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INTEGRAL MANIFOLDS AND NONLINEAR OSCILLATIONS 

JACK K. HALE, Baltimore*) 

In the last few years, the theory of nonlinear oscillations for ordinary differential 
equations has been developed at an outstanding rate. Many problems remain to be 
solved but some aspects of the theory are very well understood. Concurrently with 
the development of this theory, there has been renewed interest in oscillatory pheno­
mena for differential-difference equations. The purpose of the present paper is to state 
some of the known results for ordinary differential equations together with some 
extensions to differential-difference equations and the difficulties involved in such 
extensions. Due to lack of space, periodic solutions are not treated in detail and the 
applications have been suppressed. 

1 Almost periodic solutions 

Consider the system of equations 

(1) x = e[Ax + X(t, x, y, z, e) + X±(t, x, y, z, e)] , 

y = By + Y(t, x, y, z, e) , 

ez = Cz + Z(t, x, y, z, e) , 

where x, y, z are vectors and the following hypotheses are satisfied: 

(Hj) For each fixed e, all functions are almost periodic in t uniformly with respect 
to x, y, z for ||x|| = JR, \y\ = R, \\z\\ = R, where R is a positive constant. 

(H2) X, Y, Z are continuous in t, x, y, z, e, Lipschitzian in x, y, z for — oo < t < oo, 
IIxII' \\yII' IIzII = -**> 0 < e = ei and the Lipschitz constant approaches zero 
as ||x||, ||y||, |z||, e -» 0. Furthermore, for x = 0, y = 0, z = 0, the func­
tions X, Y, Z are bounded by a continuous function M(e) with M(0) = 0. 

(H3) The eigenvalues of each of the matrices A, B, C have nonzero real parts. 

*) This research was supported in part by the United States Air Force through the Air Force 
Office of Scientific Research, Office of Aerospace Research, under contract No. AF 49 (638)-
382, in part by the U.S. Army, Army Ordnance Missile Command under contract DA-36-034-
ORD-3514 RD, and in part by the National Aeronautics and Space Administration under con­
tract No. NASr-103. Reproduction in whole or in part is permitted for any purpose of the United 
States Government. 
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(H 4) Xt(t, x, y, z, s) is continuous together with its first partial derivatives with 
respect to x, y, zfor — oo< t <oo, ||x||, | |y | , | z | | ^ 1?, 0 < e ^ ex and 

lim T " 1 Xx(т, x, y, z, є) dт = 0 , 

Theorem 1. If system (1) satisfies hypotheses (Hi) —(H4) then there exist s2 > 0, 
a > 0 such that, for each s, 0 < e ^ s2 system (1) has a solution which is almost 
periodic in t and approaches zero uniformly int ass -» 0 and is unique in the region 

o ^ H + IMI + N I ^ -
If all the eigenvalues of A, B, C have negative real parts, this almost periodic 
solution is asymptotically stable. If one eigenvalue has a positive real part, it is 
unstable. 

In the determination of almost periodic solutions of nonlinear differentia] equations 
which contain a parameter, the differential equations in many cases are not given in 
the form (1). However, by appropriate transformation of variables, many problems 
reduce to a study of (1). For applications and a discussion of these transformations, 
see the book of N. N. Bogolyubov and Yu. A. Mitropolskii [4] or their survey paper 
[5]. The term X\ is included in system (1) in order to obtain results on almost periodic 
solution by an application of the method of averaging (see [4]). Notice that system 
(1) also has a singular perturbation term since for s = 0 some of the high derivatives 
disappear. 

1.1 Idea of the proof. By a well known lemma of N. N. Bogolyubov [3] (or [4]), hy­
pothesis (H 4 ) implies there is a function u(t, x, y, z, e), which is almost periodic in t, 
such that the transformation 

x -» x + s u(t, x, y, z, e) , y -» y , z -> z 

applied to system (1) yields a system of the form (1) satisfying (H 1 )—(H 3 ) and 
Xt = 0. In the following, we therefore assume X± = 0. Without loss of generality, we 
can assume that each of the matrices A, B, C have the form 

HAol} *"(»> C = (o*c> 
where all the eigenvalues of the matrices designated by + (by —) have positive real 
parts (negative real parts). For any matrix A of this type, define the matrix JA(i)9 

— oo < t < oo by the relations 
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(2) ''• , (' )"(^ ,"o)• f°r , > o ' 

f<®-§.-$•for ,<o-
•lx(-O) - JA(+Q) = - 1 , the identity . 

The matrix JA(t) -> 0 exponentially as |fj -*oo. Let @(D) be the class of functions 

6(D) = 

-= {x, y, z; x(f), y(f), z(f) are continuous and bounded by D for — oo < t < oo, 
where I) is a given positive constant} . 

