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ON DIFFERENTIABILITY OF THE EXTREMALS OF VARIATIO&AL INTEGRALS

Mariano Giaquinta
Firenze, Italy

*
) we shall be concerned with the differenti-
ability properties of the extremals of multiple integrals in the Cal-
culus of Variations and, more generally, with the regularity proper-

In these lectures

ties of weak solutions of nonlinear elliptic systems that arise as
natural extensions of Euler equations or equations in variation.

Our aim is to describe some results and methods that have been
used. Proofs are given only in simple situations and are omitted most
of the time. For more information we refer to the original papers
quoted, as well as to the notes [36].

Because of the time and space restrictions, many contributions
are not even mentioned; in particular we say very little on the func-
tionals with general polynomial growth, on the regularity theory for
diagonal systems and its connections with the problem of regularity
of weakly harmonic mappings and H-surfaces, on Liouville’s type theo-
rems and, finally, on applications.

Anyway we hope that these lectures can be a somehow useful intro-
duction to a field which still offers so many open problems, especially
in connection with differential geometry and mathematical physics.
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I. Introduction

Let Q@ be a bounded connected opeh set with smooth boundary in
the Euclidean n-dimensional space " s Nh > 2 . We shall denote by
X = (x1""’xn) points in R%" . '

Let u(x) = (ui(x),...,uN(x)) be a vector valued function defi-
ned in o with values in RV » N > 1 . We shall denote by Du the

gradient of u , i.e. the set {Daui}, a =1,s0.,0 , i=1,...,N

= 2
where Da = axa .

A variational integral is a functional of the type

.1 ¥ [u;e} = IF(x,u(x),Du(x))‘dx
Q

>

where F(x,u,p) is a map from Q x RN x RnN — R . Dependence on

higher order derivatives could be also permitted, but in the sequel
we shall*confine ourselves to the simplest case (0.1).

Variational integrals arise in difkerent fields of mathematics
and in applications (for example in differential geometry and in the
theory of elasticity) and two of the classical problems are:’

a) 20*® Hilbert’s problem: existence of minimum points in class K

of admissible functions;

19th

b) Hilbert’s problem: the differentiability properties of such

minimum points.

In the sequel we shall mainly conster the problem of regularity
of suchminimum points or more generally of stationary points. But let
us start briefly with the problem of existence.

1. Existence

Surely one of the simplest and classical ways of proving the
existence of a minimum point for & [u;R] in a class K of competing
(or admissible) functions is using the direct methods of the Calculus
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of Variations.

The idea is very simple and well known. The set K is not a
priori equipped with a topology. So the problem of minimizing & on
K can be seen as the problem of introducing a topology on K for which
both K [or more precisely the (or one of the) minimizing sequences
in K ] is sequentially compact and F is sequentially lower semi-
continuous (s.l.s.c.) on K . Note that in order to grant that ¥ be

s.l.s.c. we need in general a rich topology, while for the compactness
of K the topology must not be too rich: so the two requests are one
against the other. But a satisfactory compromise can be reached for
example for a large class of variational integrals working on the
Sobolev spaces. In fact we have

THEOREM 1.1. Suppose that
(1) F(x,u,p) 2 0 ,

(ii) F 18 measurable in x for all (u,p) and continuous in u
for all p and almost all x ,

(iii) F <8 convex in p for all u and almost every x .

Then the functional F[u;@] <n (0.1) is s.l.s.c. with respect to

the weak convergence in Hiéﬁ(Q,RN) for 1 <m<+ o,

In order to prove the existence of a minimum point in K C
C Hl’m(Q,RN) it is now enough to impose a condition that ensures
compactness of the minimizing sequences (or of K ).

For example in the case of the Dirichlet problem, i.e. of the
problem of minimizing § [u;@] among the questions with prescribed

value u, at the boundary, it is sufficient to assume that: a) for

an extension 30 of u0 in Q@ we have ?['t\io;ﬂ] < + « 3 b) for
some m > 1
(1.1) F(x,u,p) 2 Alp|™, x>0 .

This is the case, for example, if
(1.2) Apl™ < Fexu,p) culp|™, m>1, a>o0,

1,m

and u is the trace on 99 of an H function. Now remembering

0
that Hi’m(Q,RN) is a reflexive Banach space for m > 1 , proving

the existence of a minimum point is a very simple exercise.

The range of applicability of the above method and of Theorem
1.1 is quite large and on the other hand quite well known, so we shall
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not insist on that poiﬁt. We only mention that Theorem 1.1 under
stronger regularity assumptions on F fis proved in [95, Theorem
1.8.2]. There is a very large literature on the semicontinuity theo-
rems, starting from the results by L. Tonelli and C. B. Morrey till
nowadays; we refer to [19] for the proof of Theorem 1.1 and to [36]
for a sketch of it and for further refgrences.

The convexity assumption in (iii), Theorem 1.1, is natural in
the scalar case N = 1 , actually it is essentially necessary (clas-
sical proofs of this fact are available, we refer to [6], [75] for
proofs under sufficiently weak assumptions); but it is very far from
being necessary in the vector valued case N > 1 . It should be sub-
stituted with the quasi-convexity condition of C. B. Morrey [95,
Sec. 4.4]:

for a.e. x, € Q@ and for all Sg EO s ¢ € C:(Q,RN) ,
1
Tar IF(XO’ Sg» Eg + De(x))dx 2 F(x,,80,8,) »

Q '
which generally is a weaker condition than the conwvexity and reduces
to it for N = 1 . Although uneasy to handle, the quasi-convexity
condition arises in a natural way in many problems, especially in
elastostatics see [5], [6], [7], [8]. For example, if n = N any
convex function of the invariants of the Jacobian matrix of u is
a quasi-convex function.

Semicontinuity theorems under the guasi-convexity condition plus
quite strong assumptions were proved in [88], [81], [95, Sec. 4.4]
and in [5], [8]. Recently the works [29], [76], [1] have given a
strong contribution to the question. Let us state the main theorem
of [1] without proof:

THEOREM 1.2. Let F(x,u,p) be measurable in x and continuous in
(u,p) . Assume moreover that

0 < F(x,u,p) <1+ A(ju/™4+ |p|™ , mz21.

Then the functional (0.1) Zs weakly s.l.s.c. on Hl’m(Q,RN) if and
only if F <s quasi-convex.

The p r oo f£f of this theorem is quite complicated. It is
simpler to prove instead

THEOREM 1.3. Let F(x,u,p) be measurable in x and continuous in
(u,p) . Assume moreover that
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*
[F(x,u,p)| 21+ A(fu/™+ |pI™ , m21,

and that F 18 quasi-convex. Then ?[u;sz] 18 weakly s.l.s.c. on
1%, RNy for g>m.

See [29] and [76] for a simpler proof.

Unfortunately the assumption gq > m is crucial: the result
fails if g = m as an example of L.Tartar and F.Murat [100] shows.
Note that in view of Theorem 1.2 it would be true provided F 2 0 .
But Theorem 1.3 permits, by combining two results in [22], [39], to
obtain the existence of a minimum point, as P. Marcellini and C.
Sbordone have shown [76]. We shall go back to this question in Sec.
4, Chap. II.

Since we want to avoid any complications due to the boundary
data, from now on " u is a minimum for ¥ in £ " means that for
all ¢ € Co(2,&") with supp ¢ CC 2

F[u; supp ¢] < F[u + ¢; supp ¢] -

2. The problem of regularity

As we have seen, by enlarging the spaces of competing functions,
it is possible to prove quite simply the existence of generalized
solutions: to minimum problems for variational integrals; but we pay
for this simplicity by the new problem of showing, if possible, the
differentiability (in the classical sense) of the generalized solu-
tions.

It would be very difficult to quote all the many contributions to
the regularity problem, and even more difficult to record the many
influences that methods and results have had in different fields of
mathematics. Let us recall that they start at the beginning of this
century, have run till nowadays and that many problems remain still
open.

We can anyway distinguish, at least from the point of view we
are adopting, two main steps:

a) "from ct on" The concluding result can be stated as: any ct

stationary point of "regular" multiple integrals inm the Calculus of
Variations is as regular as the data permit.

The starting point of this result (apart from Hilbert’s work
for n =1 ) is probably due to S. Bernstein in 1904 who proved that
each solution of class C3 of a nonlinear elliptic analytic second
order equation in the plane is an analytic function. Through the
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fundamental contributions of L. Lichtenstein, E. Hopf, I. G. Petrov-
skil, J. Leray, J. Schauder, R.Caccioppoli, K.O.Friedrichs, H. Lewy,

0. A. Ladyzhenskaya, F. John, L. Nirenberg (among others) we arrive
at the result stated in a) - see C. B. Morrey [89], 1954.

This step, seen a posteriori, has mainly to do with the linear
theory of elliptic system and we shall try to describe the main points
in the next two sections.

