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ON THE SOLUTION OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 
WITH AN UNBOUNDED DIRICHLET INTEGRAL 

J. NEČAS, Praha 

A typical function-analytical method of solving linear elliptic partial differential 
equations is the variational method, which can be applied under comparatively weak 
•conditions on domains and differential operators for elliptic equations and systems 
of arbitrary order. The solution of a boundary problem so obtained has the finite 
Dirichlet integral expressing the finiteness of energy. However, the solution of many 
very practical problems cannot have a finite Dirichlet integral, and it is therefore ne­
cessary to derive methods which can do without this assumption. 

An efficient method of arriving at a solution with an unbounded Dirichlet integral 
is based on the study of the regularity of a solution of the dual problem and the dual 
transition to the original problem. This method, applied to a very broad range of 
problems, has been used in a number of papers as, for instance, by S. Agmon [1], 
G. Fichera [5], J. L. Lions, E. Magenes [13] — [18], E. Magenes, G. Stampacchia 
[19], M. I. Visik, S. L. Sobolev [30]. All the quoted papers are based on the funda­
mental assumption of a smooth boundary of the domain examined. 

The regularity of a solution, which is important for the dual method, can be expres­
sed by the so-called a priori estimates holding for weak solutions. Again it can be 
shown that these estimates are connected with the smoothness of the boundary. The 
weak solution of a Laplace equation in a plane domain with a single non-convex 
angular point generally does not satisfy these estimates. A priori estimates have been 
obtained for instance in a paper by S. Agmon, A. Douglis, L. Nirenberg [2]. 

This raises the question whether there is a further method which can be applied to 
the case of domains with Lipschitzian boundaries. This case comprises almost all do­
mains which occur in practice. It may be pointed out that the class of domains with 
smooth boundaries is quite unsatisfactory for some problems of mathematical phy­
sics. It can be shown that one of the important means for solving these problems are 
Rellich's equalities, which were first used by F. Rellich for the Laplace operator in 
[29], then generalized by L. Hormander in [8] for an elliptic second-order equation. 
The technique of these equalities was elaborated by L. E. Payne and H. F. Weinberger 
in [27], though for another purpose. The author studied these questions in the papers 
[20] —[25]. An important contribution in this direction is also due to the papers of 
J. Kadlec [9], P. Doktor [4], O. Horacek [7]. 

The results refer to elliptic second-order equations, to elliptic fourth-order equa­
tions which, with the exception of the third-order operator, are products of two second-

93 



order operators, and to strongly elliptic systems of second-order equations. We shall 
now explain the main results with shortened "proofs", which emphasise leading ideas. 

Let Q be a bounded domain. The symbol W{k)(Q) denotes the space of all real functions, 
such that the p-th powers of the absolute values of all their derivatives up to the /c-th 
order are intergrable over Q. Derivatives are supposed to be generalized derivatives.. 
The norm will be introduced in the customary way, 

Î TO 
P \ - / P 

= ( £ ľ g"+ , 2 + tt PdíЛ 
\oái , + г2+... + г„ş* J ß ðxӯ ...дxï ) 

o WJ;k)(Q) is a separable Banach space, which is reflexive for p > 1. The symbol 
W{k)(Q) represents the closure of 3)(Q) in the norm of W{k)(Q). Here 3J(Q) is the space 
of infinitely differentiable functions with compact support. By W{ ~k)(Q) for p > 1 and 
l/<2 + 1/P = 1 w e will understand the dual space to W{k)(Q). 

We shall consider the second-order operator in the form 

дxД ,JдxJ 
+ b 

Here we use the summation convention of summing over the indices which occur 
twice in the given expression. We assume further that the real coefficients atj satisfy 
the symmetry condition atj = ajt and that atJ e C(1)(-Q), where C(1)((2) is the space 
of continuous functions with continuous first partials on the closure of Q and that 
b e C(Q) where C(Q) is the space of functions continuous on Q. We assume that the 
operator (1) is uniformly elliptic, i.e., that 

n 

[£., £2,...., £„] e E„ => fly{,{y ^ const £ £? , const > 0 
1 = 1 

is valid. We further assume b = 0. It may be pointed out that the paper [9] shows that 
one may omit the symmetry condition and replace the condition a{j e C(1)(£2) by the 
condition that the coefficients au be Lipschitzian. 