For any (x, y, z) in Q(D), define the transformation 3 taking (x, y, z) into (w, v, w) by 
the relation 

/*oo 

(3) u(f) = 8 JA(ez) X[t + T, x(f + T), y(t + T), z(t + T), e] dT , 
J —oo 

/*oo 

KO = J B ( T ) y t r + T > *( ' + T )> .K' + T)> 2 ( r +T )> 8 1 d T > 
J —oo 

4 0 = - Jc (-) Z[* + T, x(f + T), y(t + T), z(f + T), e] dT . 

Now, it is not very difficult to show that there exist s2 > 0 and D(s), continuous in s 
for 0 = 8 = s2, such that 3 has a fixed point in S[D(e)] for each s,0<s^s2. 
Furthermore, this fixed point satisfies our differential system and is almost periodic 
in t. 

A detailed analysis of the stability of this almost periodic solution yields the uni­
queness. 

1.2 A generalization. The conclusions of Theorem 1 remain valid in some cases 
when B, C depend upon t, say, B = B(t), C = C(t). In fact, hypothesis (H3) can be 
replaced by the assumption that the zero solution of the system 

y = B(t)y 

is uniformly asymptotically stable and that C(t) has a continuous derivative with all 
of its eigenvalues, X(t) satisfying Re X(t) = - 2y < 0, - o o < * < oo, where y is a con­
stant. This new hypothesis implies that if <P(t), W(t) are fundamental solutions of 
y = B(t) y, sz = C(t) z respectively, then 

||*(0|| = jSe-y( ' - '0) , \\W(t)\\ = pe-
y(t-t0)/s, j8 = const, 

for 8 sufficiently small. The proof of the theorem proceeds as before with JB(x\ 

Jc(T/e) replaced by <P(t), Y(t) respectively, and the limits in the last two integrals in (3) 

replaced by — oo to t. 
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As a final remark, it can be shown that the conclusions of Theorem 1 remain valid if 
the equation involving y in (1) contains a linear term D(t) z where D(t) is almost 
periodic. In the theory of relaxation oscillations a term of this type is encountered. 

1.3 Periodic solutions. In case all functions in system (1) are periodic in t of period 
T, then the hypothesis (H3) on the matrices A, B, C are too restrictive. In fact, hypo­
thesis (H3) can be replaced by the following: 

(H3) A, C are constant matrices with det A #= 0 and all eigenvalues of C with non­
zero real parts. The matrix B = B(t) is periodic in t of period T and there is 
no periodic solution of y = B(t) y of period Texcept y = 0. 

If C = C(t) is periodic in t of period T, then the assumption on C in (H3) can be re­
placed by: the eigenvalues X(t) of the matrix C(t) satisfy Re X(t) = — 2y < 0, 0 ^ 
_ * !g T with y a constant. 

Of course, the proof of the theorem on existence of a perodic solution of (1) under 
hypothesis (H3) must proceed in a different way from the one outlined above concern­
ing almost periodic solutions. As before, we can assume Xt = 0. The class (£(D) is 
taken to be the class of periodic functions of period T, which are bounded by D. The 
transformation 3 taking (x, y, z) into (u, v, w) is given by 

u = e(e-At - I)-1 C + V*«-*> X[T, X(T), y(x)9 Z(T), a] dT , 

v = f +V(*) [S-W - /] ^ ( O r 1 *!>, *(t), yft), z(t), 8] dT , 

w _ 1 (*-«•/. - /)-! r + V<'-*>'' Z[T, X(T), j(T), z(T), 8] dT , 

where $(*), $(0) = J, is the principal matrix solution of y = B(t) y. The remainder of 
the proof is similar to the previous one. Of course, a fixed point of 3 is not necessarily 
a stable periodic solution of (1). On the other hand, it is not difficult to show that 3 has 
a unique fixed point in a neighborhood of x = 0, y = 0, z = 0 and the fixed points 
of 3 coincide with the periodic solutions of (1). 

For periodic solutions of nonlinear differential equations, hypothesis (H3) is even 
too restrictive. Many methods which do not use (H3) have been devised for obtaining 
periodic solutions of nonlinear differential equations containing a small parameter. 
Some authors who have contributed to this question are Cesari, Hale and Gambill 
(see the book of Cesari [6] and the forthcoming monograph of Hale [16] for a descrip­
tion of this method and references), Malkin [26], Sibuya [30], Golomb [10], [11], 
Bass [1], [2]. Cesari [7] also has given a procedure for obtaining periodic solutions 
even when the differential equations do not contain a small parameter. These methods 
will not be discussed here due to lack of space. The recent work of Halanay [12] and 
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Simanov [29] seem to indicate that the methods for the existence of periodic solutions 
of differential equations can be extended to differential-difference equations. 