The theory of boundary value problems for linear elliptic system
received relevant contributions during the fifties and culminated in
the work of S. Agmon - A. Douglis - L.‘Nirenberg. Actually even later
contributions should be mentioned, but we shall omit them, since they
are not really related to what follows@

But except for the two-dimensional case (the results of C. B.
Morrey 1938-39 [85], see also [86] [87]) no real progress was made in
the direction of filling the gap

b) "from glom to cl " until the famous result of E. De Giorgi in

1957 [17] (see also J. Nash [101]) who proved that any weak solution
of a second order linear elliptic equation with measurable coeffici-
ents is HOlder-continuous, deducing in this way that any extremal of
a functional of the type

IF(Du)dx
Q
is as regular as the data permit.

The paper [12] opened a new stage, which reached its culmination
in the works by G. Stampacchia, C. B. Morrey and O. A. Ladyzhenskaya
and N. N. Uraltseva. Under suitable growth conditions on F and on
the derivatives of F plus the ellipticity condition step b) was
accomplished, thus solving the 19th Hilbert’s problem for a large
class of functionals, in the scalar case N =1 .

This theory can now be consideredjas classical; we refer to the
two books [73] [95]. Anyway we shall return to it in the next sections,

Besides a result by J. Nedas [1023 for a class of higher order
equations in dimension 2, no result was obtained during the years
1957-68 for the case N > 1 . Many newiproofs of De Giorgi’s result
were given, but none of them could be extended to cover the case of
systems. ’

In 1968 E. De Giorgi [18] showed &hat his result for equations
could not be extended to systems. By modifying De Giorgi’s. example
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E. Giusti and C. Miranda [55] showed that functionals of the type

aB i j
IAij(“)Da“ DBu dx

Q

with analytic coefficients Agg satisfying

ath ey el 2 1el?

may have singular minima for large dimension n , and the same holds
for weak solutions of elliptic guasilinear systems of the type

IAgg(u)oauineq,jdx =0 w4 € Co@,RY

Q
in dimension n > 3 . Similar exaples were presented in the meantime
by Maz’ya [77] and now different extensions and improvements in vari-
ous directions are available [4], [24], [25], [32], [47], [62], [106],
[107]; we especially point out the examples in [32], [106]. We shall
discuss some of these counterexamples to the regularity in the next
sections. But already now we can state that vector valued minima or
extremals of regular integrals or weak solutions to nonlinear elliptic
systems are in general non-smooth. There is hope only for "partial
regularity", i.e. regularity except an a closed singular set hopefully
of small dimension.

Results on the partial regularity of solutions to nonlinear ellip-
tic systems, essentially systems of the type of systems in variation
for multiple integrals of the kind

IF(x,Du)dx .

2
were obtained by C. B. Morrey [96], E. Giusti, C. Miranda [56], E.
Giusti [52], L. Pepe [112] during the years 1968-71. The method used
relies on an indirect argument, very similar to the one introduced
by E. De Giorgi and J. F. Almgren for proving the regularity of para-
metric minimal surfaces. We refer to [96], [56], [36] for a descrip-
tion of the main idea and to [36] for an account of the results.

During the years 1975-79 elliptic systems of diagonal form, i.e.
of the type
af iy

- DB(A (x,u)Dau ) = fi(x,u,Du)

with
2 aB 2

|£x,u,p)| < alp|” + b, A%g £, > |g]
have been particularly studied, mainly in connection with the problem
of the regularity of weak harmonic maps between Riemannian manifolds
and of the regularity of H-surfaces (we refer to [60] for an account
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of methods and results), and more recently in connection with the
theory of stochastic differential game# (see for example [9]). Under
suitable assumptions, regularity everywhere has been proved. In the
sequel we shall not mention these results with a few exceptions.

In 1978 a new argument of direct type was introduced by M. Gia-
quinta and E. Giusti [38], and improved in [43], [44], for proving
partial regularity of solutions of nonlinear elliptic systems. In
this way results of partial regularity were obtained for solutions
of a large class of nonlinear elliptic systems [38], [43], [44] as
well as for minimum points of certain regular functionals [39], [40].
But the regularity problem for general functionals

!F(x,u,Du)dx
Q

is still an open question. In the sequel we shall be mainly concerned
with these results and with some ideas which lead to them.

We conclude this section with a simple remark on the first step
of stage a). Let u be a minimum point of
F [u;a] = JF(x,u,Du)dx
Q

and suppose that u € Ci(Q,RN) n Hisg(g,RN) . Then, as is well known,
u is a solution to the Euler system in the weak formulation, i.e.

I[F i(x,u,Du)Da¢i + F i(x,u,Du)¢i)dx =0 ¥ € C;(Q,RN).

Q o u
Now choosing ¢ = Dsw s V€ C;(Q,RN) and integrating by parts, we
deduce that the derivatives of u are solutions of the so-called
system in variation

D_F . (x,u,Du)D wi - F ,(x,u,bu)d ¢i dx = 0 ¥y € CQ(Q,RN) R
s i a ui s 0
Q pa
i.e.

(2.1) H:F i j(x,u,Du)DBDsuj +F 19 (x,u,Du)Dqu +
a PoPp Py
i_
+ F ix (x,u,Du) + saSFui(x,u}Du)lDuw =0 .
P Xg

If we now read the coefficients as functions of x , the system in
variation shows its character of a linear system for DsuJ with con-
tinuous coefficients.
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3. Linear systems

Two results from the linear theory of elliptic systems are rele-
vant in -order to accomplish step a) of Section 2.

Let us consider the linear system

(3.1 - b, (3§ oop ) = - p,g)

and assume that it is elliptic, i.e.
B 2 2
(3.2) AJ 0EsEgnng 2 [&l%In]® wE, .
Then we have
aB k i
THEOREM 3.1. Assume that Aij € CT(Q) and fB € Htoc

Then any weak solution u € H (9 R ) to system (3.1) belongs to

k+1
loc

@) , k_>_0.

loc
(Q.R ) .

THEOREM 3.2. Assume that A3H ¢ c®Y@) and fj e @) , ko0,

0 <y <1 ., Then any weak solution u € H
ck*1:Y(q)

1°c(Q.R ) to system (3.1)

belongs to

Since not only the results but also the way of proving them is
relevant for our purpose, let us hint at the proof. For the sake of
simplicity we shall assume from now on the stronger ellipticity con-
dition

(3.3) j:iej le]?2  ve .

Hilbert space regularity. There are several ways of proving Theorem
3.1 *). But probably the simplest proof and surely the most suitable
for our purpose is the one by L. Nirenberg [11Q] who replaced the
mollifiers by the difference quotients.*f) This proof is nowadays

well known, but let us sketch it, assuming moreover the coefficients

A;g to be constant.

*) One method employs F. John’s construction of the fundamental so-
lution; another employed by F. John is the method of spherical means;
a third one introduced by K. O. Fridrichs employs mollifiers and a
priori estimates of higher derivatives (we should at this point men-
tion also R. Caccioppoli, J. Leray, O. A. Ladyzhenskaya). Finally,
still another method has been used by P. D. Lax.

*k
) we mention that difference quotients were already used by L.Lich-

tenstein.
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w *
Let n € co(BzR(xo)) ), 0s<ngl, n=1 in Bp(x) ,
|IDn| <& 2/R . Inserting ¢ = n‘u  in the weak formulation of (3.1),
i.e. in

IA“B.D uiDB¢jdx = Ing8¢jdx ve € Coa,RY)
Q

1ij7a
Q
we immediately obtain by simple tricks
(3.4) I |pu|?ax ¢ S J lujax + ¢ f |£]%ax ,
R i
By Bor Bor

which is called the Caccioppoli inequa;ity**) and plays a fundamental
role in the theory of elliptic systems.

Now differencing equation (3.1) we deduce
aB i I A J3¢ = j s b |
JAijDu [u"(x + h) - u (x)]Dgu’dx ![fa(x + h) fB(x)JDB¢ dx
Q Q
and therefore

(3.5) p LCxth) - u(x) de < & u(x+h) - u(x) 2dx +
B

r 2R

i 2
+e I ‘ fgx+h2h fgx)l ax .

BZR

1

loc and

It is simple to show that (3.5) implies Du € H

I |p%u|?ax ¢ & J |pu|2ax + I |p£)|2ax <
R
Br Bor Bor
: 2 2
< c(R) j |u|2ax + of |£]12, , .
H ’
Byr

By induction, Theorem 3.1 then follows K in the case of constant coef-
ficients. Moreover, we have, if f =z 0 ,

BR(xo) denotes the ball of radius: R around Xy -

*k
More precisely, inserting ¢ = nz(u - uZR) ,

_ 1
u2R = ux0’2R = . * udx - TEZET . J udx ,
2r *o) 2r (%o)
we have |
2 c 2., 2
|Duj“dx < 2 I la = u,pl dxj+ c I |£]“ax .

B B B

R 2R 2R

47




Huall 2 c®K)||ul] , .
H (BR) L™ (Bp)
Extensions to systems with variable coefficients need only formal
changes.