L e t / e W2
:0)(Q) or, if we wish, merely e W^~1)(Q). We shall say that a function u 

from W^\Q) is a weak solution of the equation Au = / , if, for every cp e @>(Q), 

(2) f (aij8^- p- + bcpu) dO = f cpfdQ = f(cp) . 
J A 8XidXj J JQ 

We proceed to derive the so-called Rellich equality and the ensuing Rellich in­
equality for the homogeneous Dirichlet problem. These questions have been studied in 
detail by the author in the papers [20], [24]. 

Let Q be a domain with a Lipschitzian boundary, and l e t / e TV£0) (Q). Further let u 
be a solution of the homogeneous Dirichlet problem Au = / i n Q and u = 0 on £2, i.e.. 
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on the boundary of Q. This has the following meaning. Let u be a weak solution of the 
equation Au = / a n d further let u e W^\Q). Let Qs be a sequence of subdomains of Q 
with infinitely differentiable boundaries; let Qs -> Q topologically and, moreover, let 
the boundaries of the domains Qs, locally representable by functions, converge in 
local co-ordinates towards the boundary of the domain Q in the spaces C, W2

(1) and 
let them be uniformly Lipschitzian. Such a sequence always exists, as shown in [23]. 
Let now us be the solution of the Dirichlet problem Aus = fin Qs with us = 0 on Qs. 
It follows from the a priori estimates that use W[2\QS). Further let H = [hl9 ft2,..., ft,,] 
be a vector with components in C(1\Q). Then almost everywhere in Qs 

(3) ± [ ( M t f - 2MW) ̂  ^ 1 - 2fc,^ -4«. - 2kt p K + 
oxk L 3xf 3.X/J 5x£ dx( 

, /dft* aft, 3a y \ LX dus 

\dxk dxk dxkJ oXi dxj 

Using Green's theorem we obtain Rellich's equality 

(4) f (hkaij-2hiakJ)
8^^vkdS = 

Jo . 8xi dxj 

Jí2s\ 

ðus . _f дuя , . őw„ ðws . J л 

—î Л I I Л - 2ft. —î Ьи, + bІJ -s- — Ł d ß , 
ćbcj ćbcř őx- őл;. 

where [v l 5 v 2 , . . . , vn] is the outer normal to the boundary of Qs and bu is the expres­
sion in the last bracket in (3). The first derivatives in the expression (4) are square-
integrable on the boundary of Qs as implied by the Sobolev imbedding theorems. 
The vector {htakj — hkatj) vk where i is the co-ordinate index while j is fixed, is per­
pendicular to the normal and therefore (h{akj — hkatj) vk. dujdxt = 0 because this 
expression is the derivative of us in the tangent hyperplane of the boundary Qs. For 
the Dirichlet problem we can therefore replace the first expression in (4) by the ex­
pression J ^ hkvkaij.duJdXi. dujdxj. dS. The vector H can be chosen in such a way 
that for sufficiently large s the following relation holds: hkvk = const > 0. For a weak 
solution of a homogeneous Dirichlet problem there holds 

(5) \Us\w2^(Qs) = C 0 I 1 S t |/U 2(0)(^) , 

where const is independent of s. Let dujdv = atj. dujdxj . vt. Combining (4) and 

(5) we finally obtain the basic Rellich inequality 

(6) 
ðuк = const |/|fY2(o)(Gs), 

JY2<°)(0) 

where const is independent of s. 

(6) is a necessary condition for the functions dujdv to converge weakly in the local 
co-ordinates in the space W^0). Using Green's theorem and the easily proved property 
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that us -* u in W^\Q), we obtain finally that dujdv -» 3w/3v (where -> denotes weak 
convergence). We will call the function du/dv the generalized derivative in the di­
rection of the outer co-normal. If now v e W^\Q) then there holds Green's formula 

(7) [vfdQ=-[v^dS + [(aij^-^- + bvu]dQ. 
JQ Jn dv J „ \ dxt dxj ) 

Naturally, for du/dv we have 

(8) -H ^ const 1/1^(0,(0). 
| " v |Fr2<°>(*-) 

Under the assumptions mentioned above there exists a continuous linear transform­
ation of the space W^°\Q) into W^°\Q) which maps the right-hand side/of the ho­
mogeneous Dirichlet problem into the generalized derivative in the direction of the 
outer co-normal. Here the Green's formula also holds. 

For the sake of simplicity in the sequel we shall ignore the limiting transition 
Qs -> Q. If we have to deal with Dirichlet's problem and fourth-order equations, or 
a system of second-order equations, such a transition can be performed in exactly 
the same manner as described above. However, we meet new situations when studying 
other problems, e.g. Neumann's problem. Here one can perform the limiting transi­
tion, too, though the stability of Neumann's non-homogeneous problem must be pro­
ved, as was done in the case of the author's paper [24]. 

