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ON SOME RECENT RESULTS 
ON THE NUMERICAL PROBLEMS 

IN SEMICONDUCTOR DEVICE SIMULATION 

BREZZI F.,MARINI L.D.,PIETRA P., PAVIA, Italy 

1. Introduction 

We shall deal in this paper with the so-called drift-diffusion model for semiconductor 

device simulation: 

^ + divJ = - i * (1.1) 

J = -M(VP + pVtf) . , (1.2) 

Here, p denotes the position density of the positively charged holes, J the hole current 

density, and t/> the electrostatic potential. 2? = — V̂ > is the electric field, and the source 

term R is the recombination-generation rate of charged carrier pairs. The coefficient \i > 

0 stands for the hole mobility. Equations (l.l)-(1.2) are usually coupled with another 

pair of equations (very similar to (1.1)-(1.2)) describing the motion of negatively charged 

electrons n, plus a Poisson equation for the electrical potential i/>. Basic references on 

the various physical and mathematical aspects of the whole system of equations as well 

as on other ways of discretizing it are listed at the end of the paper. Here, we recall a 

mixed finite element method for the discretization of (1.1)-(1.2) recently introduced in 

[4],[5],[8]. Using asymptotic analysis techniques, we compare the qualitative behaviour 

of the mixed method with other methods (classical conforming Galerkin method and 

harmonic average methods). This asymptotic analysis provides some indication of the 

advantages of the mixed method. 

2. Mixed approximation of the continuity equation 

We shall describe in this section a mixed approximation to the continuity equation 

(1.1), (1.2). For simplicity, we shall consider the stationary two-dimensional case and 

a constant mobility coefficient /Li = 1. In the solution of the coupled system of three 

equations (for ip, n, and p), a linearization method of Gummel type (approximate 

Newton decoupling method, [10], [17]) is often used. Then, at each iteration, one has 

to solve a problem of the type 



Find p e Hl(U) such that 

-div(Vj> + pVtl>) + cp = / 

P = 9 
dp 
dn 

iníl CR 2 

on r0 c an 

on Ti = an\r0 ; 

(2.1) 

where 0 is assumed to be known and piecewise linear (coming from a discretization of 

the Poisson equation). In the equation (2.1) / is a function independent of p, and c 

a non negative function independent of p, which can be assumed piecewise constant. 

To simplify the exposition, we shall assume here c = 0. We recall that, since |V^| 

is quite large in some parts of the domain, equation (2.1) is an advection dominated 

equation, for which classical discretization methods may fail. Using the classical change 

of variable from the charge density p to the Slotboom variable p 

p = pe 
-rþ (2.2) 

equation (2.1) can be written in the symmetric form 

( Find p € H1^) such that 

-div(e-*Vp) = / in П 

p = x := e 9 o n Гo 
(2.3) 

Ž - on Гi 

and the hole current density is now given by 

J = -e -*V/>. (2.4) 

Note that in (2.3) homogeneous Neumann conditions come from the usually made as­

sumption that — Jfi • n = U vanishes o n T i . The idea is to discretize equation (2.3) 

with mixed finite element methods, go back to the original variable p by using a discrete 

version of the transformation (2.2), and then solve for p. For the case c = 0, a mixed 

scheme (based on the lowest order Raviart-Thomas element [16]) has been introduced 

and extensively discussed in [4] for the case / = 0, and in [5] for / 7- 0. The scheme 

provides an approximate current with continuous normal component at the interele-

ment boundaries. Moreover, the matrix associated with the scheme can be proved to 

be an M-matrix, if a weakly acute triangulation is used (every angle of every triangle 

is < TT/2). This property guarantees a discrete maximum principle and, in particular, 

a non-negative solution if the boundary data are non-negative. Moreover, when going 

back to the variable p, this structure property of the matrix is retained. 
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Let us recall the mixed scheme. For that, let {Th} be a regular decomposition of 

n into triangles T ([6]) (H is assumed to be a polygonal domain). According to [16], we 

define, for all Te Th, the following set of polynomial vectors 

RT(T) = {1=01,72), Tl = a + fix9r2=i + Py9 a , ^ 6 R } . (2.5) 