The p r oo £ of Theorem 3.1 under the ellipticity condition
(3.2) needs more care. Still by inserting ¢ = nzu one deduces

IAggDa(uin)DB(ujn)dx < cj)ul |Dn| |D(un)| ax +

+ cJ|u|2|Dn|2dx + [|f| [DCun)| dx .

Now, by means of Fourier transform and using (3.2), one sees that

IID(u")Ide < IAggDu(uin)DB(ujn)dx
and the proof can be easily completed in the case of constant coeffi-
cients. For variable coefficients one uses Korn’s device (compare with
the proof of Ggrding inequality), one freezes the coefficients at a
point and looks at the remainders as a small perturbation (assuming
the coefficients at least continuous). Remark that this procedure does
not work for example, for quasilinear systems ( Agg = Agg(u) ) while
inequality (3.4) still holds assuming the strong ellipticity condition
(3.3). This is the reason why almost nothing is known when considering

nonlinear systems satisfying the ellipticity condition (3.2).

H&lder regularity. As we have remarked, if u 1is a weak solution of

aB i b/ - © N
(3.6) [AijDau DB¢ dx 0 y¢ €& CO(Q,R )
k
then u € Hloc for all k and
Tlall < ¢(R,k) [ [u]| .
N, = 2
H (BR,R ) L (BZR)

Then we have for all p < R/2 , using also Sobolev imbedding theorem,

A

[ lulfax < oo™ swp Jul? < e lull? <
B (x,) B (x5) H™(Bg/p)
< c(R)p" I lu|2dx .
Bp(xy)

Now it is easily seen from the equation, by using a dilatation argu-
ment, that c(R) = const R © , i.e.

(3.7 j ™
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for all o < R/2 . Since (3.7) is obvioﬁs for R/2 < p < R we have
(3.7) for all p < R . Since now any derivative of n is also a so-
lution of (3.6) we can state i

PROPOSITION 3.3. Let u be a solution of system (3.6). For x_ € Q,

0
p £ R< dist(xo,aﬂ) we have
2 oy ? 2
(3.8) [Du|“ax g c(§) |Du|“dx .
B (x,) Bp(x4)

We are now ready to prove the following

THEOREM 3.4. Let u be a weak solution to

8 j - -
(3.9) - Da(Azj(x)DBuJ) + D £ = o , i=1,...,N,

0,
1oc

aB

and suppose that Ai] R f“ €cl . Then ‘u € C for all y < 1.

Remark that Theorem 3.4 applies to, system (2.1) at the end of

sec. 2 and permits to conclude that any| |extremal of class C N H2 2

actually has H6lder-continuous first derivatives. Therefore the coef-
ficients of system (2.1) are Hélder-continuous.

Proof . Let BR(xo) cCea . In BR(xo) , u is a weak solu-
tion of

- aB h] o |
Da[Aij(xo)D uw') +DFf =0,

= £% + [a}t §exg) - A} (x)]D ol .
Let v be the solution to the Dirichlet problem
aB I sl = 1 N
I A{j(x()DgvD ¢7dx = 0 ¥¢ € Hy (Bp(x),R") ,
BR(xo)
N
Vv-ue H%(BR(xo).R )
By Proposition 3.3 we have
n i
(3.10) [ Iov|2ax ¢ <(&) I |ov|%ax .
B (x4) B
On the other hand,
aB jo_ 3 i . a. .1
I Aij(xo)DB(u v )Da¢ dx J FiD“¢ dx
BR(xo) B, (x

)
0
¥é € Hy(Bp(x),R")
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and inserting ¢ = u - v we obtain
(3.11) I ID(u - v)|%ax <
Br(xy)
< cf f |£]%ax + f |a(xy) - A(x)|?|pul?ax} .
Bp(x4) Bp(x4)

Putting together (3.10), (3.11) we deduce

2 o\ 2 2
(3.12) [Du|®dx < c|(§) + w(R)| ||Du|%ax + ¢ ||£]|“ax
Bp BR BR

where w(R) is the modulus of continuity of the coefficients Agg .

Now we have:
let ¢(t) be a non-negative and non-decreasing function; if
¢ 8
$00) < A[(%] + e]MR) + BR

for all p < R <R with A, B, a, B, € positive constants,

@ >B8 and e < gy = ey(A,a,8) , then for all o < R < R,

(=]

0(0) = c[R Bp(R) + B]p®
with ¢ = c¢(a,B8,A) .

Since J|f|2dx; sup |f|2mnRn , from (3.12) we deduce taking ¢(p) =

By
= J |Du]2dx :
B
o
(3.13) J |pu|2ax < c(e)pn-';|}!‘_n JlDu|2dx + sup |f|2]
B
Bp(xo) By

¥e >0 .

Observing now that (3.13) holds for all Xy > the result follows from

the Dirichlet growth theorem of C. B. Morrey [?5, Theor.3.5.2].
Q.E.D.

Remark that actually we have only used that f € L” and that it
would be sufficient to assume that

R £ - £, R|2dx < const. independent of x; and R .
0’
Br{xg)

The proof we have given appears in C. B. Morrey [82], an analo-
gous argument was also used in [84]. We have to remark that Morrey’s
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proof uses in a strong way potential théory; the proof we have given
is due to S. Campanato [13]. When passing on to prove that if the
coefficients and the data f; in (3.9) are H6lder-continuous then
the first derivatives of the solutions are H6lder-continuous, Morrey’s
proof in [89] becomes less transparent. On the other hand, Campanato’s
approach [13] is very simple and useful.

The first result is the following ¢haracterization of H&lder-
continuous functions, see [12], which replaces the Dirichlet growth
theorem.

THEOREM 3.5. Let Q be a smooth open get. Then u €& Co’a(n) if and
only ©f for all X, € Q and all R < Ro we have
9 !
u - uldx<aRn+2a,0<a;1.
BR(xo)ﬂ Q BR(xo)ﬂ Q

see [12], [69], or [36] where also further references are given, for
the proof.

In the same way we proved inequaliﬁy (3.8), or using Poincaré
inequality on the left hand side and Caccioppoli inequality on the
right hand side we easily deduce

PROPOSITION 3.6. Let wu be a weak solution to system (3.6). For
x0 €E Q, p<R< dist(xo,aﬂ) we have

2 3n+2 2
(3.14) J lu - uxo’pl ax g (&) I ju - “xo,Rl ax .
B, (x4) Bp(x4)

Moreover, (3.14) also holds when replaailng u with Dku .

By the same method as in the proof of Theorem 3.4 we can now
prove (see [13]) the following

THEOREM 3.7. Suppose A;JB. . f‘;_ € 0¥ and let u be a weak solu-

. O,u
tion to system (3.8). Then Du € cléc “

Proo f . Splitting u as in the proof of Theorem 3.4 and
using (3.14) (with u replaced by Du ) instead of (3.8) we obtain

for BPCBRCQ

2
(3.15) I [Du - (o) |“ax < c, (%)
Bp BR(x

|Du - (Du)Rlzdx +
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2y

- 2 aB 2
+ czl |£ - £pl%ax + ¢, sup[I-\]._J.]co,u R |Du|“ax .

By BR(xo)
We know from the proof of Theorem 3.4 that

I |pu|2ax < cR®¢

Bg

and, because of the assumptions,

J |£ - fnlzdx < cRPT2H |

Bp

Hence, by the same algebraic argument as in the proof of Theorem 3.4
and of Theorem 3.5, we deduce that Du € Cgéz *) for y <y . In
particular, Du is locally bounded, therefore from (3.15) we deduce

n+2
2 2 n+2
J |Du - (Du)p] dx < cl(%] I [Du = (Du)p|“dx + c,R [

Bp By
which concludes the proof.
Q.E.D.
Theorem 3.2 now follows by induction, by differentiating the
system.

4. From the functional to the system in variation

Consider the multiple integral

4.1) F [use] = IF(x,u,Du)dx
Q
and suppose, for simplicity, that

lp|? < Fex,u,p) < clp|? .

The possibility of differentiating # in the direction of a function

¢ € Hé’Z **) at a minimum point u depends strongly on the growth

*)

Note that the Lz-norm plus the H¥lder seminorm is a norm equiva-
lent to the H8lder norm.

**) As is well known, functionals of type (4.1) in general do not
ssess derivatives in the sense of Fréchet, compare for example

?€1Q]. On the other hand, we may hope to get information on u
(a priori estimate) only by choosing suitable variations, which,
of course, must involve u ; therefore we need to have the possi-
bility of making variations at least in the same class to which
u belongs (plus zero boundary conditions, in order not to change
the boundary value of u as requested at the end of Sec. 1).
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conditions we have for the derivatives of F .-

EULER SYSTEM. Formally the derivative of & in the direction of ¢
at u should be

(4.2) I[I-‘ 4 (x,u,00D ¢ + F , (x,u,Du)¢'ax .
P u
Q a

Noting that D¢ € L2 and that, because of the Sobolev imbedding the-

orem, ¢ € L2* , in order for (4.2) to have a meaning we must assume

that

2 2%/

F 1(x,u,Du) € L°; F i(x,u,Du) €L 3
u

Py

2*" = the dual exponent of 2* (= %%7 ) (n23) .