Let g e W^\Q), fe W±°\Q) and let u be the solution of the Dirichlet problem 
Au = f in Q9 u = g on Q. If we proceed in analogy with the method used for the deri­
vation of Rellich's inequality in the homogeneous case, we obtain the generalized deri­
vative in the direction of the outer co-normal, for which Green's theorem (7) and the 
inequality 

— = const [|/|jr2(o)(fl) + |g|^2d)(«)] 
^v w2<

0>(ri) 
are valid. 

We shall now turn our atention to the dual problem, represented by the non-homo­
geneous Dirichlet problem with a zero right-hand side. Let h e W^°\0) and moreover 
let it be the trace of a function from W^\Q). In other words, let h be a function ex­
tensible to a function from W^Q). 

Let v be the solution of the non-homogeneous Dirichlet problem Av = 0 in Q9 

v = h on Q. Then v e W^\Q), and from Green's formula (7) there follows 

(9) 

= | h^dS, 
õv 

(10) [vfdQ= f i 
J.Q J.Q 

From the inequality (8) and from (10) there follows the dual inequality 

(11) MlF2<0>(O) = C0I1St HjT2(0)(fl) • 
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Since the space of the traces is dense in W^°\Q), the inequality (11) enables us to 
construct a linear and continuous transformation of the space W^°\Q) into W^°\Q) 
which is an extension of the operator which maps the space of traces into the space of 
solutions of the non-homogeneous Dirichlet problem. This extension is evidently 
unique. Thus we have obtained the solution of the non-homogeneous Dirichlet pro­
blem with a boundary condition, which is merely square-integrable on the boun­
dary. It can be shown that the function so constructed has, in the domain (2, second 
generalized derivatives integrable with an arbitrary power p > 1 and that it satisfies 
the equation Av -= 0 almost everywhere. 

The question concerning the behaviour of the solution in the neighbourhood of the 
boundary is more subtle. In the paper [22], the present author proved that in domains, 
which are convex in a certain sense, the inequality 

(12) Z (—) QdQ ^ c o n s t [ h2 d s 

holds (here Q denotes the distance between the given point and the boundary) and 
that the function v assumes the boundary values in the mean. This is not a direct con­
sequence of (12), because this inequality does not generally guarantee the existence of 
a trace. 

It can be shown that in the Lipschitzian domains the inequality (8) is generally not 
valid if we replace the space W^°\0) by the space WJ,°\Q), where p > 2, i.e., in this 
sense this inequality and the corresponding dual inequality are the best. In his paper 
[7] O. Horacek showed the possibility of refining the space W^°\Q) by introducing 
weights of logarithmical type and thus dually extending the space of boundary 
conditions for non-homogeneous Dirichlet problem. Roughly speaking, O. Horacek 
assumed a domain with piecewise regular boundary, i.e. with only "isolated" singu­
larities. 

Following this line of argument the homogeneous Dirichlet problem and the corres­
ponding dual non-homogeneous problem for a strongly elliptic system of equations 
was studied in the author's paper [25]. 

Let us consider the strongly elliptic system 

(13) - - ( < — \ 
dxt \ dxjj 

+ ь*ß 

Assume 
atfeC^CB), b*fieC(Q), afj = a# , af = aft , 

i,7 = 1,2,. . . , n, a,j8 = 1,2, .. . ,N . 

At first sight, the condition a\] = a?? restricts the admissible systems. It is, however, 
satisfied for the general systems of classical elasticity, if we consider media both non-
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alЖz^Чß)' 

homogeneous and anisotropic. Assume that 

[{,., f2,..., £„] e £„, [j7lf tj2,..., tiN~] eEN=> 

(14) afjMjtw, = const _\ % £ »7a
2 , f i y / , ^ 0 . 

i = l a = l 

Further assume that for q>a e ^(fl), a = 1, 2 , . . . , N the following holds: 

(15) f fa?f ^ d-f + ba*cpaA dQ __ const £ | * 
J A S-^iSXj / «=1 

It may be pointed out that the last condition is the consequence of strong ellipticity, 
i.e., of the condition (14) for constant coefficients, a fact which can be proved by 
Fourier transforms. If the coefficients afj are continuous, the relation (14) implies the 
so-called Garding inequality, which is equivalent to the statement that the system 
- d/dXi (afj . d/dXj) + bap + UaP

9 where dafi is Kronecker's delta and A is a suffi­
ciently large positive number, already satisfies condition (15). 

