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PROBLEMS WHICH LEAD TO A GENERALIZATION OF THE CONCEPT 
OF AN ORDINARY NONLINEAR DIFFERENTIAL EQUATION 

J. KURZWEIL, Praha 

This lecture is concerned with general theorems on the continuous dependence of a 
solution on a parameter, which theorems are closely related to the averaging principle. 
The main feature of these theorems lies in the assumption that the primitive with 
respect to the time-variable of the right hand side of the nonlinear differential equation 
depends continuously on a parameter. This assumption is obviously weaker than the 
usual assumption that the right hand side itself depends continuously on a parameter. 
The concept of a generalized differential equation is introduced in order that the ex­
amined class of differential equations be closed with respect to the above continuous 
dependence assumption. The averaging principle is contained in the theorems on the 
continuous dependence on a parameter. This approach avoids the transformation of 
the equation to a canonical form and remains valid for differential equations in Banach 
spaces. Hence some applications to boundary value problems in partial differential 
equations are made. In this paper several unpublished results are included; such results 
are denoted by an asterisk. 

1 The finite dimensional case 

Let us start by applying the averaging principle in the simplest case of a weakly non­
linear system in two dimensions 

(1) —1 = x2 + eAC*!, x291) , 
at 

= — xx + sf2(xl9 x29t), 
dt 

?i(xi, x2> t + 2TT) = Jt(xl9 x291) (i = 1,2), 

s being a small parameter. By means of the substitution 

xt = ux cos t + u2 sin t, x2 = — ut sin t + u2 cos t 

one obtains 

(2) - ^ = sfi(ul9 u291) , 
at 

du2 r f A = sf2[ul9 u29t) , 
dt 

fi(ul9 u2> t + In) = fi(ul9 u291) (i = 1, 2) . 

5 —EQU.ADIFF " 5 



The averaging principle consists in replacing system (2) by 

(3) — - -= efoi("i, «2) , 
at 

= efo2("i, « 2 ) . 
dм2 

dí 

foг є small enough. Here 

(4) foi("ľ ui) = 
1 , •2я 

This replacement was justified by a series of results. E. g. it is known that the existence 
of an exponentially stable solution of (3) implies the existence of an exponentially 
stable solution of (2) and (1) for s small and that the existence of an exponentially 
stable integral variety of (3) in the autonomous case implies the existence of an integral 
variety of (2) and (1) (see [1], [2]). 

Let u,f9 F,... denote vectors from an w-dimensional vector space Rn, let || || denote 
a norm in this space. An interesting motivation for the averaging principle is given by 
a theorem due to 1.1. Gihman [3]. 

Theorem 1. (Gihman.) Let the right hand sides of 

(5) — = f(u, T, ^) , s > 0 , 
dT 

(6) ^ = f ( u , r , 0 ) 

dT 

fulfil the following conditions 

i) f(u, T, e) is defined for u e G c Rn, G open, 0 ^ T ^ T, 0 ^ B ̂  s0; 

ii) f(u, T, s) is continuous in (u, x)for 0 ^ e = e0; 

iii) ||/(ii, T, e)|| = K ; 

iv) | |/(u2, T, e) - f(uu T, e)|| ^ K\\u2 - Mi| ; 
v) f(u, a, г) do- -> f(u, a, 0) dcг wřřft г -> 0 

Jo Jo 

Denote by u(x, s), 0 ^ x ^ T, 0 ^ s ^ e0 the solution of (5) or (6), fulfilling the 

initial condition u(0, s) = ii. Then u(x, z) -> u(x, 0) uniformly with s -> 0, 0 = 

_ T = T. 

Denote by t**(f, 2) = (u*(t, e), u*(t, s)) the solution of (2) with u*(0, e) = u, denote 
by u*(t, s) the solution of (3) with i/*(0, s) = w. It follows from Theorem 1 that 

max \\u*(t, s) - u*(t, s)\\ -• 0 with e -> 0 
0 _ t _ r/£ 

(under obvious assumptions concerning/ l 5 /2 , T = st). 
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Conditions iii) and iv) of Theorem have been weakened by several authors (see 
[4], [5], [6]). They may be replaced by the weaker conditions 

(?) 