1.4 Differential-difference equations. In this section, we give some of the possible 
extensions of Theorem 1 to differential-difference equations. Consider the equation 

(4) x(t) = tAkx(t-Tk)9 

where Ak9 Th9 x are scalars, TX > T2 > ... > Tr, 0 = T, = p . If we let t](3) be the step 
function defined by 

„(9) = 
fO, -ßй9û-*i, 

At+A2 + ... + Ap -TjйS < - rJ+i, j = 1, 2,..., r - 1, 
Л. + A2 + ... + A„ - т , < . 9 < . 0 , 

then (4) can be written as 

(5) x(t)= f° x(t + 9)drj(9)9 

where the integral is in the sense of Stieltjes. We will discuss equations of the form (5) 
where it is not necessarily required that ri(9) be a step function as above. For this pur­
pose it is convenient to introduce some notation. 

Let Rn be the space of w-vectors and for x e Rn

9 let ||x|| be any vector norm. Let 
<£„ denote the space of continuous vector functions mapping the interval <—/?, 0> 
into Rn and for cp in (£,., let \(p\ = sup_^^a<0 ||<p(#)||. For any continuous function 
x(u) defined on — ft ^ u ^ A9 A > 0, and any fixed t9 0 ^ t ^ A, the symbol xt will 
denote the function x(t + 3), — ft ^ fl ^ 0, that is, the function xt is in (£„ and is 
that "segment" of the function x(u) defined by letting u range in the interval t — jS ^ 
;= u ^ t. 

Let X(q>91) be a function defined for <p in (5n, ||<p|| ^ H9 0 ^ t < oo; let xt(0) denote 
the right hand derivative of the function x(u) at u = t, and consider the equation 

(6) xr(0) = X(xt91) . 

For any t0 ^ 0 and any function cp in (£„, ||̂ >j| < H, a function xt(*o> <p) is said to be 
a solution of (6) with initial function q> at t = t0 if there exists a number A > 0 such 
that 

i) for each fixed t910 = t ^ t0 + A9 xt(t09 cp) is in @n and \xt(t09 (p)\ ^ H; 
ii) Xto(to, (?) = <?\ 
iii) xt satisfies (6). 

If X(q>91) is continuous in t and Lipschitzian in cp, then for any given (p in (£„, 
|| 91| ^ Hx < H9 there always exists a solution of (6) with initial function (p at f = t0 

and it is unique. 
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Up to the present time, no one has succeeded in proving a theorem for differential-
difference equations which is as general as Theorem 1 for ordinary differential equa­
tions. After a little thought, some of the difficulties become apparent. First of all, for 
differential-difference equations, the transformation used in the proof of Theorem 1 to 
eliminate the term Xx seems to be very difficult. If the lags, that is, /?, is of order s, 
then such a transformation can be applied (see Halanay [13]). However, if /? is not 
"small" then the application of the transformation of Bogolyubov has not yielded 
satisfactory results. A second difficulty arises from the fact that solutions of differen­
tial-difference equations cannot be continued, in general, to the left of the initial time 
t0. On the other hand, for the existence of almost periodic solutions, it is not necessary 
to discuss all solutions for t < t0. Because of this fact, it may be possible to extend the 
proof used for Theorem 1 to differential-difference equations, but this has not been 
accomplished. 

We now proceed to state a result that can be proved for differential-difference 
equations. Consider the system 

(7) x,(0) = s[a(xt) + X(t, xt, yt, zt, s) + h(tj\ , 

yt(0) = b(t, yt) + d(t, zt) + Y(t, xt, yt, zt, e) , 

e zt(0) = c(t, zt) + Z(t, xt, yt, zt, s) , 

where x, y, z are k, m, n-vectors, respectively, and the following hypotheses are 
satisfied: 

(Px) For each fixed e, all functions are almost periodic in t uniformly with respect to 
cp, \l/, ̂  for cp e dk, ^ e Sm, fj e £n, ||p||, ||^||, ||*j|| = R, where R is a positive 
constant. 

(P2) Each of the functions X(t, cp, \j/, 77, s), Y(t, cp, \j/, */, e), Z(t, cp, \j/, */, e) is conti­
nuous in t, 9, i/t, */, e, Lipschitzian in cp, \j/, ̂  for — 00 < t <oo, ||<p||, || 
|*71| ^ R, 0 = c ^ elf and the Lipschitz constant approaches zero as \cp\, || 
|fj||, e -• 0. Furthermore, for cp = 0, \j/ = 0, ^ = 0, the functions X, Y, Z aie 

bounded by a continuous function M(s) with M(0) = 0. 
(P3) The functions a(cp), b(t, \J/), c(t, t\), d(t, r\), h(t) are continuous in t, cp, \j/, ̂  for 

all — 00 < t < 00, cp e (Sfc, \j/ e (Sm, ^ e Q£n and linear in cp, \j/, ̂ . 
(P4) There exist constants K ^ 1, a > 0 such that every solution xt(t0, cp) of the 

system xt = a(xt) satisfies 

\xt(t0, cp)\\ = Ke-^-t0)\cp\ for all t = t0, cp e <£k . 

