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THE SHORT-TIME PROPAGATOR AND THE BOUNDARY CONDITIONS IN THE . 

QUANTUM MECHANICS * 

P. PreSnajder and V. Pafcma 

1• Introduction 

The retarded propagator K(x,T;y,0) for T>0 is given in the 

Feynman formulation of the quantum mechanics as 

K(x,T;y,0) =- lim JdxN_1...dx- KT/N(x,xN^1 ).. .KT/N(x1 ,y) (1) 

where K.(x,y) is a short-time propagator (t « T/N is small). For 

the Lagrangeans of the type 

L « £ x2 - V(x) 
Feynman put 

Kt(x,y) - (2tfitr
n/2 exp[^(x-y)2 - itV(^) ] (2) 

(here n is the dimension of the configuration space). 

The expression for the Kt(x,y) is important, since it guaran­

tees the formal equivalence of the Feynman and Schrodinger approa­

ches: if K.(x,y) satisfies to the accuracy o(t) the Schro'dinger 

equation, then K(x,t;y,0) given by the eq. (1) is formally its so­

lution. The equivalence of both approaches is a formal one because 

the procedure based on the eqs. (1) and (2) does not guarantee the 

boundary conditions following from the physical requirements of the 

problem. 

In Sect. 2 we shall therefore investigate the short-time pro­

pagator on a configuration Riemannian manifold (to the accuracy 

o(t) , because only those terms are essential for a formal proof 

of the Schrodinger equation from (1) and (2)) and propose a proce­

dure how to include boundary conditions into the definition of the 

short-time propagator. In Sect. 3 we compare our method with more 

standard approaches. In Sect. 4 we study the boundary conditions 

This paper is in final form and no version of it will be 

submitted for publication elsewhere. 
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in more detail and solve a simple non-trivial example as an illu­

stration. Finally Sect. 5 is devoted to concluding remarks. 

2» The short-time propagator 

For t>0 we investigate on an n-dimensional Riemannian mani­

fold M the solution K -* K(x,t;y,0) of the Schrodinger equation 

i 3tK = - ̂ AK + VK (3) 

which satisfies the initial condition 

K(x,0;y,0) * <5(x,y) (4) 

and boundary conditions (which we shall specify later) on a boun­

dary dM of the manifold M. Moreover K is a symmetric function of 

x,yc M. 

Let us seek the particular solution of the eq. (3) in the form 

of the following short-time expansion 

K(x,t;y,0) = 

= ( 2 f l r i t r m / 2 D(x,y) e x p [ ^ r 2 ( x , y ) - i tW(x,y) + o ( t 2 ) ] (5) 

where r * r ( x , y ) s a t i s f i e s the condit ion 

( V r , Vr) = 1. (6) 
2 

The terms o(t ) in the bracket in (5) are of no interest for us. 

The condition (6) guarantees that 

S(x,y,t) = ̂  r2(x,y) (7) 

is the classical action for a free motion on the M, which is a so­

lution of the Hamilton-Jacobi equation 

- 3tS * J(7S, VS) (8) 

The factor in front of the exponent in (5) is necessary, because 

it guarantees the correct physical dimension of K. 

Our procedure is similar to the proof of the Minakshisundaran 

-Pleijel theorem in (BERGER, GAUDUCHON, MAZET): we insert the ex­

pansion (5) into the Schrodinger equation (3) and by a comparison 

of expressions by lowest powers of t we obtain equations for the 

functions D and W 

H^i * L ( 7r,tfD) + M r (9) 

W + r(7r,VW) -= V - JJJ^D (10) 

Let us solve the eqs. (9) and (10). Consider a classical tra-
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jectory x(.) corresponding to a free motion from the point y = x(0) 

to the point x • x(t). We assume that we know the corresponding 

classical action S(x,y,t) i.e. we assume that the function r • 

r(x,y) is given. The vector field e- * 7r has a unit lenght along 

x(.): (e^e.) « 1. Further we shall assume along x(.) Jacobi fields 
e2,#0#,en* which a r e linearly independent and perpendicular to e-. 

In the basis e-,e2,...,e the eq. (9) takes the form 

n - 1 - § " ' + w (11) 

-1 /2 where e a (det g) (the metric tensor g should be calculated in 

the basis given above) and the prime denotes the differentiation 

with respect to r. The eq. (11) has a solution 

D - a r ( m - 1 ) / 2 e - 1 / 2 (12) 

where a is an integration constant (i.e. a is such a function 

a(x,y), that a'=0). Similarly the eq. (10) could be rewritten as 

(rW)'=- V - 25 AD (13) 
It has a solution 

w = ? J ( V - TD D) dr + l (u) 

where b * b(x,y) is an integration constant. (i.e. b'=0) and one 

integrates in (14) along the assumed classical trajectory. 

