Vladimír Lovicar
Free vibrations for the equation $u_{tt} - u_{xx} + f(u) = 0$ with f sublinear

Persistent URL: http://dml.cz/dmlcz/702295

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
Summary: The assumptions on a function f are found under which the equation $u_{tt} - u_{xx} + f(u) = 0$ with the boundary conditions $u(t,0) = u(t,\pi) = 0$ has a nontrivial 2π-periodic solution.

1. Notation.

The symbol $\int v$ denotes the integral of a function v over $(0,2\pi) \times (0,\pi)$. By L^p_ω, $1 \leq p < \infty$ (or L^∞_ω), we denote the space of real-valued measurable functions u on $\mathbb{R} \times (0,\pi)$, 2π-periodic in the first variable and satisfying $\|u\|_p = (\int |u|^p \omega)^{1/p} < \infty$ (or $\|u\|_\omega = \sup \text{ess}|u(t,x)| < \infty$, respectively).

The functions e_{jk} are defined on $\mathbb{R} \times (0,\pi)$ by

$$e_{jk}(t,x) = \begin{cases} \frac{\sqrt{2}}{\pi} \cos jt \sin kx & \text{for } j, k \in \mathbb{N}, \\ \frac{1}{\pi} \sin kx & \text{for } j = 0, k \in \mathbb{N}, \\ \frac{\sqrt{2}}{\pi} \sin jt \sin kx & \text{for } -j, k \in \mathbb{N}. \end{cases}$$

For $u \in L_1$, we put

$$a_{jk}(u) = \int u e_{jk}.$$

2. Weak 2π-periodic solutions of the wave equation.

Let f be a real-valued function on \mathbb{R}. A function $u \in L_1$ is called a (weak 2π-periodic) solution to the problem

$$(1) \quad u_{tt} - u_{xx} + f(u) = 0, \quad u(t,0) = u(t,\pi) = 0,$$

if the composed function $f(u)$ belongs to L_1 and

$$(j^2 - k^2)a_{jk}(u) = a_{jk}(f(u))$$

for any j, k.

In the paper [1] the existence of a nontrivial solution to (1) with f of the form

$$(2) \quad f(u) = |u|^\alpha \text{sgn}(u) \quad (0 < \alpha < 1)$$

is established. In the paper [2] the existence of nontrivial T-periodic solutions (T sufficiently large) to (1) is proved for a rather
general class of sublinear functions f.

3. Formulation of main results.

Let us denote by S (or S') the set of all functions f which fulfill the following assumptions (S1) - (S4) (or (S1) - (S5), respectively):

(S1) $f \in C(\mathbb{R}, \mathbb{R})$, odd, increasing;

(S2) f is continuously differentiable on $\mathbb{R} \setminus \{0\}$ and $f(u)u \geq f'(u)u^2$ for $u \neq 0$;

(S3) there exist constants $c_1 > 0$ and $\delta \in (0,1)$ such that $f(u) \geq c_1 u^{\delta}$ for $u > 0$;

(S4) there exist constants $c_2, c_3 > 0$ and $p > 2$ such that

$$\int_0^u f(s)ds - \frac{1}{2} uf(u) \geq c_2 |f(u)|^p - c_3 \text{ for } u \in \mathbb{R};$$

(S5) the function $u \rightarrow uf(u)$ is convex.

Let us note that any function f of the form (2) belongs to S' and that $f_1, f_2 \in S'$ and $a, b > 0$ implies $af_1 + bf_2 \in S'$.

Theorem 1. For any $f \in S$ there exists a nontrivial solution $u \in L_\infty$ to the problem (1).

Theorem 2. Let $f \in S'$ and let us denote $F(u) = \int_0^u f(s)ds$ for $u \in \mathbb{R}$. Then there exists a sequence $\{u_n; n \in \mathbb{N}\}$ of solutions to (1), such that $u_n \in L_\infty$ ($n \in \mathbb{N}$) and $\{ \int_{[F(u_n) - \frac{1}{2} u_n f(u_n)]}; n \in \mathbb{N} \}$ forms a decreasing sequence of positive reals with 0 as a limit point.

4. Sketch of proofs.

a) Let $f \in S$. First we shall seek solutions of the "modified" problem

$$u_{tt} - u_{xx} + f_\varepsilon(u) = 0, \quad u(t,0) = u(t,\pi) = 0,$$

where $f_\varepsilon(u) = f(u) + \varepsilon |u|^{1/p-1} \text{sgn}(u)$ (and p is the same as in (S4)).

b) Approximate solutions for (1) will be obtained as critical points
of functionals $g_{n,\varepsilon}$, defined on $H_n = \text{lin}\{e_{jk} : |j| \leq n, k \leq n\}$ by

$$g_{n,\varepsilon}(u) = -\frac{1}{2} \int (u_x^2 - u_t^2) + \int F_\varepsilon(u),$$

where $F_\varepsilon(u) = \int f_\varepsilon(s)\,ds$.

c) The following assertion plays a fundamental role: For any $a > 0$ there exists $k(a) \in (0,a)$ such that for a sufficiently large n and $\varepsilon \in (0,1)$ there exists a critical point $u_{n,\varepsilon}$ of $g_{n,\varepsilon}$ with $g_{n,\varepsilon}(u_{n,\varepsilon}) = \int (F_\varepsilon(u_{n,\varepsilon}) - \frac{1}{2} u_{n,\varepsilon} f_\varepsilon(u_{n,\varepsilon})) \in [k(a),a]$.

In order to obtain those appropriate approximate solutions, the Ljusternik-Schnirelmann theory is used.

d) Let $\varepsilon \in (0,1)$ be fixed. Then it may be shown (by a monotonicity argument) that a certain subsequence of $\{u_{n,\varepsilon} : n \in \mathbb{N}\}$ converges weakly in L_p' (where p' is conjugate to p) to a solution $u_\varepsilon \in L_{p'}$ of (1) and that, moreover, $\int u_\varepsilon f_\varepsilon(u_\varepsilon) \geq 2k(a) > 0$ (i.e. that u_ε is a nontrivial solution).

e) As u_ε solves (1), the relation

$$\int_0^1 \left[f_\varepsilon(u_\varepsilon(t-x,x)) - f_\varepsilon(u_\varepsilon(t+x,x)) \right] dx = 0$$

is valid for a.e. t. By using this fact it may be shown that u_ε belong to L^∞ and are bounded in L^∞ uniformly with respect to $\varepsilon \in (0,1)$.

f) By making use of the above assertion it is possible to obtain by the limiting process for $\varepsilon \to 0$ (again mainly by a monotonicity argument) a solution $u \in L^\infty$ to the problem (1) with $\int u f(u) \geq 2k(a) > 0$, which proves Theorem 1.

g) If $f \in S'$ then it may be shown that the solution u obtained by the above procedure satisfies $\int (F(u) - \frac{1}{2} u f(u)) \in [k(a),a]$, which easily implies the validity of Theorem 2.

References