Let us solve the homogeneous Dirichlet problem 

-4-(<8-f\ + VW=h> « = l,2,...,N, 
dxt\ dxjj 

faeW<0)(Q), upeW^(Q), a, p = 1, 2 , . . . , N . 
Set 

du\ _ ap duf 

dv)a 'J dxj 

We shall proceed precisely as in the derivation of Rellich's equality for one equation, 
and finally arrive at the inequality 

<z\w2<
0Чto) (16) [ < ^ ^ d S ^ c o n s t £ | / f i 

J 6 dxt dXj a=l 

Let ca/? be the inverse to the matrix â VjVy. This matrix is evidently uniformly positive 
definite for points of the boundary, and the following holds: 

JliV W . W , " dxt dXj) 
This follows from 

„ /du\ /du\ _ ďfi dxf __\ _ A,p du_ <__ ^ 
\dvj\dvjp lJ dxi dxj 'J dxt 8xj ' 

where the vector A\] for fixed a, /J, i is perpendicular to the boundary Q. Hence we 
arrive at Rellich's inequality 

N 

__ const __]\fa\w2loKQ) . 
w2(°Hn) a = 1 

(18) £ 
a = l ©. 
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By a dual process, using Green's formula, we obtain for weak solutions of the non-
homogeneous Dirichlet problem with zero right-hand sides the inequality 

N N 

(19) Z Kka(0)(D) = COnSt £ |/VV2(o,(ri) , 
a = l a = l 

where ua = ha at .Q. This leads again to the construction of a continuous linear ope­
rator from [W(

2°\Q)]N into [W^0)(Q)]N (where [ ] " denotes the Cartesian product), 
which is the unique continuous extension of the operator that maps boundary values 
into the corresponding solutions of the Dirichlet problem with a bounded Dirichlet 
integral. 

Let us consider the fourth-order operator in the form 

dxt dxj \ lJ dxk dxj dx( \ lJ dxjj 

(this problem was studied in detail in the author's paper [21]). Assume aijkl e C(2)(Q), 
atj e C(1'(S), b e C(Q), aijkl = ajikl = aklip aXJ = aJt. Further assume that for every 
real, symmetric matrix £y the following relation holds: aijkll;ij£kl = const £ £?., for 

ij 

every vector [£1? £2, ..., £„] e En => aifi£J = 0 and b = 0. We further assume there 
is a second decomposition of our operator in the form 

,^\ a2 /L & \ d ( d2 \ . *2 

(21) ^r~^- bucki T—— I + T " am T — — + du dxt dxj \ dxk dxj dxj \ dxk dxj dx{ dxj 

d 
+ ei— + b9 

OXi 

where 

bij9 ckl e CW(Q) , bu = hn, cki = clk , [£ l9 £ ? , . . . , { J e E„ => &fj.£,£y = 

= const £ { f , c f c r ^ = const £ d;2 , a i H e C(i\Q) , rfy,g|eC(0). 
i = l i=l 

Such a situation obtains for constant coefficients and for the dimension n = 2 and 
usually under the same assumptions, also for non-constant coefficients. 

Let u be the solution of the homogeneous Dirichlet problem Au = f in Q, u = 0, 
dujdn = 0 at Q where A is the operator (20) and dujdn the derivative in the direction 
of the outer normal, fe W^°\Q). Here u = 0, dujdn = 0 o u e vV^2)(f2) and the weak 
solution of the equation Au = fis defined as in (2). Then we have the analogue to (3) 

/ ^ \ ^ T/i i i \ d2u 32u 1 
(22) — (hfimJkl + Mmfc/e - Mtt j i ) - — — - — — = 

dxm [_ dxt dxj oxk dXij 

~>i d2u d*u d / / i i \ 
= 2hiamjkl -——- — — + -— (hiamjkl + hxamkji - hmalkji). 

dxt dxj dxm dxk dxt dxm 

d2u d2u ôxt ôxj дxк дxt 
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Using Green's formula we obtain 

d2u 
(23) (Vm,*í + Mm*/. ~ Kaikji) -—U— 

Jh dx,dxj 
v„d s = 

дxk дXi 

2,, \ Г ЯU Я*. Д 2 4 <, f Í
 5 u d ( d u \ AC ^ f Sh, du d2u 

Jň Sxidxm\ dxkdxj Játejdx, dxkdx, 

J , du d2 ( d2u \ A n r e2u d2u J r t 

JÍI dxidxmdxj\ dxkdxj Jn dxidxjdxkdxl 

JÍÍ dxjdx, 
~ I - " f ð M ðu , _ 

+ 2 I Яm/и — — — dü , 
ÕXm ÕXk ðxt ÕXІ 

Here 
_ , , , f f , 3 a w ; t 7 ^ <3/z C -;M — - — (hflmjki + hflntji — hmalkji) — 2 f t ř — - ^ — h 2 - — a m j f c í . 3xm dxm dxm 

