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ON THE THIRD ORDER 
NONLINEAR ORDINARY DIFFERENTIAL EQUATION 

GREGUS M , BRATISLAVA, Czechoslovakia 

1. Have the differential equation of the third order of the form 

(1) u"' + q(t) u' + p(t) u* = 0 , 

where q (t), p (t) are continuous functions of t € (a,oO), a is a 
real number and •* is an odd integer, but all results of this paper 

can be generalized to the case where oC > 1 is a ratio of odd integers. 
There is a lot of papers devoted to the study of properties of 

solutions of the differential equation (1) or of a generalized form 

( [1] , H I , L*l , L5] , [6] and the others). 

In this paper some new results are introduced concerning oscilla­

tory and nonoscillatory properties of solutions of the differential 

equation (1). In the proofs of this results the methods of the theo­

ry of linear third order differential equation are applied. 

We restrict our considerations to those real solutions of (1) 

which exist on the interval Ic(a,oo) and which are nontrivial for 

t > G £ I, for every G £_ I. 

Let b> a is the right endpoint of the interval I. The solution 

u of (1) defined on I is oscillatory on I if it has a zero in 

the interval (G,b) for every G € I. Otherwise it is called nono­

scillatory on I. 

Let u,v be the functions of the clase C (I). Let tn6 I and 
o' 

let 

and 

Lu = u'" + qu + pu 

Mv = -v'" - qv' - (q' - pu* l ) v. 

Then there holds 

c t - t 
(2) V [vLu - uMvj dt = [vu" - v' u' + (v" + qv) u J t * 

0 o 

Corollary 1. Let u be a solution of (1) defined on lc(a,"0 

and v be a solution of the differential equation 

(3) v'" + qv7 + [q' - pu^ _1J v = 0 , 

then from the relation (2) it follows 
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wu" - v/u/ + [v// + qv]u = k, 

where 

k = v(tQ)u
//(to) - v'(tQ)u'(to) + Lv"(to)+ q(to)v(to)j u(to). 

Let u be a solution of (1) defined on Ic(a,oo) and v be 

any solution of (3) corresponding to u, then the solutions u and 

v fulfil the following integral identities 

(4) u u" - - u1 2 + - qu2 + \ fpu*"1 - - q'] u2dT = const. 
2 2 Jt L 2 

o 
and 

(5) v v* - - v/2 + - qv2 - ( fpu*' 1- - q'] v2dt= const, 

2 2 h 2 
o 

where t , t 6 I. 

The identities (4) and (5) can be obtained as in the linear ca­

se [2j. From the integral identities (4) and (5) this corolla­

ries follow: 

Corollary 2. Let p (t) =* 0, q'(t)<0 {_or p(t)>0, q'(t) = 0] 

for t£(a,cx>). Let u = u(t), t€I be a solution of (1) with the 

properties u (tQ) = u' (tQ) = 0, u"(tQ) t 0, to<£l and let v = v(t) 
be a solution of (3) corresponding to u with the properties v(t ) = 

= v/(tQ) = 0, v/y(to) t 0, tQe I. Then there is u(t) t 0 for 

t < t Q £ I and v(t) t 0 for t>t el. 

Corollary 3. Let p(t) = 0, q'(t)<0 [or p(t)>0, q'(t) = 0 

for t<r(a,<->c'). Then every solution of (1) and of (3) defined one 

some interva Ie(a,c<->) has at most one double zeropoint on I. 

2. Oscillatory and nonoscillatory properties of solution*of the 

differential equation (1). 

By means of the Theorem 2.4 il2] the following theorem can be 

proved. 

Theorem 1. Let q(t) = 0, q'(t) = 0 and p(t) = 0 be continuous 

functions for t-=(a,©o) and let the differential equation 

1 
(6) v" + - q(t)v = 0 

4 
be oscillatory on (a,oo). Let u(t) be a solution of (1) defined on 

(a,.x>) with the property 

"'V^V - \ »'2 (V + \ q ( t o ) i r 2 (to> = ° 
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for t €(a,oo). Then u"(t) is oscillatory on (t , <x?). 

By means of the Theorem 1.2 £3J the following theorem can be 

proved. 

Theorem 2. Let q(t)=0, q'(t)=0 and p(t)*="0 be continuous func­

tions of t£(a,-5o) and let the differential equation (6) be oscilla­

tory on (a,oo). Let u(t) be a solution of (1) defined on (a,<-e). 

Then u(t) is nonoscillatory on (a,*>) if and only if 

1 i 
u(t) u"(t) - - u'2 (t) + - q(t)u2(t)>0 

2 2 
for t = tQ, tQ> a. 

Corollary 4. From the theorems 1 and 2 it follows that a solu­

tion of (1) is either nonoscillatory and then it is defined on 

( °C ,00 ), <* = a, or it is oscillatory and then it is defined either on 
the interval (* ,00 ),«*=* a, or on a bounded interval l£.(a,o->). 

By means od the method of V.Soltes T6J or Bobrowski 111] it can 

be proved. 

Theorem 3. Let q(t) = 0 and p(t) be continuous functions of 

t£(a,oe) and let V q(t) dt = so, t £(a,«>). Let u(t) be a solu­

tion of (1) with prop§rty 

1 9 l ? 
F(tn) = u(tn) u"(t) - - u'

2(t ) + - q(tn)u
2 (tn) = 0 

U U U Q U Q U U 

and let the function r*(t) be decreasing for t>t . Then the solution 

u(t) is oscillatory 'on (t ,<*>). 

Corollary 5. Let q(t) = 0, q'(t) = 0, p(t)> 0 be continuous on 

(t ,<>o), t > a and let $, q(t)dt = ̂o . Let u(t) be a solution of 

(1) with the property F(t )°= 0. 

Then the solution u(t) is oscillatory on (t ,06). 

Lemma 1. Let p(t)*0, q(t) = 0, q'(t) = 0 be continuous func­

tions of t£(a,«o). Let u(t) be a solution of (1) defined on Î (a,<-<>) 

with the property 
u(tQ) -T 0, u'(tQ) = 0, u" (tQ) > 0, tQC-I. 

Then there is u(t)> 0, u'(t)> 0, u" (t)> 0, u '"(t) = 0 for t>tQC- I 

and lim u(t) = lim u'(t) = °c, where b is the right endpoint of the 
t -> b t -* b 

interval I. 

Theorem 4. Let p(t)<0, q(t) =*" 0, q'(t) = 0 be continuous func­

tions of tfe(a,Jo) and let \. p(T) dt= -•-c-.Then every bounded so­

lution of (1) defined on (a,ooO°is either oscillatory on (a,x>) or it 

converges monotonly to zero for t -->*'. 
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Theorem 5. Let q(t) = 0, q'(t) ̂  0 and p(t)< 0 be continuous 

functions of t£(a,oo). Let u(t) be a solution of (1) defined on 

IC(a,<x>) with the property F(t,) = k = 0, t 6: I. 
8 O 

Then u(t) has no zeropoints on the right of t in I. 

Theorem 6. Let q(t) * 0, q'(t) = 0 and p(t)<0 be continuous 

functions of t£(a,oO) and let Jt q(t) d*=oo. Then the solution u(t) 

of (1) defined on (tQ,-x)) with th8 property F(t)< 0 for t£(t ,*o) 
t Q>a, is either oscillatory on (t ,oo ) or it has the property 
lim inf |u (t)/ = 0. 
t -><*» 
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