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SOLUTION OF NONLINEAR PARABOLIC EQUATIONS BY FINITE 
DIFFERENCE METHOD FOR AN ARBITRARY TIME INTERVAL 

K. REKTORYS, Praha 

The so-called problem of hydratic heat in concrete massives, especially in gravitational 
dams, leads in a simplified form to the following problem: To solve a nonlinear para­
bolic equation 

/*\ du A/ \ d2u n, \ fdu\2 _, N du 
(1) =A(x,t,u)— + B(x, t,u) —) + C(x,t,u)— + 

dt oxz \vxJ v* 

+ D(x, t,u, z) , A > 0 

with the integral condition 
(2) z(x, t) = D(x, T, u(x, T), Z(X, T)) dT 

on the rectangle 
Q(0 < x < 1, 0 < t = T) 

(T arbitrary) with discontinuous mixed boundary conditions 

flu * 
(3) u(x, 0) = f(x) , — = k(u- g(t)) for x = 0 , u(l, t) = h(t) . 

dx 
We shall give an existence theorem for this problem, i.e. we will prove that under some 
conditions on the coefficients A, B, C, D and on the boundary functions precisely two 
functions u(x, t), z(x, t) exist — in a certain class of functions — which fulfil equation 
(1) and conditions (2), (3). Further, we shall suggest an approximative method for the 
numerical solution of this problem. 

The problem is rather complicated by the integral condition (2). This condition may 
be very simply expressed — in the form of a sum — if for the solution of the problem 
finite-difference method is used. The advantage of this method lies also in the fact, 
that boundary conditions (3) may be very simply expressed in finite differences. Fi­
nally, this method is very attractive from the numerical point of view as a very con­
venient approximative method. Therefore, there are many reasons to use it. However, 
the well known disadvantage of this method is that existence theorems, based on 
standard estimates, used in this method, guarantee the existence of the solution in the 
case of nonlinear equations only in a certain time-interval, depending on the equation 
itself and on boundary conditions and not in an arbitrary time-interval as is necessary 
in our case. Therefore, if we are interested in using the finite-difference method, it 
will be necessary to work out estimates of a completely different nature. 
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To make the question more clear, let us first study a substantially simple problem of 
a quasilinear equation 

/„\ du
 A, \ S2u _ , N du _ , \ j r, 

(4) — = A(x, t,u)-— + C(x, t,u) — + E(x, t,u), AL > 0 
dt dx2 dx 

on Q with sufficiently smooth Dirichlet's boundary conditions 

(5) u(x, 0) = f(x) , u(0, t) = g(t) , u(\, t) = h(t) . 

Problems like this were solved in one or more dimensions by many authors and by 
different methods (e.g. by the method of successive approximations in classical form 
or in the modern form of the fixed-point theorem, by the generalized method of Rothe 
etc.). Existence theorems were proved for the classical solution as well as for solutions 
in different functional spaces under certain conditions posed on boundary functions 
and on coefficients of equation (4). But for existence theorems based on finite-diffe­
rence methods, nothing was proved — as far as I know — for an arbitrary time-
interval (see also [2]). What is the matter? 

The basic idea of the finite-difference methods is well known. We choose two na­
tural numbers M and N and divide the rectangle Q by a net of parallells with the t-
and the x-axis 

x = h, x = 2ft, ..., x = Mft = 1, 

t = I, t = 21, ..., t = Nl = T 

into M . N rectangles. We do not choose M and N arbitrarily, but so that 

(6) 1 = ch2 , 

where c is a constant, depending on the values of the function A. Let us denote this 
net by Sx. Let us replace the differential equation (4) by the difference equation 

(7) qik = Aikrik + Cikpik + Eik 

where uik is the value of the so-called net-function u at the point (xh t^ of the net and 

_ _ ui,k+i ~~ uik 
<dik 

Pik = 

i 

Ai.» ui+Uk - uik 

__ A uik Цţ-n.fc —2uik+ Ц І - I ^ 

Һ 2 Һ 2 

Aik = A(xi9 tk, uik) 

etc. The values of u ik on the boundary of Q follow from conditions (5), the values in the 
inner of Q follow successively from (7). Having uik, we may define a function U^x, t) 
sectionally linear on Q and such, that at the points of the net St U±(x, t) = uik. 
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To get an existence theorem for problem (4), (5), we construct a sequence of nets Sn 