The vector (hiamjkl — hmaijkl) vm for fixed j, fc, / is perpendicular to the outer normal 
and the same is true for the vector (^zamfej£ — hmalkj) vm for fixed k,j, i. Hence we 
can write the integral on the left-hand side of (23) in the form 

Í, 
, ð2u ð2u 
Kvnfliw d s • 

)h dxt dxj dxk dXi 

Since, moreover duldxt — 0 on Q the integrals on the right-hand side of (23) over Q 
are zero. For weak solutions of the homogeneous Dirichlet problem the following 
inequality holds: 

(24) Mwv2>(.o) = const \f\WlioHQ). 

This inequality, together with ^ form of (23), again implies Rellich's inequality 

d2u 
(25) Z 

ÕXІ ÕXj 
= const |/|nr2(o)(fl) ; 

w2i°HQ) 

its validity is independent of whether or not the decomposition (21) exists. However, 
the derivation of another inequality is based on this decomposition. Let JV£-1)(£2} 
denote the dual space to W^l\Q). Let v be the solution of the equation 

and let v = g on Q where g e W^\Q). Green's formula then states that 

(27) f / „ dO = f btJckl - d%U vfl dS + \%U ckl-^-viVdS + 
Jo Jn dxjdxkdx, J dxj dxkdxt 
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+ a '* ' 7 ~ T ~ VjV d S ~ c*< 7 T " 6 « T~ VJdS + 
Jo dx tdx, J.} dx^dx, axj 

, f 32u , 32» _ f 82u 8v ,n 

+ cA, btj dQ - aJkl dQ + 
J B dxkdxt dXidxj J n dxkdxtdxt 

f / , 52u 5u , \ .n 
+ du + ek — + bu)vdQ. 

J „ \ dxtdxj dxk J 

From the inequalities (9), (24)-(27) there follows the inequality 

83u 
(28) bij ckì 

õxj дxk õxt 

= const l / J^wd,) . 
f"2<- ,)(fl) 

Let now t> be a weak solution of the equation Av = 0 in Q and let v = h, dv/dn = a 
on £2. We assume here that there is a function v0 e PV[2)(-3) such that, in the sense of 
traces, v0 = h, dVoldn = g on Q. Since w e KV^2)(JQ) we obtain 

/™\ f d2u , d2v Jry f a2w 5v , ^ 
(29) cH — — bu ——- dQ - a,fcI — — — dQ + 

J f l dXfcfa- axiSxy J f t dxkdxldxJ 

+ f f^iy TT^f- + ^ ^ + 6 « V d f l = 0 . 
J D \ 9X|9xy dxk ) 

Thus we have derived Green's formula 

(30) f / „ dfí = f fcwcM ^ v,, ds + f d-pi ckl - p - Viv dS + 
Jsi Já dxjdxkdxt ]hdxj dxkdx, 

f d2u ,„ f 52u . dv J O 
+ a>" T ~ T ~ ^ d s ~~ c*' T T " biJ T~ v ' ' d S • J ň 3x t5x, J Ď axtSx, 3xř 

From this formula and the inequalities (22), (25) there follows the dual inequality 

(31) Mir2<o>(fl) = const [ l^l^d)^) + |gU2(0)(D)] -

Again we may extend continuously the operator which maps boundary values into 
solutions of the non-homogeneous Dirichlet problem with a bounded Dirichlet 
integral. This extension is unique and transforms W^\Q) x W^°\Q) into W$°\Q). 
The corresponding theorem on density is valid again. 

It may be pointed out that it is not necessary to require the decomposition (21), if 
in the boundary conditions there is h = 0. 

We will now again return to the second-order equation (cf. the author's paper [24]). 
For the sake of simplicity, let b =j= 0. Let/ e Wf?\Q), g e W^°\Q). Let u be the solution 
of the Neumann problem Au = / i n Q, dujdv = g on Q. From (4) we obtain at once 
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the inequality 

(32) |WU2(D(«) = const [1/1^0,(0) + |gU2(O)(0)] . 