(8) 

IГ 2 

f(u9 G9 є) 
|Jтi 

dd = Û>I( |T 2 - * l | )> 

/-T2 pT2 

f(u29 G9 є) d(7 - f(ul9G9ѓ)áG 
I J fi J тi 

^ ||м2 - u.ЦcOгdtг - т , | ) . 

Here co1 and co2 are nondecreasing and the series 

(9) £2V(2--W2-;) 

converges. We may write co^tf) = Krf9 co2(rj) = Krf9 K > 09 a > 0 , (J > 0 and in 
this case (9) converges if a + /? > 1. If the solutions of the limit equation (6) are 
uniquely determined by their initial values, then again the solutions of (5) con­
verge to the solutions of (6) with s -> 0 (see [6]). The above conditions are ful­
filled e.g. in the case 

(10) - ^ = ue?-1 cos (T/£) + e""1 sin (x/s) , 

( Ц ) 

dт 

àu 

dт 
= 0 , 

where a > 0, /J > f, a + /J > 1. If a < 1, /? < 1, then neither the bound of the right 

hand side of (10) nor the Lipschitz constant may be chosen independently of e. 

Conditions (7), (8) have the following interesting property. Introduce... 

F(u9 T, e) = f(u9 G9 e) AG . 

Conditions (7), (8) may be rewritten in terms of F as : 

(12) \\F(u9 T2, s) - F(u9 t l f s)\\ = CD,(\X2 - T l | ) , 

(13) \\F(u29 T2, s) - F(u29 xl9 e) - F(ul9 T2, s) + F(ul9 xl9 s)\\ = 

= | K - Wl|| <*>2(|*2 - T l | ) • 

Also condition v) of Theorem 1 may be rewritten as 

(14) F(u9 T, e) -> F(u9 T, 0) with g -> 0 . 

This means that all conditions which are essential for the convergence of the solutions 
may be written in terms of F. / is only needed to define solutions of a differential 
equation. In order to introduce a generalized concept of a differential equation ob­
serve that u(x) is a solution of du/dx = f(u9 x) if M(T2) — u(xt) Is approximately 
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equal to the sum on the right hand side in 

(15) M(T2) - «(T . ) = f ̂ f(u(a), a) da = £ f" / ( « H tr) do- = 
Jr. ' - - J . i - i 

i = l 

the subdivision TX = <r0 < £i < o^ < ... < <rk_1 < £fc < ak = T2 being fine. This 
fact motivates the following 

Definition. Let F(u, T) be a function of the independent variables u, x and let u(x) 
be a function of the independent variable x (no continuity or smoothness assumptions 
being made). u(x) is a solution of the generalized differential equation 

(16) ^ = Z)tF(«,T) 
dT 

k 

VTJ [f(M(Ci)> Gi) — F(U(Q> °"i-i)] is arbitrarily close to u(x2) — u(xt)for a suf-
i = l 

ficiently fine subdivision xt = a0 < d < a1 < ... < ak^1 < £k < ak = T2. 
The essence of this generalization is in the replacement of jx

x\f(u(a)9 a) da by a cer­
tain integral of the Stieltjes type. What is meant by a "fine subdivision" is not de­
scribed here. If this concept is interpreted in the usual way, the limit of the sums 

k 

X [-F(M(Q, 0"i) — -P(w(Ci), Gi-ij\ ha s the properties of the Riemann integral, another 
i = l 

interpretation implies that this limit has the properties of the Perron integral (see [6]). 
The following theorem clears up the relation of the classical differential equation to 

the generalized one. 

Theorem 2. If f(u, T) fulfils the Caratheodory conditions and if F(u, x) = 
= \x

0f(u, a) da, then every solution of generalized equation (16) is simultaneously 
a solution of the classical equation 

(17) £-/(«.t) 
dT 

and conversely, every solution of (17) is at the same time a solution of (16) (see [6]). 