•choosing for each n 
1 T 

h = —^-9 / = 
2 * - i M 22n~2N 

(so that condition (6) is fulfilled). For each Sn we get a sectionally linear function Un. 
If it can be proved that uik, pik, qik are bounded on Q uniformly with respect to n, then 
the functions Un(x, t) are uniformly bounded and uniformly continuous on Q and 
according to the well-known Arzela's theorem, a subsequence may be found uniformly 
convergent on Q to a function which we denote by U(x, t). If further difference-
quotients of sufficiently high order are uniformly bounded, then U(x, t) may be easily 
shown to be the desired solution. 

Let us denote 
ukn = max |"i#tt|, pkn = max \npik\ 

i i 

etc, where the index n corresponds to the net Sn. Then, if boundary conditions (5) are 
bounded, it may be easily shown that ukn may be majorised (uniformly with respect 
to n) by the solution of a linear ordinary differential equation with a suitable initial 
condition. If equation (4) is linear then this holds also for pkn and for higher difference-
quotients under some rather natural suppositions about boundary functions. So in 
this case of a linear differential equation, the uniform boundedness of uik and of the 
desired difference-coefficients can be easily proved by this majorising method, and the 
existence theorem is finished. This is a well-known procedure. 

If equation (7) is nonlinear — and that is our case — then this result holds only for 
ukn. For pkn the majorising ordinary differential equation is in general nonlinear and 
its solution exists only in a certain interval, depending on boundary conditions and on 
coefficients of the equation (4). A similar result holds for qkn etc. Therefore, in this case 
of a nonlinear equation, this majorising method is not suitable for the proof of an 
existence theorem in an arbitrary time-interval. How may this difficulty be removed? 

In [3] a very nice method is shown for estimating dujdx for a problem like problem 
(4), (5). Using this method, the authors show, that du/dx will be neither too positive 
nor too negative. The proof of the existence theorem in their work is made by the method 
of successive approximations, and the just mentioned proof of the boundedness of 
du/dx cannot be applied to finite-difference method, where the just explained majorising 
method is used. But it suggested to me to work out a method in finite differences — 
I shall call it the balance method — permitting the estimation od difference-quotients 
for an arbitrary time-interval. The idea of this balance method is very simple. Instead 
of majorising ukn, phn etc by the solution of an ordinary differential equation, I prove 
at first that if boundary functions (5) are bounded and if equation (4) is of a special 
type, then if uik is bounded in the fc-th row of the net Sn by a sufficiently high constant, 
then it remains bounded in the (k + l)-th row by the same constant, and this holds 
for all nets with sufficiently high n. On the basis of this result, I prove (roughly stated) 
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that if boundary functions (5) are bounded and if the absolute term of the difference 
equation (4) is negative for all sufficiently positive u and positive for all sufficiently 
negative u, then uik is uniformly bounded in Q with respect to u. Having this basic 
result, I use a suitable substitution and I get for the net-function Pik, which corres­
ponds to the net-function pik, the parabolic equation with the just mentioned pro­
perty; showing, that Pik is uniformly bounded on the boundary of Q — under some 
suppositions about the boundary functions — I have the uniform boundedness of Pik 

on the whole Q and in consequence of the used substitution the uniform boundedness 
of pik on the whole Q. Having it, I show by a similar procedure the uniform bounded­
ness of rik (and by this, of q^ etc. So that, using the balance method, I can easily 
prove the uniform boundedness of uik and of the desired difference-quotients for an 
arbitrary time-interval. 

The idea of the balance method is then very simple, but the whole procedure is not 
so simple, for it requires the solution of a lot of small problems related to it. This is all 
worked out in detail in [1]. 

So I come to the basic theorem of the work, to the existence theorem for the classical! 
solution of the problem (4), (5). The exact formulation of the problem can be found 
in [1]; roughly stated, I suppose Lipschitzian derivatives of the second order of the 
functions A, C, E; the function E(x, t, u) is assumed to be not too much increasing 
(in absolute value) with |ti|; e.g. it may be of the form E(x, t, u) = F(x, t,u)u -f-
+ G(x, t, u), where F, G are bounded functions. The proof of uniqueness is very simple. 