Let now v be the solution of the Neumann problem Av = 0 in Q, dv/dv = h on Q 
where h e W^\Q). Here Green's formula states j^vf &Q = J^ hu dS and hence from 
(32) there follows the dual inequality 

(33) M»r2<o)(o) = const \h\Wli_1H^ . 

The space WffXO) is dense in W^'^Q) and thus from (33) there follows the existence 
of a solution of the Neumann problem for the boundary condition from W^~n(Q). 
It may be mentioned that for n = 2, we can consider h as an arbitrary measure, e.g. 
the Dirac's one. 

In a similar way we may generalize and solve the Newton problem or the mixed 
problem. In the latter case it is necessary to prescribe the same type of boundary 
condition for every component of Q. 

Before we approach the inequalities, describing the regularity of the solutions of 
second-order equations by using the spaces W(1)(Q), p =|= 2, we will mention that 
Rellich's equality can be used as a proof of the numerical method proposed by 
M. Picone, as is done in P. Doctors' paper [4]. This paper also generalizes Riesz' theo­
rem on conjugate harmonic functions in a domain with Lipschitzian boundary. 

Several authors — among them S. Agmon in [1] and J. L. Lions in [12] — proved, 
almost simultaneously, the following statement: 

Let K be a domain with a sufficiently smooth boundary. Let p > 1. Then the ope­
rator (1) is an isomorphism of the space KV̂ 1}(K) onto TV(~^(K). Let us assume that 
the closure of the examined domain Q, with a Lipschitzian boundary, is contained in 
K and that the operator is defined on K. Let u be the solution of the Dirichlet problem 
Au = f in Q, u = g on Q where fe W(

2°J(n + 1) (Q), g e W^l)(Q). By using the 
theorem mentioned above and Rellich's equality (4) we arrive at Rellich's inequality in 
the following form: 

(34) 
ÕU 

w2(0)(ň) = const [|/|ir2„/(n+i)<
0>(í-) + l^ki^H-io] 

(A detailed derivation may be found in [24].) It is even more interesting that we obtain 
the inequality 

C35) \U\w2nUn-l^Kn) = C O n S t [|/|fr2n/(n+l,(°)(fl) + M^CDtf)] ' 

Analogous inequalities for the other problems may also be obtained. 
An interesting consequence of the inequality (35) and of the im bedding theorems is 

that the examined solution of the Dirichlet problem for n = 2 is of Holderian type 
with exponent | . 
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Let v be the solution of the Dirichlet problem Av = / in Q, v == h on Q where / e 
€ KVi0)(Q), h is a trace. From Green's formula (35) there follows 

(36) MwW(n-l,<°>(l-) = COI1St [|/k2B/(n + 1)(-ii(fl) + |^U2(0)(Q)] • 
The space W[0)(.G) is dense in W^+l)(Q) and thus using (36) we may extend the 
corresponding operator continuously. In other words: There is a sqlution of the 
Dirichlet problem for any right-hand side in W^~^+i)(Q) and with a square-integrable 
boundary condition. 

In conclusion we should like to point out that within the frame of these results 
there is still a great number of open problems. There are, first of all, questions of at­
taining boundary values, other problems of second-order systems and equations of the 
fourth order, the question whether the above-mentioned method is applicable to 
general fourth-order operators which are not products of second-order operators, and 
other problems. For instance, a question of special interest is whether, for h = 0 the 
inequality (36) is valid in the form 

(37) \v\w2nUn+1)oHo) S const \f\W2nUn+l)i-^D). 

We did not always emphasize that the considered solutions with an unbounded 
Dirichlet integral are sufficiently smooth inside the examined domain. They always 
satisfy weakly the differential equation and, for those right-hand sides which are 
functions, they satisfy the equation almost everywhere. With stronger assumptions on 
the coefficients and right-hand sides, the solutions satisfy the differential equations in 
the classical sense. 

A study of these problems may also take another direction, using weighed Sobolev's 
spaces, a special case of which has already been mentioned. These spaces were used in 
the author's papers [22] and [26]. This method appears to be useful also in domains 
with smooth boundaries. It is possible to solve several singular cases occuring in the 
papers by J. L. Lions, E. Magenes [13] — [17], mentioned above, in which the authors 
use Sobolev's spaces with a fractional derivative. It may well become that some of 
their results can be applied to domains with a non-smooth boundary as, for instance, 
for convex domains. As a matter of fact, J. Kadlec in his paper [10] has already proved 
the validity of some of the a priori estimates for such a domain. 
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