This is granted, taking into account thé Sobolev imbedding theorem,
for example by the following growth conditions

n
(P 0P| < u[xl(x) + u]?? 4 Ipl] )

n+2 2
Ly 14+ =
"2+ el 7,

(4.3) 4 [F (xsu,p) | 2 u[xz(X) + |u
L xy e L2 . X, € I‘2n/(ﬂ~i-2)’
if n> 3, or

o IFp | < uxg + [wlY2 4 ppl]

1 2(1- 2
(4.3") { IFu(x’u:p)l = “EX2 + [ulq oo+ lpl q] ’

~

Xq € L’ X € /@D g cgcre,

if n=2.
Now it is easy to verify that

conditions (4.3), (4.3’) are also sufficient for the differen-

tiability of # [u;q] in the direction of ¢ & HJ(x,RY) .

While conditions (4.3), (4.3'), which we shall call controllable
growth conditions, are "natural" if thefe is no explicit dependence
on u in F , i.e. F(x,u,p) = F(x,p) , they are quite unnatural in
the general case, as it is unnatural tojassume that F, increases
of the same order, with respect to p , as Fp . For instance, for
the simple functional
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Ja(u)]Du[zdx , N=1, 0<mg<a(u , a’(u) <M
QA

we have
. IFpl v IRl o (Bl = a’@lp]? ~ |p|? .
Hence it is more suitable to assume
for |ul <R and V= (1+ |p|))/2
(4.4) P, < w2,

|Fp| BRIV .

ia

Conditions (4.4) are not sufficient to ensure the differentia-
bility of # in the direction of ¢ € Hg , but this is true if we
work in Hl N L” instead of H1 . We shall refer to (4.4) as the

uncontrollable growth conditions.

Concluding, we are able to consider extremals of % [u;@] (and
the Euler system for F ) in the following two situations:

a) controllable growth conditions hold, u € Hl’z(n,RN) s u satis-
fies
(4.5) ”:F (x,u,Dw)D ¢% + F . (x,u Du)¢i:|dx =0 yeeni@,rRY)
. i 4y o ui ERak] 0 ’ ?
P
Q o

b) uncontrollable growth conditions hold, u € Hl’2 F\L"(Q,RN) 5 v
satisfies (4.5) for all ¢ € H. NL°(2,RY) .

Analogous meaning should be given to the notion of weak solu-
tions to nonlinear elliptic system of the type

(4.6) - DaA:(x,u,Du) + Bi(x,u,Du) =0, i=1,...,N
with the obvious analogy.

As we shall see, this distinction really corresponds to a dif-
ferent behaviour of the solutions.

Analogous considerations can be carried out in the more general
situation

Ip|™ < F(x,u,p) 2 clp/™,. m>1 .

SYSTEM IN VARIATION. According to controllable or uncontrollable
growth conditions, we also need different assumptions in order to
deduce the system in variation.
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Let us start with extremals of theisimple integral

JF(Du)dx
n 1
or more generally with weak solutions to a system
4.7) - DA{(Du) =0, i =1,...,N,
assuming controllable growth conditions and ellipticity, i.e.
a )
af@) | < elp| » IAi j@l s,
19
B
T I L O
ipB

Then, differencing system (4.7), i.e. using the quotient method. As
in Section 3, one easily gets that

a weak solution u € Hl’z(n,RN) to system (4.7) has
square integrable second derivatives, satisfying

(4.8) JA“ Ouw)D, (0_ul)p ¢tax = 0 , ¢4 e Hi(a.RY) .
ipj B s a ! 0
Q 8
The identity (4.8) can be rewritten as a quasilinear system for the
vector valued function
= (udy = 3
U = (Ug) = (Dju’)
as

a T SRR 1, N
(4.8") [aLSAipj(U)DBUsDa¢£dx 0 I¥¢ € HO(Q,R ) .

Q 8
An analogous result can be obtained for general elliptic systems like
(4.6) under controllable growth conditions (i.e. differentiation with
respect to u decreases the order of growth in p by one), see [95],
[36]. i
On the other hand, it is not true in general that a weak solution
of the simple quasilinear system

i j 1 N
[A:g(x,u)Dau Dgélax = 0 ¥¢ €H (2,R)
Q
with smooth coefficients satisfying
B, i, j 2
Ajjeatp 2 [E1° ¥e
has square integrable second derivative#.

Under uncontrollable growth conditions we are able to prove that
a weak solution u to system (4.6) hasisquare integrable second deri-
vatives verifying the system in variatidn only provided u is assumed
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to be continuous. We refer to [95], [36] for further information and
proofs.

Anyway, let us remark that the results of this section together
with the ones in Section 3 completely prove the result of step a) in
Section 2 : any Cl—extremal of a regular multiple integral in the
Calculus of Variations is as regular as the data permit *).

But in general we are only able to find extremals or weak solu-
tions in H1’2 » therefore, as we have already stated, there is a gap,
step b) in Sec. 2, to be filled. The rest of these lectures will be
dgdicated to some contributions in that direction, i.e. from H1 to
c” .

5. Regularity for equations and counterexamples for systems

Let u € H1’2(ﬂ) » N =1, be an extremal of the functional

(5.1) IF(Du)dx
Q
where F is a smooth convex function,

2
s D .
Fp,ps P %ats 2 el 'Fpaps( w| 5L

pa
As we have seen Du € H1 and any derivative Dsu satisfies the equa-
tion
= 1
(5.2) JFPGPB(Du)DB(DSu)Dc¢dx 0 Mo e Ho .

Equation (5.2) can be seen as a linear elliptic equation with coeffi-

cients A“B(x) =F (Du) in Lm(ﬁ) . The gap between Hl and C1

P,Pg
is filled, and hence the 19th Hilbert’s problem completely solved

(in this case), by the following famous result by E. De Giorgi.

THEOREM 5.1. Let v g Hl(n) be a weak solution to

aB = 1
[a*8Gon,wpge =0 we emp@ |
a
vhere a®f € L7(2) and a®ft £, > v|E|? ¥E (v > 0) . Then u €
a’B

*) The same result could be obtained using Schauder type estimates
for the Euler equation in the strong formulation (4.6), i.e. the HYl-
der regqularity theory for non-variational systems with smooth coeffi-
cients. But in the sequel it is more convenient to work with systems
in divergence form, and therefore with the system in variation.
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0,y

€ cloc

(Q) for some positive y .

Unfortunately Theorem 5.1 is not €rue in the vector valued case
and n > 3 , see E. De Giorgi [18]; weak solutions to quasilinear
systems of the type of systems in vari&tion like (4.8) are singular
for n > 3 [55]; finally, extremals (and therefore minimum points)
of functionals of the type (5.1) for n > 5, N > 1 , need not be

ct [1o6], [107] *) | As we have stated, other counterexamples to the
regularity are available, but these alﬁeady say that in the vector

valued case we should look for partial}regularity results and for

conditions under which everywhere reguuarity holds.

~ The situation gets worse when passiing on to consider general
functionals :

(5.3) IF(x,u,Du)dx

Q
and quasilinear or nonlinear systems under uncontrollable growth con-
ditions, and that even in the scalar case.

First of all, as we have seen, we can consider only bounded exfre—
mals. Actually, "extremals" even in the scalar case can be unbounded.
Moreover, still in the scalar case, tyﬁical phenomena of elliptic
equations (as uniqueness in the small) fail for unbounded solutions.

Therefore (in the case of uncontrollable growth conditions) we
are led to consider definitely H1 N L” as the natural class where
to start with weak solutions; and the most convincing argument is the
following result by O. A. Ladyzhenskayi and N. N. Ural’tseva [73].

THEOREM 5.2. Weak solutions (Z.e. bounded) of nonlinear equations,
N = 1 , under uncontrollable growth conditions are smooth.

Actually in [73] it is proved (compare the next chapter for a
stronger result) that minimum points of functional (5.1), N =1 ,
bounded at the boundary of Q are bounded. Therefore Theorem 5.2

applies also to minimum points (not to extremals in generall).

Of course, for systems we cannot expect regularity in the gene-
ral situation, but the situation is extremaly unpleasant. For example:

a) [73], [62]: u(x) = x|x|”! is a wéak solution to

*) 3

An example of a minimum point u : P - RS — RZ », R for an
elliptic functional of the type (5.1) is missing: it would be very
interesting to produce such an exampleJ
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- Au = uIDulZ
and an extremal u € H'N L° for the functional

[a(|u|)|ou12dx
Q

provided a(t) is a smooth function with a’(1) = - 2a(1) .

b) [25]: for n = N = 2 the function u(x) = (sin log loglxl-l,
cos log log]x|_1) is a discontinuous weak solution of the system

1 2
_Au1=2£__+_l1_é_|gu|2,
1+ lul

2 _ 1
-pul = U |Du|2 .

