' . [}
SepP X () iff  SP/kerL ~  GgykerL

where the r.h.s. isomorphism is understood in stronger sense than general morphism

of the category of Z -graded €-Lie algebras; namely it is not allowed to identify

two objects with difgerent commutation factors.

The class of simple spinorial extensions is obviously identical to quotient set
Sy : - Skh)/a5 .

Arbitrary spinorial extension may be obtained from the simple one by it’s central
extension, whose form is described by the structure of the.simple object and clas-
sified by respective cohomology group.

It is also clear, that the restriction of our considerations to simple algebras
has not effect on classification of the commutation factors that the metric 7 ad-
mits, )

A necessary condition for spinorial extension with a given commutation factor @ to
exist is contained in the following

LEMMA 3. II.

If there exists the extension %(4) with the commutation factor &, then on
the spinor module 5(1), there exists a non-degenerate, so(y) -invariant and € -sym-
metric bilinear form.

PROOF:

Assume firstly 3(0') to be Lie algebra i.e. @ = 1. Being simple (Lemma 2.II), it
provides non-degenerate, invariant and symmetric Killing functional K . The form
g = Ke(@x@) on SC‘PKS(‘\\) has then all desired properties.

In the case when 5(‘1) is Lie superalgebra i.e. € = -1, the simplicity does not
quarantee existence of non-degenerate Killing functional, as it happens the Kil-
ling form does vanish. To eliminate this possibility for S(ﬂ) we are forced to use
the classification of simple Lie superalgebras given in [6] and [9]. Le us note
that each S(ﬂ') is classical in sense of [6], and moreover the representation of

'5(»(‘1) on Sw (M) is irreducible. The only superalgebras of this class with vani-
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shing Killing form are D(2i4) and Q(':')[6]. However, the structure of their odd
modules is inconsistent with axiom i) of definition 1.II. Consequently 8(4) provi-
des non-degenerate Killing functional, whose restriction E= Ko(@X®) to the

product of spinor spaces is antisymmetric and So(y)-invariant, 1

In the course of further considerations we shall prove the statement converse to
the above; meanwhile we can draw from it the following
LEMMA 4. II.

If the signature (p,q) of the form 1) does satisfy the equations

p + q = 2
(mod 4)
0

then 5((’.3) does not exist,
PROOF:

o
1
ffal
1]

The formg constructed in the proof of the above Lemma is So(q)-invariant. For the
signatures satisfying the above equations such a form on spinor module S(-‘) does

not exist (see below-section III). ]
III. CANONICAL EXTENSIONS

In the proceeding section we obtained general information about the structure of
spinorial extensions. Before we pass to more detailed discussion and classifica-
tion of ¥(w) algebras we shall add one more axiom to the Definition 1.II. This
axiom restricts the class of admissible extensions to the subclass containing al-
gebras which we call canonical.

The possibility of formulating such an additional condition originates in the fact
that we are working in the category of real vector spaces and modules, where the
Schur’s lemma is not valid in general. .

Despite of irreducibility of So(~) on $(~1‘) it might appear and in fact appears,
depending on the signature of 4, that the centralizer F(‘\l) of 50(*]) in EndR('S(sp)
is non-trivial i.e.. not isomorphic with R (nothing similar can happen for vector
module E(wl)). This, in turn, means that the associative closure of so(4) Lie al-
gebra in EndR(S('-‘)) is it’s proper subalgebra. . .
Fortunately, due to Weddeburn’s theorem, we know the above centralizer F(4) is di-
vision ring and the algebra, associatively generated by the representation of
$0(M) on S(") spinor module is isomorphic with the algebra of square matrices with
entries from F(4). Moreover this algebra is identical with the even subalgebra
t'("(“l) (or it’s simple ideal) of the. Clifford algebra t(&p.corresponding to the
form 1 (e.g. [1] or [7n.

Hence the spinor module 5(‘1) is to be identified with the module of irreducible
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representation of C@)(") .