In principle we have to take into account every classical tra­

jectory x(.) starting in the point y *- x(0) and ending in x * x(t). 

Among these trajectories there is the shortest one corresponding 

to the "direct" motion from the point y to the point x (such a tra­

jectory exists always, provided that the points x, y are enough 

close to each other). When the topology, or the boundary, of the 

manifold are non trivial, there could exist "indirect" trajectories 

winding around the manifold, or reflecting from its boundary (their 

number may be finite or infinite). The "direct" trajectory is not 

sufficient for the construction of the general solution K. We pro­

pose to search for the K in the form of the summ of all particular 

solutions (5) 

K(x,t;y,0)» 
(15) 

» L (2Xit)"m/2 D(x,y) exp[ ̂ r2(x,y) - itW(x,y) + o(t2) ] 

As the short-time propagator Kt(x,y) we denote any formula for K., 

which is identical to (15) in all terms explicitely written in the 

bracket in exponent. 
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For the direct path r is equal to the Riemannian distance 

d(x,y) on the M. For t —> 0+ one has, (BERGER, GAUDUCHON, MAZET) 

(2(Tit)"n/2 D(x,y) exp ̂ |d2(x,y) — > D(x,x) <5(x,y.) 

The initial condition (4) thus fixes m • n and D(x,x) » 1. This fi­

xes the multiplicative constant a in (13) for the direct trajecto­

ry. Moreover for this trajectory b s 0, because the term b/d(x,y) 

in (14) is undefined for x = y. The term in the eq. (15) correspon­

ding to the direct trajectory is completely fixed. 

For the indirect path it hQlds r(x,y) > d(x,y) for arbitrary 

interior points x, y of M. For m^n and t —» 0+ one has 

(23mr m / 2 D(x,y) exp ̂ |r2(x,y) » 0 

Now we shall qualitatively investigate the short-time limit 

of (15). When x and y are interior points of M, then the term 

corresponding to the direct path dominates the (15) i.e. 

Kt(x,y) =- (2JTitr
n/2 D(x,y) exp j|d2(x,y) + ... (16) 

and terms not explicitely indicated are inessential, since they 

contain much more oscillating factors exp r^r (x,y) with r(x,y)> 

d(x,y). 

The situation is different, when x€ 3M and y € M. Then some of 
indirect path are reduced to the direct one and (15) is dominated 

by all the trajectories which for the x approaching 3M are reduced 

to the direct trajectory. The m^n and the integration constants 

a, b (and eventually the undetermined o(t ) contributions) in these 

terms should be chosen so that the short-time propagator 

(i) is defined and symmetric on MX M, 

(ii) satisfies (to the accuracy o(t)) in dominant contributions 

the boundary conditions on 3 M. 
We propose to use the short-time propagator determined in this 

way to calculate the Feynman integral (1). Of course this does not 

gaurantee the existence of the limit in (1) and its calculation re­

mains generally extremely complicated. If the limit (1) exists we 

can intuitively expect that the propagator will satisfy the prescri­

bed boundary conditions. 

In what follows we compare the approximations (16) for the in­

terior points x and y with the standard approaches. Then we present 

en explicite procedure how one can approximatively satisfy the 

boundary conditions x€ 9M with a suitable choice of dominant terms 
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in (15) (in some simple cases the boundary conditions could be sa­

tisfied exatly taking into account all terms in (15)> (PA^MA, PRE§-

NAJDER; PRESNAJDER, PA2MA). 

3. Other approaches to the construction of the short-time 

propagator 

The Feynman's proposal (2) was extended by (DE WITT) to sys­

tems on Riemannian manifold; further generalisations could be found 

in (SCHULMAN). In these papers the boundaries and boundary condi­

tions were not taken into account. The generalisations were based 

on a first WKB approximation (to the propagator of the particle mo­

ving on a manifold i.e. the short-rtime propagator was defined in­

stead of (2) as 

Ct(x,y) * (2^*it)"
n/2 D1/2(x,y,t) exp iS(x,y,t) (17) K. 

where S(x,y,t) is a classical action, which is a solution of the 

Hamilton-Jacobi equation describing the motion on the manifold M 

in the potential V = V(x) 

- 3tS *- 1( 7S,7S) + V 

and D is the corresponding Van Vleck determinant. Usually one assu­

mes the direct path only (in (SCHULMAN) there is a proposal to ta­

ke into account homotopically inequivalent trajectories, but not 

in connection with the boundary conditions). 