1+ lul?
Note that systems in a) and b) are even diagonal.

c) [28]: in dimension n =2 , N > 1 , functionals (5.3) may have
bounded .and discontinuous extremals.

The above examples show that (at the first rude approach) re-
gularity depends not only on the boundedness of u (as in the sca-
lar case) but also on a smallness condition on the bound for |u| .
We refer to [58], [59], [60], [36] for more information.

II. Direct methods for the regularity

De Giorgi’s result of regularity, as well as its generalizationms,
have as their starting point the Euler equation of the functional
in question. Therefore it requires at least:

a) some smoothness of the function F(x,u,p) , moreover suitable
growth conditions, not only on F , but also for its partial deriva-
tives Fp(x,u,p) and F,(x,u,p) , and also

b) under natural conditions we need to start with bounded minimum
points,

c) it does not distinguish between true minima and simple extremals,
d) it needs the ellipticity condition.

Of course the smoothness of F and the convexity (or ellipti-
city) condition on F are necessary if one wants to prove the dif-
ferentiability of the minima (this is already the case in dimension
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n=1)., But if we look only for the céntinuity (in the sense of H®1l-
der) of the minima, those assumptions éeem (and are) superfluous.

In this chapter we want to descriﬁe some works of M. Giaquinta
and E. Giusti which show that the "first" stage of regularity can be
obtained by working directly with the functional F instead of wor-
king with its Euler equation [32], and that even for weak solutions
the first stage of regularity (H6lder regularity) depends on a "mini-
mality property" of weak solutions to elliptic systems.

In this direction we should mention one classical résult in di-
mension n = 2 , due to C. B. Morrey [85] in 1938.

THEOREM. Suppose that

Ipl? < Fex,u,p) < M|p|?
and that n=2, N2>21 . Let ué€ ut»?

funetional

be a minimum point for the

fF(x,u,Du)dx .
Q

Then u 8 locally Holder-continuous.

We note explicitly that F is not assumed smooth, nor convex
with respect to p .

1. The scalar case

Let us consider the multiple integral

Flusa] = IF(x,u,Du)dx
Q
with N = 1 , where

(i) F(x,u,p) : @ x R x R® — R is a Carathéodory function, i.e.
measurable in x and continuous in (u,p) . Thus F(x,u,p) is measu-
rable for measurable u(x) and p(x) . '

(1i) There exist positive constants é and b and a real number
m > 1 such that

< alp|™ + b(ju|® + 1)

(.1n Ip|™ = b(|ul® + 1) < F(x,u,p)

* mn *)
where m < C M = —
= n-mn

Let u be a minimum point for ?’; we recall that this means,
in our terminology, that for every ¢ & Hl’m(ﬁ) with supp ¢ C C @
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we have

(1.2) F[u; supp ¢] < F[u + ¢;5 supp ¢J .

Then we have, see [39],

THEOREM 1.1. u 1is locally bounded in Q .

Because of Theorem 1.1 we are now justified in assuming, instead
of (1.1) the weaker condition

1.3) [p|™ - b(M) g F(x,u,p) £ aM)|p|™ + b
for x€a, |ul £M and pe R".

Thus we have, see [39],

1,m © . .
THEOREM 1.2. Let (1.3) hold and let u € Hy2 e n Lioc be a minimum

point for F[u;Q] . Then u <is Holder-continuous in Q .

We refer to [39] for the proof of Theorem 1.1 and we restrict
ourselves to prove Theorem 1.2. The proof uses the following charac-
terization of H8lder-continuous functions due to E. De Giorgi [17]
for m = 2 , compare [73] for m > 1 .

De Giorgi’s classes Bm(ﬂ,M,y,s,é-) . The symbol Bm(Q,M,y,s,%)

with max |u|l < M
Q

denotes the class of functions u(x) in Hl'm

such that for u and =-u the following inequalities are valid in
an arbitrary ball Bp C @ for arbitrary o € (0,1) :

)
[ 1oulmax 5 vl T

Ax,0-0p

for k > max u - § , where
B

1 - m
ampm(l-n 5 Max Ju(x) k|7 + 1}|Ak,pl

P

Ak’p={xEBp:u(x)>k}, l1<mgn, g>n22.

We have, see [17], [73],

*) Here we shall restrict ourselves to the case 1 <m < n . In fact,
when m > n , every function in g™ s trivially H&lder-continu-
ous; and we shall consider the case m = n in Sec. 2 of this Chap-
ter.
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THEOREM 1.3. Let u € Bm(Q,M,y,s,%) i Then wu isg locally Holder-con-

tinuous and for Bp C Bp we have
0
a
osc u g c(&)
Po
[
for some positive a .

Proof of Theorem 1.2. Let XOEQ and BR=BR(x0)C0 .

Let w = max(u-k,0) and let n(x) € Cj(B))', 0 <n 51
B Ibn] £2¢s -8, t<s<R.

», n =1 on
t ’
Using the minimality of u , condition (1.25, we have
F[u; supp nw] & Flu - nw: supp nw]
and using (1.3),
|pu|™ax < 1,1 I (1-m)™|pu;Mdx + Iwm'anlmdx + 18, (I}
8

,S Ak,s ; Ak,s

I
A
Il Du|™ax < v, [ IDulmdxj+ (s -t)™ I (u - k)Mdx +
Aot Ag,s V2, t | Ae,R

+ |ay gl} -
Now we fill the hole (compare [128]) i.e. we add to both sides vy,
times the left-hand side, obtaining

Y
(1.4) IlDu|mdx < T—+—2—y—2' I |pu|™ax +
»t S
+ygs - 0™ ]. (uik)ax + |ay o}

Ax.r

Now we have
LEMMA 1.4. Let £(t) be a non—negatu}e bounded function defined for
0<Tyxts T, . Suppose that for 'r01< t<s<T we have

£(t) < A(s - £) % + B + ef(s)

where A, B, a , 6 are non-negative constants, and & < 1 . Then,
there exists a constant c , ¢ = c(a,8) , such that for every o ,
R, Toxe <RgT, we have

(1.5) £(p) s c[AR - p)" % +B] .
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Let us postpone the proof.
Applying Lemma 1.4 we deduce from (1.4)

m. . -m m
j]Du] ax'< v, {(R - p) I (u-k)"dx + lAk,Rl} .
Ak,p Ak,R
The same inequality holds for - u , since it minimizes the functional

EEV;Q] = J'f‘(x,v,Dv)dx
Q
with F(x,v,p) = F(x,-v,-p) satisfying the same growth condition
(4.3). The result then follows from Theorem 1.3.
Q.E.D.

Proof of Lemma 1.4: Define

=(1-'r)'ri(R—p), 0<1T1T<1.

B =P BT Yy
By iteration
k-1
£(ty) < oFE(e) + [ L B:I 5 oetcie
. 1 - 1) i=0
We now choose t such that t %8 < 1 and let k — « . Then we get

(1.5) with c = (1 - 1)%(1 - oc %1 .

Q.E.D.

REMARK 1.5. We mention that a result of the type of Theorem 1.2
appears in [26] under strong assumptions on F . In the case that F
does not depend on u and is convex in p , the proof of [26] relies
on the following observation. We have

I F(x,Du)dx < J F[x, Du - D(nm(u - k)]]dx .
B, R '
Writting
Du = D(n"(u = k) = (1 = n™Du + n"[- T DnCa = K)] ,
using the convexity and (1.3) we then deduce

f (1 - "™F(x,Du)dx < J n"F (x, % Dn(u - k))dx <
2%,R AR
< [ @) |pn™m™u - x|™ + b)]dx ,

'

which implies the H&lder-continuity.
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2. The vector valued case. Estimates ﬂor the gradient

As we have seen, in the vector va;ued case N > 1 , we have no
hope (except in small dimensions) of proving HSlder regularity. But
a basic regularity result still holds for the minima: it is an 19~
-estimate, q > m , for the gradient.

Results of this kind were proved first by B. V. Boyarskil [11]
and N. G. Meyers [79] for solutions of linear elliptic equations; and
by N. G. Meyers, A. Elcrat [82], M. Giaﬁuinta, G. Modica [43] for clas-
ses of nonlinear elliptic systems; we refer to [36] for a discussion.

Besides their intrinsic interest, they are an essential tool in
the study of regularity of solutions of nonlinear elliptic systems,
following the method introduced in [38] (see also [35], [39], [43],

[44], L4§]). ’

In this section we state an Lq-eskimate for the minima, due to
M. Giaquinta and E. Giusti [}9], again without assuming regularity on
F nor convexity in p , and in the next section we shall present
further results.

Let us consider the variational integral

¥ [u;q] = IF(x,u,Du)dx
Q
with N > 1 , and assume

1) F(x,u,p) : Q@ x & x 8N is a Carhthéodory function

and for the sake of simplicity,
(11) |p|™ < F(x,u,p) < alp|™ .

Then we have

THEOREM 8.1. Let u € H}2N(a,BY) be a minimum point for F[u;q] .

Then there exists an exponent q > m e?ch that u € Hiéz(Q,RN) .