This representation is faithful iff ttﬂ(“) algebra is simple i.e, iff the signa-
ture (p,q) of 4 does satisfy the condition p-q # 0 (mod4) €8sl . ‘
Otherwisely i.e. iff p-q=0 (mod4), the kernel of this representation is one from

the ideals C«s(‘\') decomposes onto:
Cen ) = 172 C14+3) By ) @ Va (1-3) By (1.111)

e2...ep+q is the central, unimodular basic pseudoscalar and

where J = 1/(p+q)!e1
{ealﬁﬁq is g-orthonormal basis of the generator of &(y).

The Lie algebra socap is to be identified with the set of bivectors {eaeb s a<b
1‘a,b£p+q} . The kernels of the spinorial representations of $0(%) are non-trivial
only for (p,q) = (2,2), (4,0), and then they are spanned by either self-dual or
antiself-dual bivectors according to which one of the ideals (1,III) is the kernel
of the representation of t@)("”.

To simplify notation by tu.)(‘l‘) we shall denote the ideal faithfully represented
on S(-l) i.e, whole even subalgebra or one from ideals of (1.III).

The spinor module s(") does admit one-sided (say right—silded) linear structure
over F(9).

It is then natural to introduce the following reduced Lie algebra of endomorphisms

of s(q) spinor module:
EndgC#P) 2 End () = s L) @ FCyp , (2.111)

where SCw )= CCw(y)) Lol is derived Lie algebra of Cenlyd .

We used SC€w (1) instead of simply e(o(*" in order to avoid the doubling of the
centre of tc-n(ﬂ) being identical (when (2,III) is embodied in Endg(ﬁ(‘p)) with
that of F(M).

We are now in a position to formulate the following

DEFINITION 1.III.

A spinorial extension 3(‘1’ is said to be canonical

iff L(S%eY © End (8C4) (  is that of 1.1I).°

The subclass $(‘!‘)of canonical extensions contains the objects, which admitting
the decomposition required in 2,III, do "remember" the linear structure of S(n')
over F(ﬂ\). It is natural to accompany the axioms of definition 1.,II by the postu-
late of spinorial extension to be canonical.

However, there arises the question, whether this sharpening of definition is that '
essential that it reduces the admissible types of commutation factors allowed by
spinorial extension? We hasten to assure, that the answer is negative (it will be-

come obvious at the end of this section), thereforé without loss of generality we



SUPERSYMMETRY ALGEBRAS: EXTENSIONS OF ORTHOGONAL LIE ALGEBRAS 85

can be concerned with only these spinorial extensions, whose even subalgebras have
canonical structure, s
From the fact that the algebra L (Se(?) is contained in the direct sum of two

ideals, one deduces an analogous decomposition of ’Sw,('\l) Lie algebra
Sor () = Gl BLCy) : (3.111)

The ideals 5(41) and l:('1) will be called geometric and respectively internal sector

of () -

Let us now define the Lie algebra
L) = { c e sCnly) 5 plor=-c} (4.111)

of the elements which are antiselfconjugate with respect to the main antiautomor-
phism B of €w(y). It is the unique antiautomorphism with such property, that
(4.111) does contain $0(4). Since, as we assumed, ©(M) denotes either whole
even subalgebra or it’s proper simple ideal if p-q=0 (mod4), we have to check
whether such an $o(4) - invariant antiautomorphism does exist on 52«»(’1". The
answer is that it exists for all (p,q) signatures, except that satisfying the eq-
uvations of Lemma 4.I1I, [8].

We shall now proceed to show, that independently of commutation being admissible,
an arbitrary Zz—graded & -Lie algebra 3(“') has the same one geometric sector ﬁ(‘,) .
THEOREM 1.II1I.

Y ~ Lw)

PROOF:
The proof of this theorem will be sketched here. The details are easy to be recon-
structed.

