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OSCILLATION THEORY OF HIGHER-ORDER ORDINARY AND FUNCTIONAL 
DIFFERENTIAL EQUATIONS WITH FORCING TERMS 

Takasi Kusano 
Hiroshima, Japan 

1. Introduction 

We are interested in comparing the oscillatory and asymptotic behavior of 

the differential equations 

(E+) Lnx + F(t,x) - 0, (Ej Lnx - F(t,x) * 0, 

with that of the corresponding forced equations 

(F+) Lnx + F(t,x) - f(t), (FJ Lnx - F(t,x) - f(t), 

where L is a disconjugate differential operator defined by 

m 1 d 1 d d 1 d -
W n " pn(t) dt Pn-1(t) dt "• dt Pl(t) dt pQ(t) ' 

It is assumed throughout that p.:[a,») -*• (0,»), 0 £ i £ n, are continuous; 

/ p.(t)dt - » for 1 <: i ^ n-1; f:[a,«>) + R is continuous; F:[a,«>) x R •• R is 

continuous and nondecreasing In the second variable; and xF(t,x) > 0 for x j4 0. 

We employ the notation: 

D°(x;p )(t) -fife , 
(2) ° P 0 U ; 

D (x;pQ,...,p1)(t) - yjtfjf D " (x;p0,...,p1_1)(t), 1 s. i S. n. 

By a proper solution of (E+)[(E_), (F+) or (F_)] is meant a function 

x:[T ,») -> R which satisfies (E+)[(E_), (F+) or (F_)] for all sufficiently large 

t and sup{|x(t)|: t >. T} > 0 for any T .> T . We make the standing hypothesis 

that the above equations do possess proper solutions. A proper solution of one 

of the above equations is called oscillatory if it has arbitrarily large zeros; 

otherwise it is called nonoscillatory. 

DEFINITION. Equation (E+)[(F+)] is said to have property (A) if (i) for n 

even, all proper solutions of (E+)[(F' )] are oscillatory, and (ii) for n odd, 

every nonoscillatory solution x(t) of (E )[(F,)] satisfies 

(3) lim D°(x;p )(t) - 0. 
t-*» 

Equation (E_)[(F_)] is said to have property (B) if (i) for n odd, every 

nonoscillatory solution x(t) of (E_)[(F_)] satisfies 

(4) l±m | Dn"1(x;p0,...,p x)(t)| - «, 
t-*» 

and (ii) for n even, every nonoscillatory solution satisfies either (3) or (4). 

There is much current interest in obtaining sharp criteria for the unforced 

equations (E ) and (E_) to have properties (A) and (B), respectively; see, for 

example, the papers [7,8,10,13,16]. A question naturally arises as to what will 

happen if a forcing term is added to (E+) or(E_), that is, we are led to the 

study of the oscillatory and asymptotic behavior of forced equations (F+) and 
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(F_). Speaking, for example, of (E+) and (F ), it is expected that (I) if the 

forcing term f(t) oscillates and its amplitude is "large enough", then all proper 

solutions of (Ff) will be oscillatory regardless of oscillation or nonoscillation 

of the unforced equation (E+); and(II) in case all proper solutions of (E ) are 

oscillatory, the same will be true of the forced equation (F ) provided the 

forcing term f(t) is "small enough". 

The purpose of this report is to show that such situations indeed occur not 

only for (E+) and (F+) but also for (E_) and (F_). Extensions to functional 

differential equations will also be discussed. 

2. Oscillation generating forcings 

It is natural to expect that a sufficiently large oscillating force exerted 

on a mechanical system with no oscillatory character may generate oscillation. 

That this is indeed the case is described.in the following theorems which are 

formulated in terms of the repeated integrals defined below. 

Let h.:[a,«>) •*• R, 1 -- i -S N, be continuous functions. We put for t,s 6 [a,») 

I 0 - 1, 
(5) ° rt 

I^t.s;!^,...,^) - h (r)I (r,s;h2,...,h )dr, 1 -- i -- N. 
Js 

THEOREM 1. Suppose that for any T > a 

,M n V ^ P l Pn-l>Pnf) x 

(6) 11m sup -= ( - r- «- + «o, 

m w - ̂ I n ( t , T ; p l Pn-l»Pnf) 

(7) lim inf -= , r-

t-*» V l ^ ^ l Pn-P 

(i) All proper solutions of equation (F+) are oscillatory, 

(ii) All proper solutions of equation (.F ) such that 

(8) x(t) - 0(p0(t)In-1Ct,a;p1,,,.,pn-1)) as t -v • 

are oscillatory. 