Under the conditions of Theorem 2, equations (17) and (16) are equivalent. There­
fore there arises the problem of finding other conditions on F, which would make it 
possible to prove the existence theorem for equation (16) and to examine the unique­
ness and the continuous dependence on a parameter. It turns out that inequalities 
(12) and (13) are such appropriate conditions and that a complete theory may be 
established for equation (16) with F fulfilling (12), (13). Of course, (ox and co2 are as­
sumed to be nondecreasing and series (9) has to converge. 
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•Theorem 3. If Ffulfils (12) and (13) and if U(T) is a solution of (16), then 

\\u(T2) - u(Tt)\\ ^ KCOi(|T2 - Ti|) for \T2 - TX| ^ 1 

with K > 0 dependent on col9 co2 only. 

Theorem 3 plays a similar part as the assertion that every solution of a classical 
equation with a continuous right hand side fulfils a Lipschitz condition. 

Theorem 4. If F fulfils (12) and (13) and if u and T0 are given, then there exists 
a solution U(T) of (16) o/t an interval containing T0, W(T0) = u. 

This existence theorem has a local character. Prolongation of solutions is analogous 
to the case of classical equations. 

Theorem 5. Let F(u, T, e) fulfil (12), (13), e being fixed, 0 ^ e ^ e0 and Zei* (14) 
be fulfilled. Denote by U(T, e) f/ze solution of 

<18) ^ = DtF(u,T,e) 
dT 

satisfying the initial condition u(0, e) = u. Let U(T, 0) be defined for 0 :g T :g Tand 
uniquely determined by the initial condition. Then U(T, e) -» W(T, 0) uniformly with 
e -» 0, 0 = T = T. 

Theorem 5 contains a general formulation of the averaging principle. The set of 
functions F, which fulfil (12), (13) (CD1 and co2 being fixed) is closed with respect to 
limiting process (14). 

In comparison with the papers already published, Theorem 3 is new. Theorem 3 
makes it possible to avoid the concept of the "regular solution", which is found in the 
earlier formulations of the existence theorem and of the theorem on the continuous 
dependence on a parameter. Thus Theorems 4 and 5 are simplified in comparison with 
results contained in published papers (see [6], [7]). 

Another problem of importance is the uniqueness of solutions. A simple example 
shows that the solutions of (16) need not be unique if F fulfils (12) and (13) (see [8]). 
But when U(T) = const, happens to be a solution of (16), then this solution is unique 
(see [9]).*) If F fulfils (12), (13) and 

(19) \\F(u2 + v, T2) - F(u2 + v, Ti) - F(ut + v, T2) + F(u, + v, TX) -

- F(u2, T2) + F(u2, Ti) + F(uu T2) - F(uu Ti)|| ^ 

= IK - W l | | - ll̂ fl • C02(|T2 - T i | ) , 

*) The concept of the "regular solution" may be omitted as above. 
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then all solutions of (16) are unique. Adding (19) to (12) and (13) we strengthen the 
requirements for the dependence of F on u. This corresponds to the fact that in the 
case of classical differential equation (17) stronger conditions for the dependence of/ 
on u are needed in the uniqueness theorem than in the existence theorem. It may be 
shown that new results about classical differential equations are also contained in the 
above uniqueness results. 

In the above conditions (12), (13) it is essential that series (9) converges. Let us put 
the question, whether or not it is possible to prove a modified Theorem 5 assuming 
that the right hand side of (18) converges with s -» 0 (i.e. (14) takes place) and (12) and 
(13) are fulfilled, cox(r\) and co2(rj) being such nondecreasing functions that series (9) 
diverges. An answer to this question, which may be considered as definite, was 
obtained by Jifi Jarnik. If co2(rj) is not near to linear function (e.g. if co2(rj) ^ rf9 

0 < a < 1), then the modified Theorem 5 cannot hold, if series (9) diverges. If co2(rj) = 
= cr\ or if co2(.»j) is near to a linear function, then the condition that series (9) con­
verges may be weakened (see [10], [11], [12]). 

By means of methods based on the above theory, estimates for the distance of 
solutions of two different differential equations may be obtained. This was performed 
in a paper by Z. Vorel. In general it may be said that the new approach leads to better 
results than the classical one if the right hand sides of the differential equations con­
tain terms rapidly oscillating in T (see [13]). 