Moreover, for every R < dist(xO,aﬂ) we have

i/q 1/m
2.1 [ f |Dulqu] < c[ f IDu]mdx]
BR/Z(XO) Bk(xo)

c being a constant depending only on a , N, n , m.

Proof. Let X €, 0<tks<R<dist(x),32) . With
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the usual choice of n , we have from the minimality of u
F[u; supp n(u - up)] <
< Flu - n(u - up); supp n(u - up)] ;
hence using (ii),
]loul"‘du 141 f Ipul"ax + (s - &)™ jlu - ug|Max} .
B B_\B B

s s t s

Now arguing as in the proof of Theorem 1.2, i.e. filling the hole and
applying Lemma 1.4, we deduce

m -
J [Du|Tax < v,R m flu - uR|mdx .

R/2 Bp
Using the Sobolev-Poincaré inequality

B

m/r
r .
J ju - uledx < c(n,m,N) U |Du| dx] , T = nn+mm
R BR

and dividing by R® we finally get 1
n 1/m r 1/x
(2.2) [ f |Duj dx} < 'yau |Du] dx] .
Br/2 Br
The result then follows at once from (2.2) by applying the following

n t

PROPOSITION 2.2. Let Q be a domain in R , g € Lloc(o) , fe

€ LS(Q) s, 8 >t . Suppose that

f gtdx_<_b[ f gdx]t-i- fftdx

Bp(xg) Byr(xg) Byr

for each x, € Q and each R < min( -;- dist(x,,3Q),R;) , where R

0
b are constants Ro >Q, b>1. Then g € L‘lloc(o) for q €
€ [t,t+e) and

e <t f e [ f
Bg Bor Bor

0 ’

for BZRCQ’ R < R
pending only on b , t , n , s .

0 ° where ¢ and ¢ are positive constants de-

Proposition 2.2 is due to M. Giaquinta, G. Modica [43] , and re-
presents the local version of a result by F. W. Gehring [30]. We omit
the not simple proof and we refer to [43] or to [34], [36], [124]
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for some extensions. In [36] the reader will find a discussion of
this and some reélated results.

In the special case F = F(x,p) convex in p , the result of
Theorem 2.1 can be obtained by using the trick described in Remark
1.5 and Proposition 2.2, compare with [3].

It is worth remarking that Theorem 2.1 does not hold for extre-
mals of the functionals & [u;e] , even when assuming that F(x,u,p)
is convex in p and N = 1 , as the example in [26] shows, see also
[28]. When N > 1 , the result is in general false for elliptic sys-
tems, even if we assume that u is boundkd, see example b) in Sec.
5, Chap. I (and example c) in Sec. 5, Chap. I) and it is necessary to
suppose that u is "small" ([38], [43]).

The pr oo f of Proposition 2.2 shows that the exponent
g > m can be taken in an interval (m,mt+oc) , with ¢ independent of
m for m close to n . Therefore we have

COROLLARY 2.3. There exzists a o > 0 depending only on a <n (ii),
n and N such that ©f m > n - o and F satisfies (ii), then )
every minimum point for &F Dzﬂﬂ is Holder-continuous in Q .

In particular Corollary 2.3 extends Morrey’s result stated at
the beginning of this chapter. For elliptic systems, results of this
type appear in [128], [118], [120], [126], [43].

3. Quasi-minima

Consider the multiple integral

(3.1 Flusq] = IF(x,u,Du)dx
Q

where F(x,u,p) : Q X RN X RnN — R is a Carathéodory function satis-

fying
(3.2) Ip|™ - plul¥ - g, (x) < F(x,u,p) < a|p|™ + blu|” + g,(x)
with '

mn
n-m"

*

1<m<n, y<m =
Until now we have dealt with minimum points of & ; we introduce now
the following

DEFINITION, u € Hl’m(n,my) is a quastrminimum for F in 2 with

loc
a constant A if
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?D;wm¢];A?@+¢;ﬂW¢]
for all ¢ with supp ¢ C & .

The constant A may of course depend on u .

Then the results of Section 1 and 2 hold also for quasi-minima,
as a simple inspection of the proofs shows; more precisely, we have

THEOREM 3.1. Let wu be a quasi-minimum for F in @ and assume
(3.2) holds. Then we have

(i) Z2f N =1 and 945 9, € LS(Q) for some s > % , thenm u <8

locally Holder-continuous; in particular, it is locally bounded;

(ii) Z2f N 21 and 94> 9y € LS(Q) for some s > 1 , then there

exists an exponent r > m such that u € Hiég(n,RN) .

Quite a lot of results for solutions of elliptic (linear and
nonlinear) systems can be re-read in terms of quasi-minima.

1. Of course, any minimum point for F isa quasi-minimum. It is
not difficult to verify that moreover, any minimum point for & is
a quasi-minimum for

I(|Du[m + blu|Y + (g, + 9, + b))dx .

Q
In particular, for m=2 , b =0, 945 9,
minimun point for

0 we obtain that any

JF(x,u,Du)dx , Ipl? < F(x,u,p) < alp|?,
2

is a quasi-minimum for the Dirichlet integral.

Any weak solution to the linear elliptic system with L” coef-
ficients . .
- Ds(Agg(x)Daul) =0, j=1,...,N, Agggi‘gg > e]? Me
is a quasi-minimum for the Dirichlet integral. To see that, it is
sufficient to test with u - v with supp(u - v) C € . In particular,
for N = 1 we obtain De Giorgi’s result *) we have stated in Sec. 2,
Chap. I.

More generally, the H8lder regularity of weak solution to non-
linear elliptic equations (see [73]) and the LP-estimates for the
gradient of general nonlinear elliptic systems (compare [38], [43],

*)

Remark that this is only a re-reading in terms of quasi-minima
of De Giorgi’s result, the proof being essentially the same.
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[82]) can be obtained as conseguences of Theorem 3.1 *). We have in
fact the following result.

2. Let u be a weak solution to

(3.3) I(A‘;(x,u,Du)Daqai + Bi(x,u,!Du)Qi)dx =0 ¢ € c;(:z,RN) 3
3 !

(A) assume that the controllable growth conditions and ellipticity
in the following weak form hold:

*

Af x,u,p)p; 2 [p|™ - LjulY - £(x) , y<m o,

A

m-1

|a,u,p) | < Llpl™ T+ Llul® + gm0, o =yEL,

IBx,u,p)| = Llp|® + Lju|® +h) , <

A

liixn, § =y =-1.

1]

Then, inserting ¢ u-v , we get thét u is a quasi-minimum for

m |
I[IDu‘m + JulY + (£ + g““"'1 + h;’%T + 1)]dx .
Q

(B) Assume that the uncontrollable growth conditions hold:

i I
A, (x,u,p)py 2 [p|™ - Ly - LEx

‘m-l

A

|a(x,u,p)| =< L2|p + Ly + Lgx) ,

(3.4)
|B(x,u,p)| = alp|™ + Leh(x) + Ly ,
Ly =L , a=am, |ul 4 M .

(B,) Suppose moreover that N =_1 . THen we get that u is a quasi-
-minimum for

m
(3.5) f[|nu|“‘ + £+ gt 4 n) o+ l]dx .
oy i
This can be shown by inserting (u - wj+ek(u—w) and (w - u)+ex(w—u)
as test functions ¢ with w =v for| |[vl <M, w=-M for v <

<-M, w=M for v > M, for any v with supp(u - v) CC @ .

(Bz) The Lp~estimate, as we have alréady remarked, would not be

* :

) This is not completely true, since in this way we are not able to
handle the limit case corresponding to 'the value vy (below) vy = m* .
The H8lder regularity ( N =1 ) and thé LP-estimates (N2> 1) never-

theless hold even for vy = m* , compar% [73], [43] and [36].
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true in the vector valued case under (3.4) even if assuming |u|
bounded; more precisely, it is in general not true if a(M)M > 1 ,
compare [62]. But if we assume that 2a(M)M < 1 then any weak solu-
tion u, |u] £ M, to (3.3) is a quasi-minimum for the functional
(3.5). Therefore the LP-estimate holds *).

Finally, we want to mention two further examples of quasi-minima.

3. Weak solutions of the obstacle problem, i.e. for example

ux>y in Q9 : IDuD(u -v)dx <0 ¥Yv, vy,
Q
supp(u - v) CC @
are quasi-minima for

J(lDu|2 + |py|?)ax .
Q

4. OQuasiconformal (or quasi-regular) mappings are quasi-minima for

I|Du|ndx
Q

H1 ,N+e

and therefore in (Q,Rn) , in particular HSlder-continuous.

The definition of quasi-minima appears in [39] and the results
of this section have been developed by M. Giaquinta - E. Giusti and
have not been published.

We conclude this section with an example which shows that no
HOlder regularity theory (even partial) can be developed for quasi-
-minima, in the vector valued case.