The idea is to compare the structural mapping of 'SCﬂ')
Sadpdse v F(o):=(Llonoge(@a@@)) (&) € Glyd (5.111)

(3: End('é'(‘\p) > & Ber(y)  being the natural projéction) with the surjection
-‘sz d.ll S(ﬂ)l—)&("])', naturally associated with the form g described in Lemma
3,11,

Let {Ri} be the set of endomorphisms describing the right multiplications by ima-

ginary units of F() division ring i.e., satisfying the structural relations

RiRj = = &) ~ €ijeRk ' (6.1I1)
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We can now define F(-|) - valued form

L0 X S 2 CHY) > O W) = ECHE)+ Z BRI ¥IR] € Flap (7.111)
(3

where g is that of Lemma 3.1I.

Define the mapping:

G Sy 2= T 0wl > 28 1= Z 0, eH) € Endg CSCy») (8.111)

where an endomorphism )!(Q;té') is given according to:

S 3¢ > eI iE B, PIP e Sy (9.111)

Let T: Q"‘$(¢‘)H @"&f.'(.‘) be the transposition of tensors and let Jre==|/2(id-e'r)
denotes the projection onto the subspace of € -skew symmetric tensors,

Then the mapping
S e ot > W (B = (1R - LoRI 2T (B €LGy) (10.111)

where 98¢ € (n) l—)'}tc»(q) denotes the projection of Bm\(‘]) onto it’s centre,
is surjective. _

The proof of this statement consists of two steps.

i) one has to check that 3¢ (@% Scy)) = Benl) .

This follows from non-degeneracy of (7.III), which in turn implies the irreducibi-
lity on S(«,) of the image of &Rﬂ(‘\,') under . Direct calculation shows that the en-
domorphisms (8.II1) commute with that of (6.I1I). Consequently we have required
identity. '

ii) One has to show that pox =e3eel .

The r.h.s. of the above identity is the expression for the mapping (8.I1III) conjuga-
ted with respect 5 (hence also®). Since this form is So(s)-invariant, the conjuga-
tion generated by it, has to be equal to B as it is the unique one with respect to
which the elements of So(s) are skew-symmetric. '

In light of the above (10,1II1I) describes exactly the mapping 3 composed with the
projection onto £(~p . Note that (5.I1I) as well as (8,I1I) are homomorphisms of
respective representations of &(«I) and 3(0'3 Lie algebras; namely that differentia-
ting the tensor product: d¢(+01))-c+0¢'++00+', and adjoint one, Moreover,

9Cy) c..[.('\‘) , which follows from S(ql) -invariance of (7.III). The above together
with so(y QS(“) implies simplicity of Glw).

The space @‘ks(qp can be decomposed onto the following direct sums:

coker'\’g' ® ker"l"s = Q;S(ﬂp = coker @ ® ker @
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and it is obvious that cokerin coker"r! # {0}, since all subspaces of the above
decompositions are ds(*\) -invariant, tHeir intersections have the same property.
The simplicity of ﬁ(‘\) yields it’s transitivity on coker® . This in turn gives
coker ﬁ c coker"r! Let now"!rx denotes it’srestriction to coker"(", Then the map-
ping ﬁf-ﬂ’i ‘-[(‘P"’s(ﬂ) provides the sur]ectlve homomorphism of adjoint represen-
tation of -t.(']) Lie algebra.

The simplicity of -L("p forces it to be an isomorphism and moreover b"el'\rx for so-

me de’}t(ﬂ(“]). 1

We have proven ﬁore than S(n‘)«. &) ; namely we are able to identify the structu-
ral homomorphism @ of §(m) with that given in (10.III). Note also that the coeffi-
cient de%tw(nl) , the mappings @ and'LP';differ in, is always real if FOp#C.
If the case of F(»]):C , it can be complex iff the' mappings § and'lpi are analytic
i.e, the algebra &(m)is the complex ore.

In virtue of the above theorem (possibly after appropriate reséaling) we shall con-
sider @ to be equal Y. Note that the mapping"{"g (e®) depends on the commutation
factor of S(-\l); namely via the symmetry of the form E:Rge.

In order to determine the structure of the whole S“,(wn Lie algebra, we have to
construct the surjective mapping "(Tses.i: Qtscnpl—)g(,\‘)e‘:“" .