Let us investigate the connection between the proposal (17) 

and the short-time approximation (16) for the interior points x 

and y. In the short-time limit and for x close to y we have 

D(x,y,t) = t~n D2(x,y) • o(t2) 

S(x,y,t) = 2^ d2(x,y) - tV(x,y) + o(t2) 

where V(x,y) = V(z) (and z is e.g. centre of the corresponding 

classical trajectory, roughly z-«* (x+y)/2). 

By inserting these expressions into the formula (17) we shall 

not obtain the short-time propagator solving to the accuracy o(t) 

the Schrodinger equation (3h It turned out (DE WITT), that to the 

potential one should ad hoc add a term -R(x)/12 (where R is the 

scalar curvature of the manifold) i.e. one should use the potential 

W(x) » V(x) - y^ R(x) (18) 

The formula (17) formula (17) for the short-time propagator is in 

this way chaged to (DE WITT) 
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Kt(x,y) » (2^rit)"
n/2 D(x,y) exp[ ̂ |d2(x,y) - itW(z) j (19) 

Let us compare this expression with our formula (16) for the 

short-time propagator K. ( the eq. (16) is valid in the case of the 

interior points x and y). Both expressions are identical up to 

terms W(x,y) and W(z). In our case W(x,y) is given by (14) (with 

b * 0) and for x close y we have 

W(x,y) ^ W(z) (20) 

Moreover one can show (BERGER, GAUDUCHON, MAZET), that 

We see that for the neighbouring interior points of the manifold 

the expression for the Kt(x,y) is approaching the K.(x,y). 

In the standard approach starting from the first WKB approxi~ 

mation the additional term in (18) is added "by hand"., In fact it 

appears in the second WKB approximation (for the close points x 

and y). 

One can simply show that for a free particle the individual 
WKB and short-time expansions are in one-to-one correspondence. In 

the short-time expansion one can include easily the potential (not 

as in WKB expansion): one solves first the Hamilton-Jacobi equation 

for the free particle and then one adds to W the mean value of the 

potential along the classical path of the free particle (see eq. 

(14)). 

In our short-time expansion (corresponding to the second WKB 
1 f 1 approximation) there appears automatically the term - "jp J j)-4-D dr 

in W, which for the infinitezimal paths reduces to the additional 

term in (18). Moreover the (modified) WKB approximation (19) is 

adequate only for infinitesimal trajectories, whereas short-time 

approximation is correct even for non-infinitesimal ones, which 

are important by taking the boundary conditions into account. 

4« The boundary conditions 

We shall take into account boundary conditions in one typical 

example. If the potential is not singular on the'boundary 8M, one 

takes usually the boundary condition in the form 

/i(x) K(x,t;y,0) + 3nK(x,t;y,0) = 0 , x€BM, ye M (22) 

> 3 denotes the differentiation in x aloi 

tion on 3M and /3(x) is a given function on 81 

where 3 denotes the differentiation in x along the normal direc-
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When x is approaching the boundary, one from the indirect tra­
jectories is reflecting from 3M (in a point close to x) and for 
x € 3 M it is reduced to the direct trajectory. Then both equally 
contribute to the summ in (15) (see Fig. 1). For x £ 3 M one should 
take the short-time propagator in the form 

K.(x,y) « (2JTitr n / 2 D . ( x , y ) exp[ 4" r^(x,y) - itW.(x,y) ] 
J-O J " 2t j J (23) 

Here the index "0" corresponds to the direct trajectory and "1" to 
the reflected one (which of the indirect trajectories remains from 
(15) on the r.h.s. in (23) depends on the position of x on 3 M ) . 
We insert the expression (23) into the boundary condition (22). 
After cancelling the same factors in both sides, we obtain the 
equation, (x^3M) 

1 
H [ftD. + D.(i r . d r . - it d W.) + 3 D . 3 exp(-itW.) /= 0 
j=0 J * J ̂  J n o n J n «J J (24) 

We now expand the exponent in (24) into the power series and re­
quire that the expressions standing by the powers t~ and t° va­
nish. Using the formula (14) for the W., we obtain conditions 

J 
Do 3n ro * D1 an r1 s ° (25a) 

(/3 + ̂ n)(DQ+D1) * [ bl .+ JJ(D^D0.D;
1flD,)dp ] Do 9nro (25b) 

x£ 3M 
(here we have taken into account that for the direct path b 3 1). 