Then, we construct our finite element spaces as follows 

Vh = {r e [L2(n)f : divL e L2(n), r • n = 0 on Tu r,T e RT(T), VT e Th}{2.6) 

Wh = {4>e L2(n) : 4 | T € Po(T) VT € Th}. (2.7) 

As usual, Po(T) denotes the space of constants on T. The mixed discretization of (2.3) 

is then the following 

Find Jfc e Vh , ph e Wh such that : 

I tPlh • rdxdy - / div r ph dxdy = 0 r e Vht ,^ g \ 

/ div J/i <t> dxdy = / f</>dxdy <j> G Wh. 
\ Io Jo 

In the first equation of (2.8) 0 denotes the piecewise constant function defined in each 

triangle T by 

e?|T = ( / e*dxdy)/\T\. (2.9) 
IT 

It is clear that ph will be an approximation of the solution p of (2.3), and J^ will be an 

approximation of the current J. In particular, the first equation of (2.8) is a discretized 

version of (2.4), and the second equation of (2.8) is a discretized version of divJ_ = / . 

Uniqueness results for (2.8) follow from the general theory of [3]. 

We remark that the condition divr e L2(n) in the definition (2.6) implies that 

tvtry T e Vh has a continuous normal component when going from one element to 

another. This means, in particular, that the current is preserved. 

The algebraic treatment of system (2.8) needs some care. Actually, the matrix 

associated with (2.8) has the form 

(i- І) (2.10) 

and is not positive-definite (H* denotes the transpose of the matrix H). A way to avoid 

this inconvenience is to relax the continuity requirement in the space definition (2.6) 

and to enforce it back by using interelement Lagrange multipliers. (See [7] where this 

idea was first introduced). The procedure is the following. First we set 
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Vh = {r e [L2(n)f : r |T G RT(T) VT G T/J. (2.11) 

Then, denoting by Eh the set of edges tofTh, we define, for any function £ £ --^(To) 

A*,* = {fi e I?(Eh) : Ai|e e P0{e) Vt e Eh ; j (n - £)ds = 0 Wt C T0} , (2.12) 

where Po(«) denotes the space of constants on t. The mixed-equilibrium discretization 

of (2.3) is then 

r Find Jk e Vh , ph e Wh , Xh e Ah,x such that: 

I ^J-H * idxdy ~ yZ I div T phdxdy + V ] / A/.r • n ds = 0 r G Vhl 
Ja T ^T T Jar 

Y, J div ̂  +***» = J f^xdy 4>ewhl
 (2,13) 

$_3 / MJ* • a <k = o ^ e Afc,o. 
T «/#T 

It is easy to see that problem (2.13) has a unique solution and that 

J* = J* , Ph = ?* . (2A4) 

Moreover, A/* is a good approximation of p at the interelements. (See [1] for detailed 

proofs). The linear system associated with (2.13) can be written in matrix form as 

(•? ?:) 0 - (•/) • (2,5) 

In (2.15) the notation J^,p^,A^ is used also for the vectors of the nodal values of the 

corresponding functions. The matrix in (2.15) is not positive definite. However, A is 

block- diagonal (each block being a 3x3 matrix corresponding to a single element T) and 

can be easily inverted at the element level. Hence, the variable J^ can be eliminated 

by static condensation, leading to the new system 

« - „ - B M - C ^ , / . < | _ / , X ( 2 i 6 ) 

-C*A~'B C*A'lC J \xhJ \oJ 

The matrix in (2.16) is symmetric and positive definite. Moreover, B*A~1B is a diago­

nal matrix, so that the variable ph can also be eliminated by static condensation. This 

leads to a final system, acting on the unknown Xh only, of the form 

M Xh = G , (2.17) 

where M and G are given by: 

M = C*A'lC - C*A~1B{B*A-lB)-lB*A-1C , (2.18) 

G = C*A'lB(B*A-iB)'lF , (2.19) 
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and M is symmetric and positive definite. In order to go back to the original unknown 

p we recall that Â  is an approximation of p and we can use a discrete version of the 

inverse transform of (2.2): 

A/> = (e*)V (2.20) 

In (2.20) (e^)1 is given edge by edge by the meanvalue of e^: 

e*'|. = {J»*d»)M • (2-21) 

The transformation (2.20) amounts to multiplying the matrix M columnwise by the 

value of (e^)1 on the corresponding edge. The final system in the unknown ph will be 

of the type 

Mph = G . (2.22) 

The matrix M is not symmetric anymore, but it is an M-matrix if the matrix (2.18) is 

an M-matrix, which holds true if the triangulation is of weakly acute type. 

