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PERTURBED DISCRETE TIME DYNAMICAL SYSTEMS 

LASOTA A., KATOWICE, Poland 

Introduction. Our purpose is to study randomly perturbed discrete time dyna­

mical systems from the statistical point of view. Thus we consider the behaviour of 

sequences of distributions corresponding to a given system and we show some suffi­

cient conditions for the existence of a stationary distribution and its asymptoti­

cal stability. 

These results are applied to integral recurrences. We show the existence,uni­

queness and stability of solutions of some Volterra equations with advanced argument 

and correspnding differential equations. Such equation appear in mathematical models 

of the cell cycle. 

1. General system. We consider a discrete time dynamical system of the form 

(1) xn+1 = S ( x n , £ n ) , for n = 0,l,... 

d k where S is a given transformation defined on a subset A<:V of R x R with values in 

the set A. We shall always assume that: 

(i) For every fixed y the function S(x,y) is continuous in x and for every 

fixed x is Borel measurable in y. The set A<-Rd is closed and VcR k is Borel measu­

rable. 

(ii) The random vectors £«, fc-,... are independent with the same distri­

bution 

G(B) = Prob(£n * B) for B c V, B Borelian. 

(iii) The initial random vector xn is independent of the perturbation se­

quence t . 

The asymptotic behaviour of a solution (x ) of system (1) is described by the 

sequence of distributions 

FR(B) = Prob(xR e B) for B <=• A, B Borelian. 

It is easy to find a recurrence relation between F , and F . Namely setting 

Fn(h) = /h(x)Fn(dx) 

A 
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we have 

J [ Г h(S(x,y)) G(dy)J F
n
( (2)

 F
n+l

( h ) =
 J L J h(S(x,y)) G(dy)J F

R
(dx) for h 6 C

Q
(A), 

A V 

where C
n
(A) is the space of real valued continuous functions on A with compact 

support. 

We write relation (2) shortly as F , = PF and we call P the transition 

operator for (1). The operator P is defined on the space of distributions (probabi­

listic Borel measures on A). In some cases P has the property that for any absolu­

tely continuous distribution F its image PF is also absolutely continuous.In this 

case we shall also write f , = Pf where f = d F /dx . 
n+1 n n n 

2. Asymptotic stability. Recall that a sequence of distributions F conver­

ges weakly to a distribution F* if F (h) + F*(h) for every h € CQ(A). A sequence F 

converges strongly to F^ if ||F - F*|| -> 0 where ||. || denotes the total variation. 

We say that sytem (1) is weakly (strongly) asymptotically stable if there is 

a unique distribution F* (called stationary) such that F* = P F* and if PnF conver -

ges weakly (strongly) to F* for every initial distribution F. 

The following theorem gives a sufficient condition for the weak asymptotic 

stability. A condition for strong stability can be found in [4], 

Theorem 1. Assume that 

(3) E(|S(x,|n) - S(z,fn)|) < |x - z| for x * z, and 

(4) E(|S(x, $n)|
p) .^ a|x|p + b, a < 1, p > 1, 

where a, b, p are nonegative constants and E denotes the mathematical expectation. 

Then the system (1) is weakly asymptotically stable. 

The proof given in [6] is based on Chebyshev type inequalities. In this proof 

the assumption p > 1 is essential.lt is not known if Theorem 1 is valid for p = 1. 

3. Additive case. Consider now a special case when S(x,y) = T(x) + y or 

(5) x p + 1 = T(xn) + )n for n-0,1,... 

We assume that T maps a closed set vi C R into itself, J <£ V CL R with proba­

bility one and A + V C A. In this case we may formulate a sufficient condition 

for strong asymptotic stability. 

Theorem 2. Assume that 

(6) |T(x) - T(z)| < |x - z| f o r x ^ z , and 
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(7) T(x) < a|x| + b, a < 1 , E(| j R | ) < °° 

where a, b are nonegative constants. Assume, moreover, that the common distribution G 

of | is absolutely continuous. Then (5) is strongly asymptotically stable and the 

stationary distribution F^ is absolutely continuous. 

The proof will be given in [7]. It is based on the Komornik decomposition 

theorem for Markov operators [3]. The assumption that G is absolutely continuous may 

be released. It is sufficient to assume that in the Lebesgue decomposition of G the 

absolutely continuous part is not trivial and that T is not singular, i.e. mesA = 0 

implies mes(T~-'-(A)) = 0. 

4. Multiplicative case. Consider another special case of system (1) when 

S(x,y) = y T(x) or 

(8) xn+1 = $ nT(x n) for n-0,1,... 

Assume that A = V = R+ and that T: R+-> R+ is continuous. 

Using the M. Podhorodyrtski version [8] of the lower bound function theorem 

K. Horbacz proved the following result. 

Theorem 3. If Prob( 1 R = 0) > 0 (or G($0]) > 0) then system (8 ) is strongly 
asymptotically stable. 

The assumption G({o}) > 0 is quite restrictive. It may be released. Using 

the Komornik decomposition K. Horbacz proved also the following theorem. 

Theorem 4. Assume that 7(x) > 0 for x £ R and that G is absolutely continuous 

Assume moreover that 

(9) dG(x)/dx > 0 for x sufficiently large, and 

(10) T(x) 4 ax + b, a E ^ n
} < l > 

where a, b are nonegative constants. Then system (8) is strongly asymptotically 

stable. 

5. Applications. Mathematical models of the cell cycle lead to integral 

Volterra equations with advanced argument. In particular, in [5] the recurrence 

f - = Pf was considered with P given by the formula 

2x 

(11) Pf(x) = 4xe"x 2 j e y 2 / 2 f (y) dy for x £ 0 . 
0 

In this recurrence f denotes the density of the cell size distribution in the n-th 

generation of cells. It is easy to verify that (11) is the transition operator for 
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the system 

(12) V l = 2" / x
n

2 + 2 £n ' d G/dx = e"X for x * ° 

9 
which satisfies the assumptions of Theorem 1. Moreover for y = x the assumptions 

of Theorem 2 are satisfied. This shows that (12) is strongly asymptotically stable 

and the stationary distribution F# is absolutely continuous. The density f* = dF*/dx 

is, therefore, the unique nonnegative and normalized (in L-0 solution of the inte­

gral equation f^ = Pf̂ . and the corresponding differential equation. This result 

was proved in [6] by a different method. 

J.J.Tyson and K.B.Hannsgen [10] cosidered the recurrence f , = Pf with the 

operator , 
(a/cXx/c) i"a? 0 N<z^l, x*c, 

(a/c)(x/cr1"aza, K z ^ x / c , 

x/c 

(13) Pf (x) = J K(x,z) f (z) dz where K(x,z) = < 

0 [o, X<C. 

J.Tyrcha observed [9] that (13) is the transition operator for the system 

(14) x n + 1 = max(x n,l)| n , dG/dx = (a/c)(x/c)"1'a . 

From Theorem 4 it follows immediately that (14) is strongly asymptotically stable if 

the inequality 1/a < 1-c (a > 0, c > 0) is satisfied. This fact was first observed 

in [10]. 
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