The eq. (25a) fixes the multiplicative constant a^ in D.. , 
whereas (25b) determines the additive constant b« in W,. Let us 
note that the conditions (25) do not depend on the potential V. 
For (1 « °o there remains only the condition 

D Q • D- * 0 , xe 8M (25c) 
which determines a« and we can consistently put b. * 0. 

Generally the shape of the manifold and the boundary condi­
tions could be such, that the corresponding conditions cannot be 
satisfied. This is an indication that there does not exist the 

o 

prpagator for the Schrodinger equation with the given boundary 
conditions i.e. that for the given, problem does not exist the self 
-adjoint hamiltonian (in our approach we investigate this problem 
in the limit t — > 0+). 

As an illustration assume the free motion from the point y -= 
(v-pVp) to the point x * (u.^,^) in quadrant of the plane v. > 0, 
u.> 0; i » 1,2. There are four classical trajectories with the 
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actions (see Fig. 2) 

Fig. 1 

V н (x-y;j)2 » j я ° > 1 > 2 » 3 

Fig. 2 
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By dimensional arguments m « 2 in (15) for all these trajectories. 

The corresponding short-time propagator is 
2 

K
f
 (x,y) » i-zjrr-r Z. D. exp(iS .-itW.) (27) 

j
s
0 ^ J J 

We shall not consider the doubly reflected path (j » 3) in (27), 

since it is unimportant for an approximative fulfilment of the 
boundary conditions. 

It is instructive to solve the eqs. (9) and (10) directly. For 

every paths we change two variables u
1
, u0 to a new pair of varia-

2 2 
bles r., o>. (j » 0,1,2), where r. * (x-y.) and u> . has the proper­
ty ( Vr-, Vco.) • 0. The eq. (9) is then reduced to 

J J v. 0 , j - 0,1,2 (28) 

and it follows that D^ * D.(co .). Similarly the eq. (10) is redu-
o J J ceđ to 1 т,-1 ð r (r.W.) - - -j. D Г Д D. , j.» 0,1,2 (29) 

The initial condition for the direct path determines D • 1 and 

W « 0. Let us study the once reflected paths. We put 

&).* (u
2
-v

2
)/(u

1
+v

1
 ), OJ 2 -* (u1

-v
1
 )/(u

2
«fv

2
) (30) 

Then 

where 

-!• D : ' Д D . - г":2 c , ( t o . ) , 1.2 

1 ,-1 

J J 
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The solution of the eq. (29) is 

W. • rT1 b.(co.) + r"ľ2 c.(co.) (31) 
«J J J «J J J O 

We take the boundary condit ions in the form 

(ò^Ы^) K ( 0 , u 2 , t ; v p v 2 , 0 ) + д u K(0,u 2 , t;v^ ,v 2 , 0) * 0 (32a) 

ß 2
( l V K ( u l f 0 l t ; v 1 , v 2 , 0 ) + Ә u K ( u l f 0 f t ; v l f v 2 f 0 ) « 0 (32b) 

Consider fiгst the condition (32a). In this case we leave in 

(27) only the terms j » 0,1. Since for û  « 0 it holds 

ә

U l

г i - - v ° " Í1+Ü,*} ~1/2 

the eq. (25a) gives D. « D « 1 (and consequently in (31) c. * 0). 

The eq. (25b) then reduces to 

гø^ug) * - (H-cü*Г1/2
 b, (33a) 

In the same way one obtains from the condition (32b)-D
2
 « D * 1, 

c
2

 ж
 0 and finally the condition 

2fi
2
(

Ul
) « - (1 + u ;

2
) ^

1 / 2
 b

2
. (33b) 

The conditions (33) will be satisfieđ for û  « 0 or u2 • 0 respec-

tively, if we put 

t « -2(1 + aф~ 1 / 2 ß^Ы^z+UzV^/Ыўv.)) , j •• 1,2 (34) 

The short-time propagator is then equal to 

K t * TìETït e x P ^ i s
0 í + e x p ( - i t b 1 / r 1 ) expíiS-j) + 

+ e x p ( - i t b 2 / r 2 ) exp ( iS 2 ) j (35) 

where b.j , b 2 are given by (34 ) . 