(P5) There exist constants K ^ 1, a > 0 such that every solution yt(t0, cp) of the system 
yt = b(t, yt) satisfies 

\\yt(t0, ^)|| £ Ke-«—>m for all t> t0, xj, e <£M . 

(P6) There exist constants £ > . l , a > 0 , L > 0 such that 

\c(tlfri)-c(t2,ri)\ ^ L\\r]\\ . |f. - t2\ 
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for all tl912 and rj e (£„ and for each s, - oo < s < oo, every solution zt(t0, r\, s) 
of the system zt(0) = c(s, zt) satisfies ||z f(r0,ij,s| = Ke"2a(t""ro)||^| for all 
t^t0,rje (.V 

Theorem 2. If system (7) satisfies (P1)~(P6) and 

<8) l i m T " 1 f ft(T)di = 0 , 
. T->°° Jo 

;ffceji r/ier^ exist e2 > 0, a > 0, such that for each ^, 0 < ^ ^ ^2, system (7) ftas a 
solution which is almost periodic in t and approaches zero uniformly in t as ^ -> 0 
and is unique in the region 0 ^ ||<p|| + ||^r|| + \r]\ g <r. Furthermore, this solution 
is uniformly asymptotically stable. 

Theorem 2 generalizes many known results in differential-difference equations. See, 
for example, Cooke [8] for the case where the vectors y9 z are absent in (7), Halanay 
'[14], Krasovskii [24] and Simanov [28] for the case where the vectors x, z are absent 
in (7), Klimuscev and Krasovskii [23] and Klimuscev [22] for the case where x is 
absent in (7). The most interesting part of the generalization of previous work is that 
hypothesis (P6) is sufficient. 

The method of proof used in [17] for a special case of this result may easily be 
extended to prove Theorem 2. The basic idea is to construct appropriate Lyapunov 
functions and then solve a system of differential inequalities. The use of Lyapunov 
functions allows one to exploit the implications of stability without knowing the 
behavior of the solutions for large negative values of t (as in the proof of Theorem 1). 

2 Integral manifolds — Averaging 

The present section is devoted to a theoretical discussion of integral manifolds and a 
method of averaging. The theorem stated below is applicable to many problems (see, 
for example, [4], [5], [16]). 

First of all, we give an analytic definition of an integral manifold of a system of 
differential equations 

(9) x = X(t9 x) 

where x9 X are n-vectors, X(t, x) is continuous in t, x for — oo < t < oo, x in U, an 
open set in En, Euclidean n-space. 

In the (x, t) space, suppose there exists a surface S which may be described para-
metrically by means of the equations 

(10) S = {(x,t);x =f(t9C1,...9Cs), - o o < t < o o } , 

where s ^ n, f(t, Cl9..., Cs) is a continuous function of t, Cl9..., Cs in the whole 
range of their variation. 

45 



The surface S will be called an integral manifold of system (9) if any solution of 
(10), x(t, t0, x0), x(t0, t0, x0) = x0, with (x0, t0) in S has the property that (x(t, t0, 
x0), t) is in S for all t, — oo < t < oo. 

The simplest type of integral manifold of system (9) would be the set S consisting of 
those points (x, t) for which x(t, t0, x0), x(t0, t0, x0) = x0 is a solution of (9) which 
is defined for — oo< t <oo. Another more interesting one is the following. Suppose 
X(t, x) in (9) is independent of t; that is, consider the system 

(11) x = X(x) 

and suppose that this equation has a nonconstant periodic solution x = x°(t) of 
period 2n. Since (11) is autonomous, the function x = x°(t + q>) is also a periodic 
solution of (11) for every arbitrary constant (p. Furthermore, for any q>, the pair 
(x°(t + cp), t) lies on the cylinder S in (n + l)-dimensional (x, f)-space defined para-
metrically by the equation 

(12) S = {(x, t); x = x°(S), 0 = 9 = In, - o o < t <oo} . 

Furthermore, any solution of (11), x(t, t0, x0), x(t0, t0, x0) = x0, with (x0, t0) in S 
must coincide with one of the periodic motions above and the cylinder S is an integral 
manifold of (11). 

Now, consider the perturbed system 

(13) x = X(x) + ^ X*(t, x) , 

where for e = 0 the system has a periodic solution x°(t) of period 2n and the per­
turbation term X*(t, x) is a bounded function for — oo < t < oo, x in U. Under what 
conditions on the function X(x) will the solution of (11) and (13) be "essentially" the 
same for ^ sufficiently small? Of course, one cannot begin to answer such a question 
without first clarifying the word "essentially". Suppose, for example, that the periodic 
solution, x°(t) of (11) is exponentially asymptotically orbitally stable (more precisely, 
n — 1 of the characteristic exponents of the linear variational equations associated 
with this periodic solution have negative real parts). Then, the cylinder S in (12) is 
exponentially asymptotically stable. Since the cylinder S is filled with a one parameter 
family of periodic solutions differing only by a shift in phase, one could not hope that 
under small general perturbations ^ X*(t, x), each particular periodic solution on S 
enjoys a property of stability. However, it seems reasonable to suppose that there is 
another integral manifold Se of (13) which is stable and S£ -» S as e -» 0. 

