Bohdan Maslowski
Stability and averaging properties of stochastic evolution equations

Persistent URL: http://dml.cz/dmlcz/702334

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
STABILITY AND AVERAGING PROPERTIES OF STOCHASTIC EVOLUTION EQUATIONS

MASLOWSKI B., PRAGUE, Czechoslovakia

The theory of averaging for differential equations with quickly oscillating coefficients has been a subject of interest for many authors since early fifties, see e.g. [1] for ODE's, [2],[7] for stochastic differential equations. Recently the results from [7] on averaging in the quadratic mean have been extended to stochastic differential equations in a Hilbert space with unbounded drift terms and applied to stochastic PDE's ([5],[6]). In [5] some stability results are also included. They make it possible to find effective conditions guaranteeing the required averaging properties on an infinite time interval; however, they also may be of some independent interest.

In the present contribution the main results from [5],[6] are summarized. They are restated in a slightly less general, but more transparent form. Consider a parameter-dependent system of semilinear SDE's

\(\frac{dx_\alpha(t)}{dt} = (A_\alpha(t) + f_\alpha(t,x_\alpha(t)))dt + \dot{\Phi}_\alpha(t,x_\alpha(t))dw_t, \quad t \geq t_0, \)

\(x_\alpha(t_0) = \psi_\alpha, \quad \alpha \geq 0, \)

in a real separable Hilbert space \(H \), where \(A : H \rightarrow H \) is an infinitesimal generator of a strongly continuous semigroup \(S_t \), \(w_t \) is a \(K \)-valued Wiener process on \((\Omega, \mathcal{A}, \mathbb{P}) \) with a nuclear covariance \(W \) (\(K \) - a real separable Hilbert space), \(f_\alpha : \mathbb{R}^+ \times H \rightarrow H \), \(\Phi_\alpha : \mathbb{R}^+ \times H \rightarrow \mathbb{L}(K,H) \) are measurable and satisfy

\[
(2) \quad \| f_\alpha(t,x) - f_\alpha(t,y) \| + \| \Phi_\alpha(t,x) - \Phi_\alpha(t,y) \| \leq \hat{k} \| x - y \|,
\]

\[
(3) \quad \text{lim} \alpha \rightarrow 0^+ \int_{t_1}^{t_2} S_{t_2-s} (f_\alpha(s+t_0,x) - f_0(s+t_0,x)) ds = 0,
\]

\[
(4) \quad \text{lim} \alpha \rightarrow 0^+ \int_{t_1}^{t_2} \text{Tr} \{ (\Phi_\alpha(s+t_0,x) - \Phi_0(s+t_0,x)) W(\Phi_\alpha(s+t_0,x) - \Phi_0(s+t_0,x)) \} ds = 0
\]

for all \(x \in H \), \(0 \leq t_1 \leq t_2 \), and \(\psi_\alpha \rightarrow \psi_0 \).
Then for any $0 < T < \infty$ we have

\[(5) \lim_{\alpha \to 0^+} \sup_{t \in (t_0, T)} E \|x_\alpha(t) - x_0(t)\|^2 = 0.\]

In the finite-dimensional case it can be seen ([7]) that a similar statement is valid even for $T = +\infty$ provided the limit solution x_0 is asymptotically stable. The proof from [7] fails for $\dim H = \infty$, however, in [5] we prove the assertion imposing some restrictions on S_t.

Definition. A solution x_0 of the equation (1) is said to be asymptotically stable in the mean square if

(i) for every $\epsilon > 0$ there exists $\delta > 0$ such that for all $t \geq 0$ and all solutions \tilde{x} of (1) satisfying $E\|\tilde{x}(t_0) - x_0(t_0)\|^2 < \delta$ we have $E\|x(t) - x_0(t)\|^2 < \epsilon$, $t \geq t_0$,

(ii) there exists $A > 0$ such that for all $\epsilon > 0$, $\delta \in (0, A)$ there exists $T = T(\epsilon, \delta) > 0$ such that for all $t \geq 0$, \tilde{x} satisfying $E\|\tilde{x}(t_0) - x_0(t_0)\|^2 < \delta$ we have $E\|\tilde{x}(t) - x_0(t)\|^2 < \epsilon$, $t \geq t_0 + T$.

Theorem 2 ([5]). Let (3), (4) be fulfilled uniformly w.r.t. $t_0 \in \mathbb{R}_+$ and $x \in H$ and assume $S(\cdot) \in C((0, +\infty), \mathcal{L}(H))$, $\varphi_\alpha \to \varphi_0$. Then (5) is valid with $T = +\infty$ provided x_0 is asymptotically stable in the mean square and $E\|x_0(t)\|^2$ is bounded for $t \geq t_0$.