A special group is formed by cases for which the convergence of solutions of a se­
quence of differential equations may be proved in spite of the fact that series (9) neces­
sarily diverges. Here, of course, the equation for the limit of the solutions is to be 
derived in a more complicated manner than in the above theory. In particular systems 
of a special form, which correspond to differential equations of the second order were 
examined. Equations of such type describe e.g. the motion of the Kapica's pendulum, 
i.e. a pendulum hung in a rapidly oscillating point. Even in these rather complicated 
cases it is possible not only to obtain convergence results but to prove the existence of 
a stable periodic solution for e =# 0. Results in this direction are due to Jifi Jarnik and 
are being prepared for publication (see [14]). 

Conditions (12), (13) are not the only ones, from which the basic theorems (i.e. 
existence, continuous dependence on a parameter and — under some additional as­
sumptions — uniqueness) for equation (16) may be deduced. The basic theorems were 
derived from 

(20) \F(u9 T2) - F(U9 Tt)\\ ^ \h(T2) - h(T,)\ , 

(21) \\F(u29 T2) - F(u29 TX) - F(ul9 T2) + F(ul9 TL)\\ = 

where /I(T) is nondecreasing and continuous from the left and co(rj) -* 0 with r\ -» 0. 
Under these conditions the solutions of (16) are functions of bounded variation and, 
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in general, may be continued to the right only. Again, the problems which are con­
nected to the continuous dependence on a parameter, are very interesting, but it is not 
possible to go into the details here. 

2 The infinite dimensional case 

Theorem 1 has an advantage that in its proof the assumption that u is a vector from a 
finite dimensional space was not used. It is well known that the method of successive 
approximations converges for equation 

(22) ^=f(M, 
dT 

where u is taken from an open subset G of a Banach space B, 0 ^ T ^ T, / has its 
values in B, is continuous and fulfils a Lipschitz condition with respect to u. Here the 
more general case of the generalized equation 

(23) ^ = D t F ( « , t ) 

dT 

will be treated. It is supposed that F has its values in B and 

(24) ||F(u, T2) - F(u, T^II ^ K|T2 ~ T-J , 
(25) \\F(u2, T2) - F(u2, rt) - F(ux, T2) + F(ul9 TX)|| = 

= K\\u2 - uiH . |T2 - TX| 

for u, ul9 u2 E G, T15 T2 e <0, T>. 

U(T) is defined to be a solution of (23) if for every 5 > 0 

(26) ||«(x2) - u(t.) - £ [F(u(Q, <x;) - F(u(Q, ff|_.)]|| < 5 
i = l 

whenever the subdivision TX = o0 < Ci < crx < ... < ak^1 < £k < ak = T2 is suf­
ficiently fine (cf. Definition in section l). Again, the method of successive approxima­
tions converges and in this way existence and uniqueness of solutions is obtained. The 
results, which will be obtained for the differential equations in Banach spaces, will be 
applied to some boundary value problems in partial differential equations. In these 
applications the generalized equation (23) proves more convenient than the classical 
equation (22). Also some methods used in the proofs are closely connected to the 
concept of the generalized equation. The following theorem is an extension of Gih-
man's theorem to generalized equations in Banach spaces. 

*Theorem 6. Let F(u, T, s) fulfil (24), (25), s being fixed, 0 ^ s = s0, K indepen­
dent of e and let 

(27) F(u, T, s) -> F(u, T, 0) uniformly with s -> 0 . 
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Denote by U(T9 e), 0 ^ e ^ e0, 0 ^ T ^ Tthe solution of 

(28) ^ = DtF(ti, T, e) , e > 0 
dT 

or of 

(29) ^ = DtF(u,r,0) 

dT 

satisfying the initial condition u(09 e) = u, 0 _ e ^ e0. Then 

U(T, e) -> U(T, 0) uniformly with e -> 0 . 