Under appropriate hypotheses, one can introduce "polar" coordinates (9, Q) in 
a neighborhood of the cylinder S, to reduce the above problem to a discussion of the* 
system 

(14) 3 = 1 + 0(t, 9, Q, ^) , 

Q = AQ + R(t, 9, Q, ^) , 

where the eigenvalues of the matrix A have negative real parts, 0, R are periodic in 9 
and are 0(||t2||2 + |e|) as ||g||, |a| -> 0. For these equations, the problem is to deter-

46 



mine a function/(í, 9, є), f(t9 9, 0) = 0, f(t, 9, є) bounded in t, such that Q = / ( Í , 9, є) 
is an integral manifold. The existence of such a function is a consequence of Theorem 3 
below. 

By a consideration of other types of problems in nonlinear oscillations (see [4], 
[5], [9], [16]), one is led to an investigation of systems of equations of the form 

(15) 9 = d(s) + (t, 9, x, y, s) , 

x = sCx + є X(t, 9, x, y, s) , 

ў = Ay + Y(t,$,x,y,s), 

where є is a real parameter, d(s) is a constant vector continuous in є for 0 < є ^ є0, 
9, x, y are k, m, n-vectors, respectively. For any G, Џ define the s e t l ^ as follows: 

(16) I9ф = {(t, 9, x, y);teE,9e Ek, 0 = ||x|| = G, 0 = \\y\\ = џ} . 

The following hypotheses will also be needed: 

( K І ) There exist positive constants QІ9 Qг such that the functions , X, Y are conti-
nuous on ľQuQ2 x (0, є0> and are multiply periodic in with vector periodco; 
that is, if = col ( 9 l 5 . . . , 9Л), æ = (æl9..., co*), coj > 0, then , X, Y are 
periodic in 9y with period æj9 j = 1, 2 , . . . , k. 

(K2) There exists a function M(s) continuous in є for 0 < є ^ є0 such that M(є) -> 0 
as є -> 0 and each of the functions, , X, Уare bounded by M(s) on Г 0 0 . 

(K 3) There exists a function rj(s, G, Џ), continuous in є, G, Џ for 0 < є ^ є0, 0 ^ 
_ °" _ É?i> 0 _ Џ _ É?2> *?(є> Ö", /І) -> 0 as S,G,Џ-> 0, rç(є, 0, 0) = o(є) as 
є -> 0 such that the function is Lipschitzian in 9, x, y on 2ľff д x (0, є0> with 
Lipschitz constant r\(s, G, Џ). If the vector x is absent in (15) then the condition 
r\(s, 0, 0) = o(s) as є -» 0 is unnecessary. 

(K 4) There exists a function X(s, G, Џ) continuous in є, G, Џ for 0 < є ^ є0, 0 _̂  G ^ 
_ ßi, 0 ^ JU ^ ø2, X(s, G, џ) -> 0 as є, (7, д -> 0 such that the functions X, Y 
are Lipschitzian in 9, x, y on Г ^ x (0, є0> with Lipschitz constant X(s, G, Џ). 

(K 5) The eigenvalues of the constant matrices A, C have nonzero real parts. 

Theorem 3. // system (15) satisfies condition ( K j —(K5), then there exist an 
st > 0, scalar functions D(s), _(є), and vector functions f(t, 9, є), g(t, 9, є) of dimen-
sions m, n respectively, which are continuous in t, 9, sfor t e E, 9 e Ek, 0 < є ^ гl9 

D(s) -> 0, _(є) -> 0 as s -> 0;/, g multiply periodic in 9 ofvector period co; 

\\f(t,&,s)\\йD(s), \\g(t,S,s)\\йD(e), 

\\f(t,V,s)-f(t,&\s)\\=Л(s)Џ>-Щ, 

|ff(ř. * S «) - tf(í. *a. «) | _ --(«) I* 1 - » a l . 

for all tєE,Q, 91, 3 2 є Ѓ , 0 < e ś в..; such that 

(17) x=f(t,9,s), y = g(t,$,s) 
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is an integral manifold of system (15). The behavior of the solutions on this integral 
manifold are obtained by solving the system 

3 = d(e) + 0(t9 99f(t9 3, e)9 g(t9 3, e)9 e)9 

S(*o) = #o arbitrary. 
If, for each fixed e9 0 < e = e09 all functions in (15) are almost periodic in t uniform­

ly with respect to (3, x9 y) inEQl9Q29 then / , g are almost periodic in t uniformly with 
respect to 3 for each fixed e, 0 < e = et. 