Let us start with the following remarks. Set
k

a.a.
kh _ kh ij
aij(x) - Gijs t 5%
Yy dl
L
where
k_ .,k _ k 2 k k - w n
di —bi uxi , b€ LM , lbi¢xidx 0 ¥¢ € co(sz,IR) .
Then
(3.6) Ja‘.‘*.‘(x)uk oDax =0 y¢e LR .
ij EIRE 0
Q J
*)

It is an open question whether we can get the same result under the
weaker assumption a(M)M < 1 .
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The ellipticity and boundedness of theicoefficients ai? corresponds

respectively to,

ux-d >0, '

b.d

_— < M.

ux-d =
It is on the basis of this simple remark that the examples of E. De
Giorgi [18] and Giusti - Miranda [55] can be regarded. Actually the
following choice for n > 3 : 3

u(x) = |x}_1x s
kK _ -1 n XXi
BY = Ix|T sy + 7y )

permits to construct a discontinuous weak solution to the elliptic
system (3.6). Let Y, be a sequence of points in @ and let us set

) =3 ux - Y )&, »
o !

Bf(x) = g i - ¥ )e,

and
k_h
akn - PiP5
ij ij L s
Ux D£
z
where
k k k
D, = B, = U .
i i Xy
Since

Iat(x)¢§idx =0 Y¢e€ CS(Q,Rn) s

Q |
it is a simple matter of calculation tq show that after a suitable
choice of the ¢ the vector U belongs to Hiég(Q,RN) and is a
o
solution of the elliptic system
kh k., _ : =
- Dj(a,ij D,U) =0, h=1,...,n.
Remark that U may be singular in a d#nse subset.
The above construction was shown t#o the author by J. Soudek in
April 1980. 3
From the point of view of quasi-mﬂnima, the example described
shows that there exists a vector—valued quasi-minimum for
I |Du|2ax , Bi(o)5ca3
Bl(o)

singular at all points x € 31/2(0) wﬂth rational coordinates.




The HOlder regularity results of this section do not permit to
gill the gap b) in Sec. 2 Chap. I; the step CO’Y —»»Ci’Y is missing.
This step needs some work, we refer to [73] and to [36] for a diffe-
rent approach.

4. Quasi-minima and quasi-convexity

In this section we want to show how the notion of quasi-minimum
can be used together with the semicontinuity Theorem 1.3 in Chap. I
and a variational principle in order to prove the existence of mini-
mum points for a class of quasi-convex functionals (in the sense of

Morrey).
Consider the multiple integral

4.1) Flu;a] = JF(x,u,Du)dx
Q
where, for the sake of simplicity,

[pI™ < F(x,u,p) < alp|™
and assume that F is quasi-convex, i.e. for a.e. xo € Q , for
every u, € RN . EO € RnN and for all ¢ € Cé(Q,RN)
1
T fF(xo,uo,go + D¢ (x))dx 2 F(xp,up,E0) -
Q

We shall prove

THEOREM 4.1. Let U € Hl’m(n,RN) . Then there exists a minimum point

u of F on § + Hé’m(Q,RN) . Moreover, u € Hiég(Q,RN) for some

qg>m.

We need the following variational principle in I. Ekeland [22]:

THEOREM 4.2. Let (V,d) be a complete metric space, F : V > [0,+u]
a lower semicontinuous functional, not identically + » . Let n > 0
and W € V verify
F(w) < inf F + n .
\'4

Then there exists Vv € V such that F(v) < F(w) , d(v,w) <1 and
v s the (only) minimum point of the functional
F(u) + nd(u,v) .

The functional in (4.1) is lower semicontinuous in the complete
metric space {u € Hi’l(Q,RN) : u=143 on an} . Hence we can apply
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Theorem 4.2, and the function v we obtéin is obviousiy a quasi-mi-
nimum for a functional of the same type,%which is independent of n

for n small. In particular, there exisﬁs a minimizing sequence of

quasi-minima with a uniform constant A .

Theorem 3.1 (ii) implies then that there exists a minimizing
sequence {u.} in U+ H ®o,RY) such that for §CC @

| la, || < const. independent of k
k Hl,q(Q’RN) i

where q is larger than m (and independent of o ).
We can then conclude the proof of Theorem 4.1, simply by means

of (semicontinuity) Theorem 1.3 *) in Ch&p. I, as for all {d CCQ
we have |

?[ufz_]<11m1nf F ;s ¥ < min F .
'\\i+li(1)’m(Q,RN)

The pr oo f above is a re-reading of the proof in [76].

III. Partial regularity

As we have had occasion to mention, the study of the "partial
regularity" of extremals or, more generally, of weak solutions of
elliptic nonlinear systems starts with the work of C. B. Morrey [96]
and E. Giusti, M. Miranda [56] in 1968. Nowadays we have two different
methods for getting such type of resultsh:

a) The one in [96], [56]. It is an indirect argument, i.e. a reduc-
tion to absurd argument; and it works very well for studying weak so-
lutions of systems (of the type of systehs) in variation for general
multiple integrals, essentially when no lexplicit dependence on u
appears.

b) The methods introduced in M. Giaquinta - E. Giusti [38] and deve-
loped and improved in [43], [44], [45], [39]. It is of direct type

and relies on a perturbation argument ° which uses as an essential
tool the LP-estimate for the gradient.fit allows to handle some clas-
ses of quasilinear and nonlinear system§ (as well as of multiple inte-
grals with explicit dependence on u ), too.

*)

*%)

Here we use the quasi-convexity

of the type of the one which appeaﬁs in [89], [13]: Korn device.
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Anyway, the two methods seem not to be completely interchange-
able; we refer to [36] for a discussion. In these lectures we shall
not talk about the first one and we simply refer to [96], [56], [52],
[112] and to [36]. Moreover, we shall confine ourselves to describing
the main ideas of proving a few results obtained. Therefore this
chapter, which should be the central one, has to be understood as an
introduction. For more information we refer to the papers quoted and
to [36]. In particular, much space should have been dedicated to dia-
gonal systems, the methods developed for proving everywhere regula-
rity, and its connections with harmonic mappings; instead, even re-
luctantly, we simply refer to [59], [60], [61], [42].

1. OQuasilinear elliptic systems

In Chapter I we have seen that any extremal of functionals of
the type
(1.1) JF(Du)dx
Q
with
i3
[612 s F 4 e 5 < LlEl2 we
o8 12
or, more generally, any weak solution u € Hléc(ﬂ,RN) to systems of

the type
- DAJ(DW) =0, i=1,...N,
with
ai@ | <elpl , 12 5@ <L,
ip
B
14
2 esge] 2alel? ¥e 0> 0
ip
B
has first derivatives in Hiag *) satisfying the quasilinear elliptic
system
a In sige = 1 nN
f‘*csAi DI grax =0 ¥4 € Bl(a, R
P
Q B
where

= (udy = 3
U = (U7) = (Dgu’) .

Therefore the question of Cl’“-regularity for extremals of the
functionals in (1.1) can be reduced to the question of the HSlder re-
gularity of weak solutions to quasilinear elliptic systems of the type

*)

We assume A;(p) of class cl.
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(1.2) [Aaﬂ(u)D ulp ¢3dx =0 w¢e Hg(Q,RN) s
Q

where Aig(u) are continuous functions in u , satisfying the ellip-
ticity condition

oB 3 2
(1.3) Aljguga > A€l Ye (Ai> 0)
and
(1.4) ‘A |

We have (compare with [96], [56] , [38], [43D)

THEOREM 1.1. Suppose that the coefficients Aig(u) are continuous

and verify (1.3), (1.4). Let u be a weak solution to system (1.2).
Then there exists an open set 2, C @  such that u <8 locally HOL-
der-continuous with any exponent less than 1 in Qo . Moreover,

*" S(Q\~90) = 0 for some s > 2 ; here nk denotes the k-dimensional
Hausdorff measure.

We now want to sketch the proof of this theorem following the
method of [3&] and assuming, moreover,gthat the coefficients Agg
are bounded and uniformly continuous. This implies in particular that
there exists a continuous, bounded, inﬁreasing, concave function

w ? R+ - R+ satisfying
(1.5) |A“3(u) - a% (v)| w(lu = v|?)

Proof of Theorem 1.1. Let xo € @ and R <

< min{dist(xo,an),l} . Let A%E = Aig(u and let v be the

ijo xo,R)
solution to the Dirichlet problem
- o i = ji =
DB(Aij Dav ) o, i 1,...,N , in BR/Z(xO)’

1 N
v-ue H0£BR/2(XO)'R );.

Then we have, see Sec. 3, Chap. I, for'all p < R/2

2 T ‘ 2
I [pv|“ax < c(g) I; |pv|“ax ,
B (x4) BR/ZFxo)
hence !
2 o " 1 2 [ 2
(1.6) |pu|“ax  sc(f) | |pul®ax + ¢ J [D(u - v)|“ax .
B, (xy) Bplxy) Br/2
If we set w=u-v , we have w =0 zon aBR/2 and
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o i 3 _ af _ paB i 3
I AijODaw Dg¢ dx = [ [Aijo Aij(u)]Duu D,¢-dx
Br/2 (%) Brr2 %¢)
. 1 N

V¢ € HO(BR/Z’R ) .
In particular, we may take ¢ = w , so that using the ellipticity in
(1.3), Hdlder regularity and (1.5) we get
(1.7) f |D(u - v)|2dx < c J wz(lu -u

Br/2(%g) Br/2 (%)

2 2
xO’Rl ) |Du| “ax.