Remark We are considering here, for the sake of simplicity, the case c = 0 only (for 

(2.1)). The general case c(x) > 0 can also be treated along the same lines. However, it 

can be seen that the choice (2.5)-(2.7), (2.11), (2.12) produces, as a final matrix M, a 

matrix that is not monotone. A cure for that has been proposed in [8], [9] with the use 

of more sophisticated choices of local polinomial vectors instead of (2.5). 

3. Asymptotic behaviour of the numerical scheme 

We already pointed out in the previous sections that the electric field E_ (= — V̂ >) 

can be, in most applications, very large in some parts of the domain O. The aim of this 

section is to perform a (rough) analysis of the mixed exponential fitting scheme (and 

of some other possible schemes for (2.3)) when the electric field becomes larger and 

larger. This will show why the choice of a mixed method for discretizing (2.3) seems to 

be preferable, apart from the obvious reason that it is strongly current-preserving. 

In order to perform our asymptotic analysis we shall make the simplifying assump­

tion that we are dealing with a given potential ^, piecewise linear, of "moderate size", 

and that our equation is 

-div{Vj> + pV(^)) = / , (3.1) 

where A is a real valued parameter. We are obviously interested in the behaviour of 

numerical schemes for (3.1) when A becomes smaller and smaller. The symmetric form 

of (3.1) reads then 

-dtV(e-WA)Vp) = / , (3.2) 

where the change of variable is now 

p = pe-WA> . (3.3) 
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We shall analyze the asymptotic behaviour (as A —• 0) of three different schemes, all 

based on the idea of discretizing (3.2) first, and then use (3.3) to obtain a numerical 

scheme in the unknown p (and hence a scheme for (3,1)). In particular, we will consider 

the following discretization methods for (3.2): a) classical conforming piecewise linear 

methods, b) conforming piecewise linear mothods with harmonic average (as pointed out 

in [4], [5] they can be regarded as a discretization of (3.2) by means of hybrid methods), 

and c) mixed methods as described in the previous section. 

We recall that, calling Zh the space of continuous piecewise linear functions on ft 

and setting, for all function £ € G°(r£>) 

Zh t£ = {veZhi v = (at nodes e fD} , (3.4) 

the methods a) and b) can be written in the following way. 

Classical method 

(0 Ph e ZhyX , 

(ii) I e-&lx)Vph-Vvdxdy = f fvdxdy Vv G Zh,0 , (3.5) 

(«0 Ph = *~^'X'Ph a& the nodes . 

Conforming method with harmonic average 

' (0 ph € zKx, 

(ii) / e-W/x)Vph>Vvdxdy = / fvdxdy Vv G ZhSs , 
In Jn 

(iii) ph = e~^'A'pk at the nodes , 
|X| 

(iv) e-WA)iT = 77— ,J, . , VTeTh (harmonie average). 
UT e dxdy) 

(3.6) 

In order to analyze the behaviour of the schemes (3.5), (3.6) and of the mixed scheme of 

Section 2, we shall need the following asymptotic formulae, valid as A —• 0 for a function 

<t> linear on a triangle T: 

I e^dxdy ~ A 2 |T | e* -« ' \ (3.7) 

fe+/xds ~ A | e | e * - - ' \ (3.8) 