The complete proof of this theorem may be found in [18] and the basic idea of the 
proof is modeled after the one given by N. Bogolyubov and Yu. Mitropolskii [4]. This 
result has also been obtained by Diliberto [9] when the functions are periodic in t. 
One can also discuss the stability properties of the manifold given in Theorem 3 and 
the result is that they are the same as the stability properties of the solution x = 0, 
y = 0 of the system x = Cx9 y = Ay. 

In the applications, there often occur terms 0*, X* in the first two equations of (15) 
which are not small in the sense of hypotheses (K3), (K4) but have average zero with 
respect to t and some of the components of the vector 3. The specific type of average 
may be found in Diliberto [9] and Hale [18]. A transformation similar to the one 
mentioned in the proof of Theorem 1 can be applied to reduce such a system to the one 
discussed above (see [4], [18]). 

To the author's knowledge, no extension of Theorem 3 has been given for differen­
tial-difference equations. However, if equations (15) have the form 

3(0 - d(e) + 0(t9 3(0, xt9 yt9 e) , 

xt(0) = e a(xt) + eX(t9 3(f), xt9 yt9 e) , 

A(0) = b(yt) + Y(t9 3(0, xt9 yt9 e) , 

where a(q>)9 b(\j/) are linear functionals with the solutions of xt(0) = a(xt)9 yt(0) = b(y^) 
uniformly asymptotically stable, and the functions 0 , X9 Y satisfy conditions similar 
to those imposed on system (15) with the additional hypothesis that they are periodic 
in t9 then the conclusions of Theorem 3 are valid. Of course, the functions/, g in this 
theorem are elements of a function space. The proof of this fact can be modeled after 
the one given by Diliberto [9] for ordinary differential equations. 

The main reason that one can extend Theorem 3 to this case is the fact that 3 is a 
vector in Euclidean space rather than in function space. To show that these equations 
are realistic, let us consider a very particular problem. Suppose system (11) has a 
nonconstant periodic solution x°(0 with n — 1 of the characteristic exponents of the 
linear variational equation having negative real parts. By defining x° e (£ by x°(y) = 
= x°(3+ y)9 — /? ^ y ^ 0 the function x% defines a closed curve in (5. In a neigh­
borhood of this closed curve one can introduce new coordinates in (S by a relation of 
the form cp = x£ + P(3) Q9 3 a scalar, Q in Gt such that 

3(0 = 1 + 9\t9 3(0, Qt, e] , 
^r(0) = A Qt(0) + R[t9 3(0, Qt, e] , 
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which is of the desired form. It would be very interesting to determine appropriate 
changes of coordinates for an exponentially asymptotically orbitally stable periodic 
solution of a general autonomous differential-difference equation 

xt(0) - X(xt). 

3 Behavior near integral manifolds 

In this section, we consider some of implications of assuming that a certain type of 
integral manifold in asymptotically stable. More specifically, we consider the system 

(18) i = Z(z), 

where z, Z are (n + k + l)-dimensional vectors, and assume that there is a (k +1)-
parameter family of periodic solutions of (18) given by 

(19) z = z°[g(x) (t + q>)9 x] , z°(co + n9 x) = z°(co9 x) , 

with x = (xl9..., xfc), cp constant, g(x) > 0, x e U an open set or a single point and 
— oo < cp < oo. We also assume that Z(z), z°(co9 x)9 g(x) have continuous second deri­
vatives with respect to their arguments for all x e 17, — oo < co < oo and z e Van open 
set containing the solution (19), 

(20) r a n k P Z > ' X ) / 2 > ' X > l = k + 1 
\_ dco dx J 

and n of the characteristic exponents, Xt(x)9..., An(x)9 of the linear variational equa­
tions 

( 2 1 ) ,_dZ[z0(g(x)(t + (p)9x] = 
} 8z 

have negative real parts (not necessarily bounded away from zero). Hypothesis (20) 
implies there are k + 1 characteristic exponents of (21) equal to zero. 

In the (z, r)-space, such a family of periodic solutions defines a fc-parameter family of 
cylinders Cx or a (k + 2)-dimensional integral manifold 20? of (18). Under the above 
hypotheses, it is known [21] that the manifold 20? is asymptotically stable. Also, every 
solution of (18) with initial value sufficiently close to $Jl approaches one of the cy­
linders Cx (9}? is asymptotically stable with asymptotic amplitude). Finally, for any 
solution z(t) of (18) with z(0) sufficiently close to SC/?, there exist a vector x0 and a con­
stant cp0 such that z(t) - z°[g(x0) (t + cp0)9 x0] -> 0 as t ->oo, where z° is defined in 
(19). (SD? is asymptotically stable with asymptotic amplitude and phase.) These terms 
are defined more precisely in [21]. 