Having this basic existence theorem, all is prepared for an existence theorem for 
problem (l),(2),(3). Boundary functions (3), however, being supposed to be discon­
tinuous, I first proved an existence theorem for the problem (4), (5) and for discon­
tinuous boundary conditions. For my purpose, it was sufficient to suppose boundary 
functions f(x), g(t) and h(t) sectionally continuous. By the solution of the problem 
(4), (5) I mean a function u(x, t) which is a classical solution of equation (4) in the 
inner of Q, which is bounded on Q and continuous up to the boundary at every point 
of continuity of the boundary functions. The method of the proof of existence theorem 
seems to be self evident: I express the boundary functions (5) as a limit of a sequence of 
sufficiently smooth boundary functions and I have to prove that the sequence of the 
corresponding solutions un(x, t) converges to a function u(x, t) which is the desired 
solution. But a question comes up here: It seemed at first that to get the desired result, 
it would be necessary to pose further conditions on the coefficients A, C, E. I proved 
that this is not the case. In addition to the approximation of the boundary functions, 
I also approximated the functions A, C, E. In order to get the desired result, this 
aproximation could not be arbitrary. I approximated the functions A, C, E by the 
sequence of the so-called regularized functions. In one dimension, the regularized 
function fQ(£) corresponding to the function/(x) is a function of the form 
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where C0 is a suitable constant and exp \_(x — £2)l((x — Q2 — g2)] is the regularizing 
kernel. It is well known that fe(£) is infinitely differentiable. Now, it may be easily 
shown, that if f(x) satisfies the Lipschitz condition with the constant L, that then 
jd/c/d<!;| ^ L. This result may be extended for higher dimensions and for derivatives 
of higher order. On base of this property, I get the convergence of the functions An, 
Cn, En and of their derivatives to the functions A, C, E and to the corresponding 
derivatives locally uniform on Q and I get an existence theorem for the problem (4), 
{5) and for discontinuous boundary conditions under the same suppositions about the 
functions A, C, E as before. 

This problem being solved, it is now easy to get an existence theorem for the 
problem (l)-(3). This was the very reason for which to the solution of this problem the 
finite-difference method was chosen, for the conditions (2), (3) may be very simply 
put into account in finite differences. I got then an existence theorem for (1) —(3) at 
first supposing that the equation (1) is quasilinear, i.e. that it doesn't contain the 
term B(x, t, u) (du/dx)2. For details see [4], 

What makes difficulties, that is the term B(x, t, u) (du/dx)2; the above mentioned 
balance method was derived for the case of a quasilinear equation and it cannot be 
immediately applied to the case of a nonquasilinear equation, as the equation (1) is. 
But, as I proved in [1], equation (1) may be easily transformed into a quasilinear 
•equation by a substitution, containing only the functions A a B. By this, all questions, 
concerning the problem (1) —(3), are solved. 

Finally, I have a small remark to add: Equation (1) was shown to have a character 
of a quasilinear equation. If its coefficients and the boundary functions are suffi­
ciently smooth, then the solution and its derivatives are continuous up to the boundary 
of Q. It is a question whether this is also the case if equation (1) contains du/dx also in 
higher powers than in the second one. It is interesting, that it is no more the case. An 
example, showing it, may be found in [1]. 

REFERENCES 

ţ l ] K. REKTORYS: Die Lösung des ersten Randwertproblems "imGanzen" für eine nichtlineare 
parabolische Gleichung mit der Netzmethode. Czechoslovak Math. J. 12 (87), 1 (1962), 
69-103. 

[2] J. KAUTSKÝ: Řešení quasШneární parabolické diferenciální rovnice s absolutním členem 
speciálního typu metodou sítí. Apl. Mat. 2 (1957), 327-341. 

[3] O. A. OLEÏNIK and T. D. VENTCEĽ: The first boundary problem and the Cauchy problem for 
quasi-linear equations of parabolic type. Mat. Sb. N. S. 41 (83), (1957), 105-128 (Russian). 

14] K. REKTORYS: Lösung der gemischten Randwertaufgabe und des Problems mit einer Integral-
bedingung "im Ganzen" für eine nichtlineare parabolische Differentialgleichung mit der 
Netzmethode. Czechoslovak Math. J. 13 (88), (1963), 189—208. 

141 


		webmaster@dml.cz
	2012-09-12T19:57:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