Theorem 6 justifies to some extent the replacement of equation (28), e being small, 
by equation (29), as the solutions of both equations behave similarly. However, it does 
not follow from Theorem 6 that there exists an exponentially stable solution of equa­
tion (28), if there exists an exponentially stable solution of equation (29). (A solution 
W(T) defined for T ;_ 0 is called exponentially stable, if there exist k > 0, /? > 0 such 
that ||M(T) - I?(T)|| ^ fc||tt(f0) - v(T0)|| e"

p(x~Xo), T ^ T0 ^ 0, for each couple of 
solutions U(T), V(T) from some neighbourhood of W(T).) But if the assumptions of 
Theorem 6 are strengthened, the assertion may be strengthened also and then more 
detailed conclusions about the properties of equation (28) for e small may be drawn 
from the properties of the limit equation (29). 

Theorem 7. Assume that F(u, T, e) fulfils (24), (25) and (27) as in Theorem 6 and 
that, in addition, 

(30) \\F(u2 + v, T2, e) - F(u2 + v, xl9 e) - F(u± + v, T2, e) + F(u± + v, %l9 e) -

- F(u2, T2, e) + F(u2, T19 e) + F(ul9 T2, e) - F(ul9 Tl9 e)|| <; 

^ K||ti2 - Will . Hvll . |T2 - TX| , 0 ^ e ^ e0 , 

(31) \\F(u29 T, e) - F(wi, T, e) - F(u2, T, 0) + F(ul9 T, 0)|| ^ 

_ \\u2 - "ill K8)> 

(32) ||F(u2 + v9 T, e) - F(u1 + v9 T, e) - F(u2, T, e) + F(ul9 T, e) -

- F(u2 + v, T, 0) + F(u± + v, T, 0) + F(u2, T, 0) - F{ul9 T, 0)|| _ 

_ IK -«^M-*00 
with h(s) -» 0 with e -» 0. Denote by U(T, e), I?(T, e), T G <0, T>, 0 ^ e ^ e0 solutions 
of (28) (or (29) for e = 0) satisfying the initial conditions u(0, e) = w, v(0, e) = & 
T/ien 

(33) ||K(T, e) - V(T, e) - II(T, 0) + V(T, 0)\\ ^ \\u - v\ h(e) , 

T € <0, T>, fi(e) -> 0 with e -> 0. 
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Let us mention that (33) may be replaced by a stronger inequality, which is needed 
for some purposes, but we shall not go into such details. If ||W(T, 0) - V(T, 0)|| ^ a | |u -
- i?|| for some T and a, then it follows from (33) that ||U(T, e) - v(x9 s)\\ ^ [a + 
+ h(s)~\ . \\u — v||. Hence it may be concluded that there exists an exponentially 
stable solution of (28) for e > 0 small enough, if there exists an exponentially stable 
solution of the limit equation (29). 

In order to ilustrate the contents of Theorem 7 consider the well known equation 

/*>A\ d 2 x . • • /< i\ dx 
(34) —- + x = QX sm co±t + Q2 sin co2t + s(l — xz) — . 

As is well known, there exists an exponentially stable almost periodic solution of (34), 
if Q = 4 - 2[£i/(l - co\)2 + QI/(1 - co2

2)
2] < 0 and there exists a stable variety 

filled up by solutions of (34), if Q > 0 (a one-parametrical system of periodic solu­
tions, if Qt = Q2 = 0). These facts may be proved from a single point of view by 
means of Theorem 7. 

Theorems 6 and 7 are not bounded to spaces of a finite dimension. Therefore, seve­
ral examples will be indicated in order to demonstrate the possibility of applying 
these theorems to boundary value problems in partial differential equations. Con­
sider 

/^_x d2u d2u r/ x 

(35) _ = sf(x, t, u, ux, ut), 
dt2 dxz 

w(0, t) = w(l, t) = 0. The solution is desired for 0 ^ x ^ 1, t = 0. The point of 
departure is the expression for the solution of (35) for s = 0, which may be found in 
the form 

(36) u(x, t) = S(x + t) + R(x - t), 

S and R being functions of a single variable, or in the form 

00 

(37) u(x9 t) = ]T (ak cos nkt + bk sin nkt) sin nkx . 
jfc=i 

Starting from (36) we may show that the solution u of (35) with s > 0 may be repre­
sented in the form u(x91) = S(x + t9 st) + £(;x - t9 st), S and R being functions of 
two variables. Equation (35), s > 0 is equivalent to a certain partial differential equa­
tion for the function S. This equation may be examined as an ordinary differential 
equation in Banach space and it turns out that under very general assumptions con­
cerning / the conditions for applying Theorems 6 (see [21]) and 7 are fulfilled. The 
main difficulty lies in examining the properties of the limit equation. 