A natural question to ask for such an integral manifold 20? is the following: Under 
what conditions on the function Z*(t9 z), will the manifold 20? satisfy the same stability 
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properties as those above relative to the solutions of the perturbed equation 

(22) z = Z(z) + Z*(t,z)l 

In [21] the following result is proved. 

Theorem 4. Suppose system (18) satisfies the conditions enumerated above and 
letSffl be the set in (z, t)space defined by the functions (19). If there exist continuous 
functions K(y), L(t) and a T = 0 such that 

(23) ||Z*M||^L(0K(||z|) 

for all x,t^T, and 

(24) \L(t) dt < oo , 

then SSfl is asymptotically stable with asymptotic amplitude. If, in addition 

(25) f°° (°°L(u) du dt < oo , 

then 9D? is asymptotically stable with asymptotic amplitude and phase. 

If Sffl consists of only one cylinder Cx, and Z*(t, z) satisfies (23) with L(f)-> 0 then 9)? 
is asymptotically stable. If J00 L(t) dt < oo, then 2D? is asymptotically stable with 
asymptotic phase. 

In [21], it was always assumed that L(t) in (23) approached zero as t ->oo. However, 
an investigation of the proof in [21] shows that this is not necessary. Some other 
results on the asymptotic behavior of trajectories of system of differential equations 
of the form (22) have been recently given by Opial [27] and Yoshizawa [31]. No as­
sumption about the existence of an integral manifold of the type above is made in 
these papers, but the asymptotic behavior is discussed only in the z-space under 
hypotheses similar to (23), (24). 

Theorem 4 is proved by introducing local coordinates (co, x, y) where co is a scalar, 
x is a fc-vector, y is an n — (k + 1) vector, in a neighborhood of the manifold 3D? in such 
a way that the manifold is given by y = 0, x = constant, co = g(x) (t + cp). The diffe­
rential equations in the new variables co, x, y have the general form given by 

(26) co = g(x) + W(co, x, y, t) , 

x = X(co, x, y, t) , 

y = h(x) y + Y(co, x, y, t) , 

where all the eigenvalues of h(x) have negative real parts and each of the functions 
W, X, Y are bounded by K^ll^l2 + L(t)) in a neighborhood of y = 0 and Kx is a 
constant, L given in (23). It is then shown that hypothesis (24) implies that the solu­
tions co(t), x(t), y(t) satisfy the property that y(t) -» 0, x(t) -* c, a constant, as t ->oo 
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and co(t) is defined for all t provided the initial value of y(t) at some time T is sufficiently 
small. Also, it is shown that hypothesis (25) implies y(t) -> 0, x(t) -> c, a constant, 
co(t) — g(c) t -> d9 a constant, as t -> oo. In [21], more general systems than (26) are 
also discussed. 

For system of the form (26), Lykova [25] has obtained results concerning the ex­
istence of local integral manifolds which generalize Theorem 3 of section 2. 

3.1 A class of differential-difference equations. In this section, we discuss possible 
generalizations of the results of the previous section to differential-difference equa­
tions. The notation for differential-difference equations is given in section 1.4 above. 

Suppose that Z* in (22) depends on the value of z at some past time, say Z* = 
= Z*(t9 z(t — jS)), P > 0. Does the conclusion of Theorem 4 remain valid? One can 
introduce the local coordinates as before to obtain a system of differential-difference 
equations of the form (26). For this special case the proof used in [21] can be extended 
to show that Theorem 4 is still true but it is of independent interest to study more 
general systems of the form (26) for differential-difference equations. Some results 
along this line have been previously obtained by Halanay [15], but under very re­
strictive hypothesis. We summarize below the more general results of [19]. 

Consider the system 

(27) at(0) = g(xt) + W(t, cot, xt9 yt) , 
1 xt(0) = k(t, cot9 xt9 yt) , 

H°) = /(*> <»» xt> yt) + Y(t9 cot9 xt9 yt), 

where g(cp), W(t, r\, cp, \j/)9 X(t9 r\9 cp9 \]/)9 f(t9 r\9 cp9 \J/)9 Y(t9 r\9 cp9 x//) are continuous in 
the region I = {(t9 r\9 cp9 $); t = 0, r\ e £k9 cpedm9 $ e (£„, ||p|| = if, | |^ | = H, 
H > 0}, and satisfy any additional hypotheses which will insure the existence and 
uniqueness of a solution of (27) with initial value (r\9 cp91//) at t = t0. We also will need 
some of the following properties of these functions in the statements of the theorems: 

(Qi) 9(9) > 0; f(t, r\, cp, \j/) are Lipschitzian in cp in Z and f(t, r\9 cp9 \//) is linear 
in \J/. 