Hence the following

LEMMA 1.III

Sy = - 6%cde + LooTe

where e® denotes universal extension of ©& onto 0’&#('\') , and Jle is-e—skew—symmet—
rization,

PROOF:

Follows immediately from the generalized Jacobi identity (Def.1.I i)) rewritten in
terms of Wy@&y n .

We are now in a position to perform the classification of all canonical spinorial
extensions S(ﬂ‘) with respect to the signature (p,q) of the form#.

We have shown, that to arbitrary @ -Lie algebra 5(‘\‘) there corresponds &(ﬁ)—inva—
riant and F(ﬂp—valued form (7.III) on S(«‘). This form is moreover €-symmetric with
respect to the certain antiautomorphism of P(hp . For D:F(q')l—) F('\,) defiqed ac-
cording to ©(a+,*) =©C)-)I(R) , o€ F(Y) one can prove Jo® =€OeT (T-transposi-
tion). It is easy to note, that the converse is also true. To arbitrary form with
the above properties there corresponds, as described in the proof of Theorem 1.1II,
a surjective homomorphism"l’i onto &(«1) Lie algebra. This very mapping after comp-
letion by j-s (Lemma 1.IIT1) yields the structural homomorphism of some graded €-Lie
algebra from canonical class $(4).

Since the structure of £(nl)ALie algebras is known [8] (to use it, one has to note
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that CenCq,pd~ Ev(Pi9) ~ Leanpq-1) and that the image of P under the last iso-.
morphism equals to B= of [8]), it is easy to classify all L) -invariant forms
on s(ﬂp and their symmetries with respect to all antiautomorphisms of F(ﬂl) divi-

sion ring, It enables us to determine all admissible commutation factors and in-

ternal sectors-i(ﬂp .
A1l L(4) Lie algebras [8] can be divided anto four basic classes.

1° Analytic series

L~ spl-,F) , so(,F) 3 FvR,¢C

o

The forms corresponding to these Lie algebras are respectively either antisymmet-
ric or symmetric and analytic in complex case, Hence € = -1 for sP(-)F) and € =1
for $0(C-yF) . Obviously jxﬁ O independently of €.

2° Complex unitary series

L) ~ su (- ,©)

The form invariant with respect to this Lie algebra is either hermitean or anti-
hermitean., In this case the following lemma is true.

LEMMA 2.TII.
Sy= ~(reeX/r i ImO® , hence tCw) =iR
o = ding S(o‘) .

PROOF ¢
1f $¢eXeJe# O , then there exists I..e tgﬂ(o]), such that [5(1)--‘ and L=
(the case i*=1 is excluded in Lemma 4.II). This element defines complex structu-

re in By (%) . Standard manipulation gives U1 2eoNe = - €/ TImMmO® and
6%xe = L ImO® ]

3° Quaternionic unitary series

L)~ vy, H) ~spC:)

i) The form invariant with respect to the above Lie algebra is symmetric with res-
pect to the main quaternionic conjugation " 4" :

(9‘)" = ©®oT , which corresponds to € = 1, Then we have S!-.--e.oar‘:-‘.lmé', con-
sequently £(~|) ~ Sp(4) .

ii) Rescaling of the above form e% e‘.c. ; ~azo®€ i , we obtain the form which

is antisymmetric with respect to el(&) being the composition of ¥ with the inner
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-1
automorphism ol €+ dt of M : .
~
Lg’;"‘”: ~-6%eT ; this corresponds to € = -1 and 53"5'-%‘-‘-*“&0', con-
sequently t.,(n,)-dﬂ"‘o@.) .

4° Quaternionic antiunitary series

L) ~auC W~ sS*C) .

The forms invariant with respect to this algebra are either

i) antisymmetric with respect to "#"

(e°)"=-§o'r , hence € = -1 and 53:-:]'"9“; consequently i(np ~ 5pW1)

or

ii) symmetric with respect to k(%) (cf.3°):

(6.)“)- 6.01' . This implies € = 1 and §y a—d.Rt.e’; consequently t:(ap'“ o
The above considerations lead us to the following -

THEOREM 2,111

The content of *(sl) canonical classes is described in Table 1.I1T.