The limit equation was examined for 

(38) / = (1 — u2) ut + sin nx sin nt. 
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It turns out that in this case there exists a periodic solution of problem (35) with period 
2, which is exponentially stable in the large. 

If/ is defined by one of the following formulas 

(39) / = ( l - « 2 ) « r , 

(40) f=(l-ul)ut, 

(41) f=(l-u2)ut, 

a complicated situation arises, since the corresponding limit equations have a rich set 
of solutions independent of T under which there are even unstable ones. Therefore it 
is difficult to conclude anything about the properties of problem (35) from the pro­
perties of the limit equation. Only in the case (41) can some boundedness results be 
obtained. I f / i s defined by (39) or (40), it can be proved that the derivatives ut and ux 

of the solution u of (35) may assume great values even if the initial conditions are 
smooth and if e is small (see [21]). 

However, in the cases (38) to (41) / is very special. On the other hand, the simple 
expression (36) of the solution of (35) for e = 0 makes it possible to obtain rather 
detailed information in these cases. Unlike the finite dimensional case it seems that the 
examination of limit equations derived from problems for partial differential equations 
will always be difficult. But for a certain type of a nonlinear function / it is possible 
to examine the properties of this case under qualitative assumptions concerning / . 

Consider problem (35), where/is defined by 

(42) / = - g(x, u) ut + h(x, t) , 

g and d2g/du2 being continuous, 

g(x, u) = g0 > 0 , h(x, t + 2) = h(x, t) , h2(x, t) dx = c <oo 

In this case the solution of problem (35) for e = 0 was desired in the form of (37), 
ak and bk being unknown functions of T. This leads to a certain ordinary differential 
equation in a Banach space, the elements of which are sequences {ak, bk}. It is possible 
to prove that there exists an exponentially stable periodic solution of (35) for e > 0 
small, / being defined by (42). The solution found under the above conditions is a ge­
neralized one: u is continuous, ut is square integrable and equation (35) is fulfilled in 
the sense of the theory of distributions. 

In a quite analogous manner the problem 

(43) + •= e [ _ g(X9 u) Uf + h(X9 ,)] 9 

dr dx* 

w(0, t) = uxx(0, t) = u(l, t) = uxx(\, t) = 0 

may be examined, the assumptions concerning g and h remaining unchanged. There 
exists an exponentially stable periodic solution of (43) for e > 0 small. 
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These two cases, which were treated in the same manner, indicate that it is possible 
to proceed further. 

Consider 
-.*2 

(44) —£ + Lxu = e [ - g(x, u) ut + h(x, t)] , 

Lx is a linear differential operator in the variable x = (xl5 x2, ..., xn) with coefficients 
defined in an open subset X of the Euclidian space En and there are given some boun­
dary conditions, g fulfils the same conditions as in (42), h is uniformly almost periodic 
in T. There exists a complete orthonormal system of eigenfunctions <pk of 

(45) Lxcp = Xcp 

with the given boundary conditions, the corresponding eigenvalues Xk being positive, 
k = 1, 2, 3, ..., |<p*(x)| ^ K, k = 1, 2, 3 , . . . , x e X, X is bounded. 

The eigenvalues .Afc satisfy 

(46) ^ - ± 1 ^ 1 + - , <5>3 

for fc great enough. Under these conditions it is possible to prove that there exists an 
almost periodic exponentially stable solution of (44) for s > 0 small enough. 

However, condition (46) is too restrictive. (It is not fulfilled, if k~2Xk -> c < oo for 
k ->oo, which takes place e. g. in case of second order differential operators in one 
dimension.) This is caused by the fact that, unlike the preceding two special cases, the 
general case with almost periodic solutions is treated here. There arises the problem, 
whether or not the above conditions may be modified in such a way as to obtain a 
satisfactory theory in case (46) is not fulfilled. 
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