(Q2) There exist positive constants /il9 \il9 /i3, Kl9 K29 K3 and continuous nonnega-

tive functions gx(i)9 g2(t)9 g3(t) such that, in I9 

\\W(t9r\9cp,^^K1\\^ + g1(t), 

||JT(Mj, 9,̂ 11 ^K2m^ + g2(i), 

(Q3) There exist constants K = 1, /J > 0 such that, for every continuous function 
r\(t) defined for t = 0 and every cp e @m, \\cp\\ = H, \// e (£„ the solution 

yt(U> n> <p> ^) f yr0(^o5 n,<p>$) = $ 
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of the equation 

A(0) = f(U r\t> <P> yt) 
satisfies the relation 

M09f,9q>9t)l£Ke-"'-«>lfl9 t = t0. 

(Q4) There exist constants K = 1, /? > 0 such that, for every continuous function 
r\(t) defined for t = 0 and every constant function c e (Sm, ||c|| = H, \J/ e (£n, the 
solution yt(t0, r\, c, \\i), ytQ(t09 r\, c, \j/) = \j/, of the system 

H°) =f(t>it>c>yt) 
satisfies the relation 

lyJ(t0,T,,c,4,)l £&-'<—°^, t^t0. 

Properties (Qx), (Q2) specify the smoothness and smallness of the functions in (27), 
whereas (Q3), (Q4) specify the "strongness" of the stability of the linear system 

(29) U0)=f(t,ti,<p,yt). 

Notice that (Q3) implies that the solution of this system is exponentially asymptoti­
cally stable for all cp and r\ whereas (Q4) implies this same type of stability only for 
all cp which are constant functions and all r\. In the simple problem mentioned at the 
beginning of this section, the function f(t, r\, cp, \j/) has the form h(cp(0) $(0)) where h 
is given in (26). Consequently, in this special case, only property (Q4) applies. It will 
be clear after reading the theorems below that both (Q3) and (Q4) yield very similar 
conclusions. 

Theorem 5. If system (27) satisfies (Qt), (Q2), (Q3) and J00 g/t) dt < ao,j = 1, 2, 3, 
then, for any y < H, there exist positive constants T, 5 such that if r\ e (5fc, cp e (£m, 
||<p|| = y, \j/ e (£„, l^ll _ 8 are given, then there is a constant function ceQim, 
\\c\\ < H, such that the solution cot(T, r\, cp, \j/), xt(T, r\, cp, \j/), yt(T, r\, cp, \j/) of (27) 
with initial value rj, cp, \j/ at t = T exists for t = T and \\xt — c\\ -> 0, ||^|| -> 0 as 
t ->oo. // , in addition, j 0 Jj0 gs(x) Ax dt <oo, j = 1, 2, 3, then cot(0) — g(c) -> d, 
a constant, as t -»oo. 

If the variable x is absent in (27) and gs(i) -» 0 as t ->oo, then the solution 
cot(T, r\, cp), yt(T, r\, cp) exists for t = T and \\yt\\ -> 0 as t -+ oo. If J00 gj(t) dt < oo, 
then cot(0) — g(t) -+ d, a constant, ||y,|| -> 0 as t -»oo. 

Theorem 6. / / system (27) satisfies (Qx), (Q2), (Q4), J00 g/t) dt <oo, j = 1, 2, 3, 
and cL is a given constant function, cxeQim, flcifl < H, then there exist positive 
constants T, d, s, such that if r\ e Gik, cpe (Sm, \\cp — c±\\ ^ s, \j/ e (S„, ||^|| = 5, then 
there exists a constant function c e Sm, ||c|| < H, such that the solution cot(T, r\, cp, \j/), 
xt(T, r\, cp, \j/), yt(T, r\, cp, \j/) of' (27) with initial values r\, cp,\j/ at t = T exists for 
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t^ Tand\\xt- c\\ -> 0, ||yf|| -> 0 as t-*co. If, in addition, $%$? gj(u)du dt <oo, 
j = 1, 2, 3, then cot(0) — g(c) t -> d, a constant, ast-+co. 

If the variable x is absent in (27), then similar remarks as in Theorem 5 apply. 

The proofs of these results involve Lyapunov functionals and are therefore different 
from (and also more elementary) than in [21]. For the linear system (28) one con­
structs an appropriate Lyapunov functional V(t, cp, \j/) and then uses a Perron type 
of argument on the perturbed coupled systems (27). The proof of Theorem 6 is not too 
difficult since one can calculate the derivative of V(t, c, \j/) along the solutions of (27) 
with a given constant function. Consequently, the dependence of V(t, cp, ij/) on cp is not 
needed. On the other hand, for Theorem 5, this is no longer possible and one needs 
information concerning the Lipschitz constant of V with respect to (p. This infor­
mation is rather difficult to obtain, but is given in [18], where some other applications 
are also given. 
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