PROOF:

Follows directly from classification of ¢C("|) Lie algebras [8] and the above consi-

derations. 1
p-q (meoed8)
q=0 o 1 2 3 4 5 6 7
som«.qa so(LH, L) $0C20e410) scFCated) s0C2L4430)
- - - - «vuLie) -
sotun ) [$ so(tH;e) sd'aun so'ated soleet,e)
- = - «vu(eil) ot 1) -
suCatee) i - Su(ted, L) - suCen, 0
su(aia) |- - sulLiLi - sveLtly)
3_; L) H - SPCasttg) spCliaetby) -
o |swotit) |~ osp(112¢;R) qWUCivese)  auueifaits) ospCeiaLie)
.S SP((.-M): - - SPCYaH 1) -
E 4d0u(410) | = | ospCaistiRy osp(1i2e;c) <uuCLivags) osp(412Lic)
SPlL+e) 15 ' - -‘P"ﬁ“»‘i" SP(Yat4,n) -
duu(die) |- osp(t122;R) <UUCA1%5,44) avu(alyn,n) ospCaI2e; )
su(at+) E - suesd30) - su(est)
suCtri20 |- - su(stid) - suctLld
socustm | & SOCLH,L) . scfcaesn) so*aeed Solt,L)
- |- - «wu(eid) avu(Lie)

TABLE 1,III. 2t = 25 ; sa CCprq-1)/21
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In the Table 1.III we have described all canonical spinorial extensions of 5°(ﬂ’
Lie algebras, that signatures (p,q) of the forms @ do admit. One readily sees

that there exists the sequence of signatures favouring one type of commutation
factor and consequently admitting as an extension either only Lie algebra or only
Lie superalgebra. It always holds for Se(y) Lie algebras whose spinorial modules
are essentially real and for these orthogonal Lie algebras whose spinorial modules
are complex but their unique so(q)-invariant forms are analytic. In all other ca-
ses the form 4 does admit Lie algebraic and Lie superalgebraic spinorial exten-
sion. It is remarkable, that this takes place only for these go(q)-orthogonal Lie
algebras, whose extensions have Hon~zero L(ﬂ’ internal sectors i.e, spinors are
charged.

We are under an obligation to comment shortly the cases when the signature (p,q)
does satisfy the system of equations of Lemma 4.II. i,e. does not admit any exten-
sion in sense of Definition 1,II. In order to obtain the non-trivial Zz-graded ex-
tension in these cases one is forced to double the odd subspace 5(»013, so that
it becomes isomorphic to the direct sum of two irreducible spinor modules. The si-
mple extending structures are then special linear Lie algebras or Lie superalgeb-
ras, both admissible by any signature under consideration.

There are two orthogonal Lie algebras distinguished by their non-simplicity i.e.
their irreducible spinor modules yield non-faithful representations. Consequently
the Definition 1.II describes for $0(4,0) and $0(2.2) the extensions of their sim-
ple ideals $0(3,0) and $0(2,1) respectively, The extensions containing faithful
representations of these semisimple Lie algebras are to be achieved by forming
formal direct sums of respective extensions of idéals. This very construction yie-
1ding semisimple Zz-gradede-die algebras is compatible with non-simple structure
of s0(4,0) and $0(2,2).