THEOREM 2, Suppose that for any T > a 
(9) lim supf p (s)f (s)ds - + «, 11m inf f p (s)f (s)ds -••- «, 
and t ^ J T

n t->« h n 

(10) In(t,T;Pl Pn.!»Pn
f) " °^In-i^

t»a'Pi»-*»->n-.l)) 

as t + » uniformly with respect to T. 

(i) All proper solutions of equation (F+) are oscillatory, 

(ii) All proper solutions of equation (F_) satisfying (8) are oscillatory. 

Theorems 1 and 2 generalize some results of [3] and [11] for second order 

equations. For the proof of Theorem 1 see [2]. Theorem 2 seems to be new. For 

other related results we refer to [15]. 

3. Oscillation- preserving forcings 

Suppose that equation CE+) is oscillatory in the sense that all of its proper 
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solutions are oscillatory. Then, to what extent does a forcing term added affect 

the oscillatory behavior of (E )? It is likely that in this case the forced 

equation (F ) is oscillatory provided the forcing term f(t) is "sufficiently 

small". That such a situation really occurs has been shown by many authors 

including [1,4-6,14]. We refer in particular to the paper [6] in which it is 

proved that if f(t) is "small" and oscillatory, then the equation x^n' + F(t,x) 

- f (t) is oscillatory if and only if the equation x ^ + F(t,x) - 0 is oscillatory. 

This result can be extended as follows, 

THEOREM 3. Let n be even and suppose there exists an oscillatory function 

<p(t) such that 

(11) Lncp(t) - f(t) and lim D°((p;p0)(t) - 0. 

t-x» 

Then all proper solutions of (E ) are Oscillatory if and only if all proper solu­

tions of (F ) are oscillatory. 

Theorem 3 is due to [12]. The odd order case can. be discussed similarly and 

combining the result with Theorem 3, we have the following theorem on the 

preservation of property (A)• 

THEOREM 4. Suppose there exists an oscillatory function <p(t) satisfying (11). 

Then equation (E.) has property (A) jLf and only if equation (F.) has property (A)• 

It can be shown that property (B) of equation (E_) is preserved under the 

effect of a slightly different class of small forcings. 

THEOREM 5. Suppose there exists an oscillatory function \j>(t) such that 

(12) Ln^(t) - f(t) and lim Di(^;pQ,.. .,p±)(t) - 0 for 0 * i £ n-1. 
t-*» 

Then equation (E_) has property (B) if and only if equation (F_) has property (B) 

4. Extensions to functional differential equations 

Let us now consider the functional, differential equations 

(H±) Lnx(t) ± F(t,x(g1(t)),..,,x(gN(t))) - 0, 

(I±) Lx(t) ± F(t,x(g;L(t)) x(gN(t))) - f(t), 

where L and f(t) are as before, g, :[a,«>) -*• R, 1 z i s N, are continuous, 
n i j. 

lim g.(t) - «, 1 & i £ N, F:[a,<») x R -> R is continuous, F(t,x.,...,xN) is non-

decreasing in each x., and x.F(t,x1,... ,Xj.) > 0 if x.x. > 0, 1 M . « N . 

All the definitions and terminologies given in Introduction for ordinary 

differential equations also apply to (H ),...,(I_), and the results stated in the 

preceding sections can be extended to these equations without much difficulty. 

For example, Theorems 4 and -5 allow the following extensions. 

THEOREM 4. Suppose there exists, an oscillatory function <p(t) satisfying (11)• 

Then equation (H ) has property (A) if and only if equation (I+) has property (A). 

THEOREM 5. Suppose there exists an oscillatory function <»(t) satisfying (12)• 

Then equation (H_) has property (B) if and only if equation (I_) has property (B)• 

Very recently the present author [9] has proved that the even order equation 
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(13) y(n)(t) - pny(t - na) - qny(t + nx) - 0, 

where p,q,a and x are positive constants, is oscillatory if pea > 1 and qex > 1. 

It is then natural to ask under what conditions on f(t) the equation 

(14) y(n)(t) - pny(t - na) - qny(t + nx) - f(t) 

is oscillatory. A more general question is: Is it possible to indicate a class 

of forcings f(t) which make equation (I_) remain oscillatory when the unforced 

equation (H_) with both retarded and advanced arguments is known to be oscillatory? 
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