In (3.7), (3.8) T is a triangle, e is an edge of T, and <t>max, </>max represent the maximum 

value of <j> over T and over e, respectively. Formulae (3.7), (3.8) can be easily checked 

by direct computation. They hold in the generic case where the values </>max and <t>max 

are assumed only at one point. 
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We are now able to analyze the limit behaviour of the various schemes. For this, 

let us just look at the contributions of a single triangle T to the final matrix. Denoting 

by <f>W (i = 1,2,3) the basis functions on T, we have, for the classical method 

[ e-l+M-yW .-tyWdxdy a A2LT.e-(*-«/A), (3.9) 
IT 

where Lj}. are the contributions of the conforming approximation of the Laplace opera­

tor, that is 

Ljj := f 2.4>[i) 'Z.4>U)dzdy, (3.10) 

and *l>~\in is obviously the minimum value of ip over T. Taking into account transfor­

mation (3.5,iti), the contributions to the final matrix, acting on Ph are given by 

M? « \2Lj^*i-*~^l\ (3.11) 

(where rj)j= value of rj) at the node j). Hence, for the classical method, some coefficients 

of the matrix blow up exponentially when A —* 0. 

Let us now consider the case (3.6) where the harmonic average is used. From 

(3.6,tt;) and (3.7) we have 

f e-(*/*)£# ( i ) >Z.4>U)dzdy c- JLLT.e-^«")/A , (3.12) 
IT ^ 

where the coefficients Lj}. are defined in (3.10). Then, combining (3.12) and (3.6 ,iti), 

the contributions of the triangle T to the final matrix are 

M?i - £-Se(*'-*-" , /*. (3-13) 

We see that, when using the harmonic average, some contributions can become very 

small, but this can be regarded as a natural upwinding effect which is rather desirable 

than disturbing. However, it is also clear that the contributions which are not exponen­

tially small have order of magnitude 1/A2, while from (3.1) one would expect coefficients 

of order l/A. As discussed in [5] in the framework of hybrid methods, this is clearly not 

disturbing if / = 0, but it can be a source of inconsistency for / ^ 0 and A small, as 

shown in [5] on simple practical experiments. (We refer to [5] for possible remedies for 

this method). We point out that this drawback is not present in the mixed formutation 

(2.13), (2.9), (2.21). Actually, one can easily see that the contributions of a triangle T 

to the final matrix, acting on ph, for mixed methods are given by 

M?. = / e T WATv X
( * ) -Vx ( y ) dxdy ( / e*'xds) \e3-\~\ (3.14) 

IT Ie, 
where the harmonic average (3.6,tu) is used. In (3.14) c» (t = 1,2,3) are the edges of T, 

and x**) are the piecewise linear non-conforming basis functions, that is, 
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X
( <>€Pi(T) ; / X

{i)ds = |<y|*y, (3.15) 

where a\j is the Kronecker's symbol. From (3.14), (3.6,tv), (3.7), and (3.8) we have then 

M* » I l j e f * ^ . - * ^ . . ) / * , (3.16) 

where L j are the coefficients of the elementary stiffness matrix coming from a piecewise 

linear non-conforming approximation of the Laplace operator, that is, 

lli ~ ( YxW -Zx^dzdy. (3.17) 
IT 

It is now clear what the advantages of mixed methods are: 1) exponential blow-up of the 

coefficients is avoided, 2) some contributions will go exponentially to zero, corresponding 

to a natural upwinding effect, 3) the order of magnitude of the non vanishing coefficients 

is 1/A, as expected from (3.1). 

The above considerations shed, in our opinion, a better light on several common 

choices for finite element approximations of the continuity equations, motivating the 

use of one-dimensional harmonic averages which are common in semiconductor device 

applications ([2], [15], [12] etc.). In the context of mixed methods we can use two-

dimensional harmonic averages (which is, in a sense, more natural), since we compensate 

a factor A from (3.8), due to the different change of variable from ph. to ph, (average on 

an edge instead of point value). 

Remark.We discussed so far the generic case where ^pf reaches its maximum at one 

point only. However, one can easily see that the "automatic adjustment" provided by 

mixed methods works as well for the non generic case where tp,f reaches its maximum 

on a whole edge. Finally, for tp = constant on T, we are just dealing with the Laplace 

operator, for which usual and harmonic average coincide and both give rise to the 

standard conforming scheme for Laplace operator. Similarly, the mixed approach above 

described produces the usual mixed approximation of the Laplace operator. 
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