IV. THE STRUCTURAL RELATIONS

Let us now describe the structural relations of canonical spinorial extensions in

terms of basis elements {e = 1/2 ene, , e =1/k! eAane A...e H
a a b a,a,.0.8 a

b 1220 % . 4 % %
l‘a,b,a1,...,ak(p+q; 2<k=2 (mod4)} of L(4) Lie algebra and F(y) division ring. We
have to decompose the (anti)commutator <Q(*),Q(.+!))of two spinors in terms of the

preimages

Mab = L'Cear)

(1.1v)
T‘,‘.uﬁk = L.1 ce&,.-.w)

of the basis elements of &%) under homomorphism (1.1I) and preimages
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Gg= L"(Rs) ; s=0 or Jsss3 (2.1V)

of complex or quaternionic imaginary units.
We need the following ([3]) :
LEMMA 1.1V

vg&..--“u‘(‘{"q’l) = - é/cl' RG e(+ , ea.,..- a..g*”)

Y.¢'e $(~p N = dimks(q‘) andﬁl‘i is that of (10.III).

PROOF
Qgeee K

- -l br Ceac ) .

The equality follows directly from '\l’i

T . . .
Let us choose {'u.A}l ~ an arbitrary basis of S(ﬂ‘) spinor module and take the stan-

dard notation
Mrs = Re®(up, e up)
Me = Re ©Cus & ™ ug)
Lae = Re © (ua, psu;) (3.1V)

Cae = Re©(u, ue)

for the coefficients of decomposition of'\rs and j'-s mappings in canonical bases of

c[(o,) and F(v) algebras.
For the basis elements {@pA® Qa); 1sasr} of 'Sm('\') » corresponding to {_‘M}r, one
can write the following structural relations
Qa) =-elar Mye Hav= /e Mt Tayan
(Qvl\. 82 ==€/2ar | o Jas /o AR aq.an ¥ (4,1IV)
+ (internal sector)v.

The internal sectors are given as follows

0 p+q = 2, p+q = 0 (mod4)

we

0,1,7 (mod8) p+q arbitrary

n

o 3 Pq
—(r+erLpnCo ; ptq = p-q = 2 (modd)
p+q = p-q = 3,4,5 (mod8) € =1
- zsAsG“s E
3 p*q = 0,1,7; p-q = 3,4,5 (mod8) & =-1
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S 3 P*q = p=q = 3,4,5 (mod8) € = -1
-cAsd G" pPtq = 0,117’ pP—q = 3’4!5(m°d8) €=1

The last expression of the above is written according to the convention used in
considerations preluding to Theorem 2.III, ‘
The commutators of even elements of 'S(«l) Lie algebras with these from 30)(“1) have

the form:

<o @Y = Qg c®a cel(n)
) (5.1v)
AL, 00> = Qe $8 = 5 e Ry

and are simply given by matrix representations of respective Clifford algebras.
The structural relations of basis elements (1,IV) are obviously that of 111) and
F(y.

The considerations of this paper give the full classification of spinorial exten-
sions of orthogonal Lie algebras and provide the possibility to describe the su-

persymmetry algebras used in supergravity theories. We present them elsewhere,

REFERENCES

1 ARTIN E. "Geometric algebra", Interscience Publ.Inc.N.Y.1957

2  CHEVALLEY C, "The algebraic theory of spinors'" Columbia Univ.Press N.Y.1954

3  HASIEWICZ Z., KWASNIEWSKI K., MORAWIEC P., Supersymmetry and Clifford algeb-
ras, Journ.Math.Phys.25(1984)2031-2038

4  HELGASON S. "Differential geometry, Lie groups and Symmetric Spaces", Acade-
mic Press N.Y. 1978

5 JOST R. "The general theory of quantized fields'" American Mathematical So-

ciety, Providence 1965

6  KAC V.G. Lie superalgebras Adv.Math.26(1977)8-62 -

7 LANG S. "Algebra" Addison-Wesley Publ.1965

8  LOUNESTO P. "Spinor modules" Found.Phys.11(1981)721-730

9  PARKER M, "Real forms of superalgebras" Journ.Math.Phys.21(1980)689-693
10 SCHEUNERT M. "Generalized Lie algebras'" Journ.Math.Phys.20(1979)712-717

ZBIGNIEW HASIEWICZ
INSTITUTE OF THEORETICAL PHYSICS, WROCLAW UNIVERSITY, CYBULSKIEGO 36, POLAND



		webmaster@dml.cz
	2012-10-08T18:01:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