I f (Si>f2>2 в г e c o n s t a n t s ł then (to the assumed accuracy) we 
can rewrite Kt as ( > ( ß , 

K^íu^ -u^v- , v 2 ) • Kt ( u p v p Kt ( u 2 , v 2 ) (36) 
where ? 

K<ß)(u,v) - (
2 з r i

t Г
1 / 2

C e x p - ^ - -
 + 

+ ™?Щ!r ^І^ЯГ- 3
 .

 (37) 

We have shown (PAŽMA, PREŠNAJDER) that the propagator of the par~ 

ticle freely moving on the half-lihe (u>0), which satisfies the 

boundary condition 
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(h K(f?,)(Oft;v,0) + auK
(^}(0,t;v,0) » 0 (38) 

has precisely the short-time expansion (37). The decomposition (36) 

simply corresponds to the separation of variables.-The factor in 

front of the last exponent in (37) has a natural interpretation: 

for small t we can write 

cxp1*2** . 1 + it(3/(u+v) e ik -r3 ( 3 9 ) 
e x p u+v 1 - it/3/(u+v) ik + tf U y ; 

where k -= (u+v)/t is the classical momentum of the particle along 

the trajectory reflecting from the origin. The last expression in 

the eq. (39) corresponds precisely to the phase factor, which the 

incomming Schrodinger wave obtains after the reflection from the 

wall on which the boundary conditions.(38) should be satisfied 

(see e.g. (REED, SIMON)). 

5. Concluding remarks 

Postulating the form of K. for a given classical system may 

be understood as a specification of a method of quantisation (more 

precisely as a determination of quantum dynamics). Starting from 

our (to some extend intuitive) results we can formulate the quan­

tisation for the particle moving on the Riemannian manifold with 

thejboundary in path integral approach as follows: 

1. Find all classical trajectories x(.), starting in the point 

y * x(0) and ending in the point x « x(t). 

2. The short-time propagator is given by the formula 

Kt(x,y) « £ (23T it)~ m/ 2 D(x,y) exp[ ^ r2(x,y) - itW(x,y) + ...] 

(40a) 
where one makes a sum over all classical trajectories and 

D(x,y) = a r ( m " 1 ) / 2 e" 1 / 2 (40b) 
X 

W(x,y) • I / (v - 23AD) dr (40c) 
y 

Here r » r(x,y) is the lenght of the corresponding trajectory, e = 
— 1 /2 (det g) and one integrates along the trajectory. 

3. The quantities a and b do not depend on r i.e. ( 7rf 7a) » 

0, ( \7r, Vb) = 0. For the directtrajectory b * 0 and a is fixed by 

the condition D(x,x) « 1. For all other trajectories a and b should 

be chosen in such a way, that the K.(xfy) is symmetric in x, y and 

satisfies (to the accuracy o(t)) the boundary conditions. 

When we succeed in constructing the short-time propagator, we 



THE SHORT-TIME PROPAGATOR 127 

intuitively expect, that the propagator given by eq. (1) will sa­
tisfy the boundary conditions. The non-existence of K. indicates, 
that for given boundary conditions there does not exist self-
adjoint Hamiltonian. 

As we have pointed out in Sect. 3 the formula for the K. is 
identical to the second WKB approximation for the free propagator 

Kt s KWKB * e x p H ( So * h Sf * h 2 s 2 } ( 4 1 } 

index "f" means 

sting property, that 

f (the index "f" means "free"). The term Sp(x,y,t) has the intere-

s|(x,x,t) -= yj R(x) 

where R(x) is the scalar curvature of the manifold. When we take 

K " 4 K B • e xP E(so + h S f } ' (42) 

then in the Schrodinger equation for K appears the term -R(x)/12, 
which has not yet generally accepted interpretation. On the basis 
of our results, we think that the appearence of this -term in 
Schrodinger equation reflects the uncompletness of the assumption 
(42), with respect to the correct one (41) (for a free particle). 
Let us note, that in our approach the potential is taken into ac-
count simply by adding the term -tV(x,y) to the S2(x,y,t) (here 
V(x,y) is the mean value of the potential along the classical tra­
jectory; see eq. (40c)). 

The proposed method of constructing K f works satisfactorily 
in simple cases (the particle on a circle, on a finite interval, 
on a half-line, in a quadrant of a plane, ... (PRESNAJDER, PA.2MA)); 
This indicates, that the proposed approach permits to construct 
the short-time propagators, which satisfy the boundary conditions 
following from the physical formulation of the problem. 
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