Shui-Nee Chow; K. J. Palmer
The accuracy of numerically computed orbits of dynamical systems

Persistent URL: http://dml.cz/dmlcz/702394

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
In their papers [2,3] Hammel, Yorke and Grebogi have given a procedure which determines the accuracy of numerically computed orbits of dynamical systems. They apply their procedure to maps which exhibit a large amount of hyperbolicity. However their procedure does not use the hyperbolicity explicitly. In this paper we give a procedure for one-dimensional maps which does use the hyperbolicity explicitly. Unlike the procedure of Hammel et al., our procedure works forward. After \(N \) iterates we can decide whether our theorem applies and, if it does, we can estimate how far the computed orbit is from a true orbit.

Now we state the main theorem. Let \(f : [0,1] \to [0,1] \) be a \(C^2 \) function and let \(\{y_n\}_{n=0}^{N+1} \) be a pseudo-orbit of this map, i.e., \(|y_{n+1} - f(y_n)| \) is small for \(n = 0, 1, \ldots, N \). We define the quantities

\[
\sigma = \sup_{n=0}^{N} \sum_{m=n}^{N} |Df(y_n)^{-1}Df(y_{n+1})^{-1} \ldots Df(y_m)^{-1}|,
\]

which measures the expansiveness of the map, and

\[
\tau = \sup_{n=0}^{N} \sum_{m=n}^{N} |Df(y_n)^{-1}Df(y_{n+1})^{-1} \ldots Df(y_m)^{-1}|y_{m+1} - f(y_m)|.
\]

It turns out that \(\tau \) gives a good measure of how close the pseudo-orbit (of course, our numerically computed orbits will be pseudo-orbits) is to a true orbit.

THEOREM. Let \(f : [0,1] \to [0,1] \) be a \(C^2 \) function with

\[
M = \sup \{|D^2f(x)| : 0 \leq x \leq 1\}.
\]

Let \(\{y_n\}_{n=0}^{N+1} \) be a pseudo-orbit of \(f \) such that

\[
2M\tau \leq 1.
\]

Then there is an exact orbit \(\{x_n\}_{n=0}^{N} \) with

\[
(1 + 1/2(1 + \sqrt{1 - 2M\tau}))^{-1} \leq \sup_{n=0}^{N} |x_n - y_n| \leq 2(1 + \sqrt{1 - 2M\tau})^{-1} \tau.
\]

Outline of proof. Denote by \(S \) the set of sequences \(x = \{x_n\}_{n=0}^{N} \) with \(|x_n - y_n| \leq \varepsilon \) for \(n = 0, 1, \ldots, N \), where

\[
\varepsilon = 2\tau/(1 + \sqrt{1 - 2M\tau}).
\]

\(S \) is a compact convex subset of \(\mathbb{R}^{N+1} \). We define a mapping \(T \) on \(S \). If \(x \in S \) we define

\[
(Tx)_n = y_n - \sum_{m=n}^{N} Df(y_n)^{-1}Df(y_{n+1})^{-1} \ldots Df(y_m)^{-1}h_m \quad (n = 0, \ldots, N),
\]

where

\[
h_n = f(x_n) - y_{n+1} - Df(y_n)(x_n - y_n).
\]
It turns out that \(T \) is a continuous mapping of \(S \) into itself and so, by Brouwer’s fixed point theorem, has a fixed point \(x = \{x_n\}_{n=0}^N \). This is the exact orbit that we wanted.

Note that the idea of this proof was suggested by the proofs of the shadowing lemma given in Palmer [4] and Chow, Lin and Palmer [1].

The Method of Computation

Let \(f : [0,1] \rightarrow [0,1] \) be a \(C^2 \) mapping. Suppose our computer starts with a number \(y_0 \) in \([0,1] \) and computes an orbit \(\{y_n\}_{n=0}^{N+1} \) of \(f \) in single precision. \(\{y_n\} \) will be, in fact, a pseudo-orbit. To use the theorem we have to find the quantities \(\sigma \) and \(\tau \). For large \(N \) it would not be practical to compute the sums \(\sum_{m=n}^N \). Instead we calculate the quantities

\[
\sigma_p = \sup_{n=0}^N \sum_{m=n}^{\min(n+p,N)} |Df(y_n)^{-1}\ldots Df(y_m)^{-1}|, \\
\tau_p = \sup_{n=0}^N |\sum_{m=n}^{\min(n+p,N)} Df(y_n)^{-1}\ldots Df(y_m)^{-1}[y_{m+1} - f(y_m)]|,
\]

where \(p \) is an integer, \(0 \leq p \leq N \), such that

\[
\mu_p = \sup_{n=0}^{N-p} |Df(y_n)^{-1}\ldots Df(y_{n+p})^{-1}| < 1.
\]

It turns out that

\[
\sigma \leq (1 - \mu_p)^{-1}\sigma_p, \quad \tau \leq (1 - \mu_p)^{-1}\tau_p.
\]

(1)

The computation of \(\mu_p, \sigma_p, \tau_p \) is done in double precision. We have fully analyzed the effect of round-off error on these computations. Unless the hyperbolicity if very weak (i.e. \(\sigma \) is large and \(\mu_p < 1 \) only for large \(p \)), it turns out that the effect of round-off error is very slight.

Example. We consider the quadratic map \(f(x) = ax(1-x) \) with \(a = 3.8 \). Then \(M = 2a = 7.6 \). The computations were done on an IBM compatible computer using Microsoft Quickbasic. For \(N = 426,000, p = 30 \) and \(y_0 = .3 \), we find that

\[
\mu_p = 2.297433184600331 \times 10^{-3}, \\
\sigma_p = 375.6005726956602, \\
\tau_p = 9.60282364278178 \times 10^{-6}.
\]

Using the inequalities (1) and taking into account the round-off error, we find that

\[
\sigma \leq 376.4658, \quad \tau \leq 9.624939 \times 10^{-6}.
\]

Then \(2M\sigma \leq 0.5507661 \) and

\[
2\tau/(1 + \sqrt{1 - 2M\sigma}) \leq 9.76125 \times 10^{-6}.
\]

Our theorem enables us to conclude that during 426,000 iterates our computed orbit differs by at most \(1/10^6 \) from a true orbit. Note that the orbit was computed only in single precision, that is to an approximate accuracy of 7 decimal digits. So over 426,000 iterates we have only lost two digits of accuracy.
References