In order to obtain effective results on infinite time intervals we still need verifiable criteria for mean-square asymptotic stability. The standard application of Liapunov method leads to some difficulties as the mild solutions of (1) need not possess a stochastic differential. This can be overcome by approximating mild solutions by strong solutions similarly as in [4]. For $v \in \mathcal{C}_{1,2}(\mathbb{R}_+ \times H)$ set

$$\mathcal{L} v(t,x,y) = \frac{\partial}{\partial t} v + \langle v_x(t,x-y), Ax - Ay + f_0(t,x) - f_0(t,y) \rangle + \frac{1}{2} \text{Tr}(\tilde{F}_0(t,x) - \tilde{F}_0(t,y)) v_{xx}(t,x-y)(\tilde{F}_0(t,x) - \tilde{F}_0(t,y))W, \quad (t,x,y) \in \mathbb{R}_+ \times \mathcal{D}(A) \times \mathcal{D}(A).$$

Proposition 3. Assume $\mathcal{L} v(t,x,y) \leq \psi(t, v(t,x-y))$, $t \in \mathbb{R}_+$, $x, y \in \mathcal{D}(A)$, where $v \in \mathcal{C}_{1,2}(\mathbb{R}_+ \times H)$ is such that $d_1 \|x\|^2 \leq v(t,x) \leq d_2 \|x\|^2$, $\|v_x\| + \|v_{xx}\| \leq d_3(1 + \|x\|^p)$, $x \in H$, for some $d_1, d_2, d_3, p > 0$ and $\psi : \mathbb{R}_+^2 \to \mathbb{R}$ is measurable, $\psi(t,.)$ is Lipschitzian and concave, $\psi(t,0) = 0$ for all $t \geq 0$. Then all solutions x_0 of (1) are asymptotically stable in the mean square provided the trivial solution $x \equiv 0$ of the equation $\dot{x} = \varphi(t,x)$ is asymptotically stable.

Example. The stochastic parabolic problem described by...
\begin{align}
\frac{\partial u_\varepsilon}{\partial t} &= \Delta u_\varepsilon + \frac{r_1(t/\varepsilon)u_\varepsilon}{1 + |u_\varepsilon|} + \frac{r_2(t/\varepsilon)u_\varepsilon}{1 + |u_\varepsilon|} \tilde{W}(t,x), \quad t \geq t_0, \quad x \in D \\
(D - \text{a bounded region in } \mathbb{R}^n \text{ with } C_2 \text{ boundary}), \\
\tilde{u}_\varepsilon(0,x) &= u_0(x), \quad \tilde{u}_\varepsilon|_{\partial D} = 0 \text{ can be formally rewritten in the form}
\end{align}

\begin{align}
dx_\varepsilon(t) &= (Ax_\varepsilon(t) + f(t/\varepsilon, x_\varepsilon(t)))dt + \tilde{\Phi}(t/\varepsilon, x_\varepsilon(t))dW_t, \\
x_\varepsilon(t_0^+) = \Phi_\varepsilon,
\end{align}

in the space \(H = L^2(D) \), with \(K = H^k(D) \) - valued Wiener process \(W_t \) \((k > 2n)\), where \(A = \Delta | H^2(D) \cap \mathbb{H}^1(\Omega) \), \(f(t,x)(\theta) = r_1(t)x(\theta) \).

\((1+|x(\theta)|)^{-1}, \tilde{\Phi}(t,x)h(\theta) = r_2(t)x(\theta)h(\theta)(1+|x(\theta)|)^{-1}, \Theta \in D, h \in K \).

Assume
\begin{align}
\frac{1}{\beta_T} \int_{\beta_T}^{\beta_T+T} r_1(t)dt &\to r_1, \quad \frac{1}{\beta_T} \int_{\beta_T}^{\beta_T+T} (r_2(t)-r_2)^2dt \to 0 \quad T \to \infty, \\
\end{align}

uniformly in \(\beta \geq 0 \) for some \(r_1, r_2 \in \mathbb{R} \), and \(-\lambda_0 + \max(0,r_1) + 1/2\ r_2^2\kappa^2T\omega < 0 \), where \(\lambda_0 > 0 \) is the first eigenvalue of \(-A\) and \(k > 0 \) is such that \(\|\tilde{L}(D)\|_K \leq \kappa \). Then it can be checked that

Theorem 2 and Proposition 3 yield
\begin{align}
\sup_{t \geq t_0} E\|x_\varepsilon(t) - \bar{x}(t)\|^2 &\to 0 \quad \text{as } \varepsilon \to 0, \quad \Phi_\varepsilon \to \bar{\Phi},
\end{align}

where \(\bar{x} \) is the solution of the limit equation
\begin{align}
d\bar{x} = (A\bar{x} + r_1\bar{x}/1+|\bar{x}|)dt + (r_2\bar{x}/1+|\bar{x}|)dW_t, \quad \bar{x}(t_0) = \bar{\Phi} \quad \text{(see [5] for a similar example)}.
\end{align}

Remark. Some extensions of the above results (e.g. averaging in \(L^p(\Omega) \) for \(p \geq 2 \), averaging in probability, statements analogous to Theorems 1, 2 for a cylindrical Wiener process, etc.) can be found in [5],[6].

References