On the other hand, using the LP-estimate for the gradient, compare
Sec. 3 Chap. II, and the boundedness of « , we have (for some
o> 2)
20 g=2
2/o = . )5
(1.8) J w?|pu|?ax < [[ |pu| %ax] [I w2 dx] ° <
J
BR(x B

0 R/2

N

G-
< cf ]Dulzdx{} w(lu - uy Rlz)dx] °
B R 0

R R
and, as ®w is a concave function,
(1.9) f wdx < m(i ]u - uy Rlzdx] o
07
B B
R R

Putting together (1.6), (1.7), (1.8), (1.9), with a simple use of
Poincaré inequality, we get

0
(1.10) I |pul?ax < c[(%) + A(xo,R):” |pu| 2ax
BD BR
where
=2
X (XgsR) = N[Rﬁ_z J |Du|2dx] °
By

R <p < R, we get

for all p < R/2 . Since (1.10) is obvious for 5

(1.10) for all p < R . Set

8 (x,,R) = RZM I |pu|?ax .
Bp(xy)
From (1.10) we deduce for 0 < 1 < 1
(1.11) 8 (xy,TR) £ K[1 + x(x, Rt "Je0(xy,R) .

2-2y

Let now 0 < y < 1 and choose 1 in such a way that 2Kt =1.
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Let X, € Q@ and let R be such that
(1.12) X (xy,R) < o,
Then we have from (1.11)

@ (%, TR) £ t2Ta(x),R)
and hence

x(xo,rR) < x(xo,R) < Tn .

By induction we get for every k :

@(xo,th) < 227K, (%45R)
and hence for every p < R,
-n+2+2y p 2y !
(1.13) 2(Xg,0) £ T ) e (x4,R) .

Now, since yx 1is a continuous function |of X, if (1.12) holds for
a point x0 € Q@ , then there exists a ball B(xo,r) such that for
every Xx € B(xo,r) we have

X(X,R) < " .

We conclude then that (1.13) holds unif&rmly for all x € B(xo,r) .
It follows, compare Sec. 3, Chap. I, that u is H&lder-continuous

in B(xo,r) with the exponent y . In éonclusion, there exists an
open set 90 C @ such that the solution u is locally H&lder-conti-
nuous, with the exponent vy , in @ . Since we have

0

@ = {x : lim inf R®™® [puj?ay = o} "
0 R>0 B [
R (%)

. 14 -n | 2 —
{x : lim inf R lu = u, pl°@y = o} ,
R+Q X,

Br(x) |

we see that 9, is nonvoid, meas(ﬂ‘\ﬂo)i= 0., and independent of Y .
On the other hand, @
the system.

0 depends on u and not only on the data of

The second part of the theorem has to do with the problem of the
pointwise definition of Hiég functions} It is a consequence of the
following result in [51]:

1

for v € Lloc

() and 0 < a <n , set

E = {x € @ : limsup p ° J lv@y)lay > o} .
o p>0+ ‘ .
Bp(x)

*) Because of the Caccioppoli inequaliﬁy,
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Then we have
#(E®) =0

simply noting that Du € 1?9 for some q > 2 and

(=2 [|pul?ax)/? < (R [|ou| /9.

Bp Br

Q.E.D.

REMARK. The proof of Theorem 1.1 shows that there exists an €q de-
pending on the data of the system such that X is a regular point,

i.e. x, € Q

0 0 ° if and only if

2-n

R lDu|2dx < e

0
BR(xO)

for some R , or equivalently ( maybe for a different ¢

-n

2
R ju - uxo,Rl dx < e

0
BR(xo)
for some R .

The case of (non-uniformly) continuous coefficients needs some
technical adjustments. We shall not discuss the details, see [56],

[52], [43] and we limit ourselves to remark that now @ - @, would be
@ -9, ={xeq : liminf o2

0 [ 1pui?ay > egbu
p0+

B (x)

U {x €aqa : limsup |u
p>0+

x;pl =+"°} )
The technique described above permits to study general quasili-
near elliptic systems of the type

(1.14) IAgg(x,u)DBujDu¢idx = Jai(x,u)Dagidx + Ibi(x,u,Du)¢idx

Q Q Q

Ve e cg(n,RN)

(and even higher order systems) and obtain "optimal” partial (or every-
where) regularity results for weak solutions according to the growth
conditions verified by the functions ag(x,u) and bi(x,u,p) on the
right hand side and the assumptions we make on the leading part A;g .
It would be very lengthy and technically complicated to describe these
results, therefore we simply refer for example to [43], [44], [45],
and [36].
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Here we confine ourselves to discuss rapidly a "limit case" of
(1.14) and more precisely the regularit§ of weak solutions u , i.e.
ue H N1, Y , to systems with quadratic right-hand side,

. . i
(1.15) [Agg(x,u)DBuJDa¢ldx = Jbi(g,u,nu)¢ ax ,
Q Q !

where we assume that (1.3), (1.4) still hold and

(1.16) |b(x,u,p)| < alp|? .

Following the lines of the proof of Theorem 1.1 one can prove,
a%8

1]
|lu| < M, be a solution to (1.5). Assume moreover that the elliptieity

see [38], the following: suppose to be continuous and let u ,

eonstant A and the constant a in (1;16) satisfy the relation
(1.17) 2Ma < A .

Then u <s Holder-continuous with any exponent y < 1 in Q , except
possibly for a closed singular set Y, ,:whose Hausdorff dimension does

*)

not exceed n - q , for some q > 2 .

We have therefore the same result as in Theorem 1.1, but with the
additional condition (1.17). However, as we have already stated, (1.17)
is a natural condition, apart possibly for the factor 2. In fact the
conclusion above does not hold without the assumption Ma < A even

if n =2 and the system is diagonal, i.e. A;g = 6ijA°s .

Diagonal systems have been studied‘extensively, compare for exam-
ple the survey papers [58], [GQ], because of their importance in dif-
ferential geometry. The Euler system of:the energy of harmonic map-
pings between Riemannian manifolds or the system satisfied by surface

with prescribed mean curvature in isotermal parameters have exactly
this structure. '

We have, see [63], [130] and for a simpler proof [41]:

THEOREM 1.2. Suppose Azg = sijA“B(x) with A% e L™ ; let (1.3),
(1.4), (1.16) hold and let wu , |u| < M, be a weak solution to (1.15)

and Ma < A . Then u s locally Hﬁldeﬂ-continuous.

The literature on harmonic mappings is so large that we have not
any possibility even to hint at it. We sgimply refer to the report [21]
by J. Eells and L. Lemaire, and, for reéults in dimension n > 3 , to

*) We remark that the only point wherei(1.17) is used is in order to
obtain the LP-estimate for the gradient.|
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[61], [60], [59] and [42].

In the case of Theorem 1.1 when the coefficients are more than
merely continuous, the solution u(x) will show higher regularity in
QO . This is a simple consequence of the linear theory. However, in
the more general case (1.14), as the right-hand side shows dependence
on Du , in order to use the linear theory one first has to prove that
u is in Ciég(QO,RN) . In fact this can be done, still in the spirit
of the proof of Theorem 1.1, and we refer for a very simple proof to
[38], [42], see also [36].

We conclude this section with a discussion of a few problems
that appear naturally.

There is a general problem of studying the sinqular set. In par-

ticular: is the singular set analytic or semianalytic? Are there dif-
ferent characterizations of the singular set? (See for example [57].)
Are the singularities isolated in dimension 3 or more generally in
the first dimension they appear? (In the next section we shall see
one case with a positive answer.)

Connected with these problems is the problem of giving reason-
able condition for the solutions to be everywhere reqular. We mention
some results in [46], [47] and the very interesting result in [127],
see also [23], [64], that says that extremals of elliptic integrals
of the type

fF(]Du[Z)dx

Q
are everywhere regular. Other structural conditions in thé. case of
diagonal systems with quadratic right-hand sides can be found in

[63], [39]. But the problem is still open.

There are, finally, topological problems like: Is the regularity

a generic property? Which are the topological properties of the class
of systems with smooth solutions or with non-smooth solutions? In
particular, there is a problem of the stability (or non-stability) of
the singularities.

Finally, one could look for analogous results for parabolic sys-
tems and to the (specific) problem of the evolution of singularities
(we refer for some basic results to [37], [48], [49], [15]).

2. Minima of quadratic multiple integrals

The results in Section 1 do not cover the case of minima of
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regular multiple integrals of the Cal@ulus of Variations. And almost
no results on the partial regularity of the minima of integrals like

(2.1) [F(x,u,Du)dx

Q
under "natural conditions" are known. Let us try again to point out
some difficulties. Assume F smooth and

(2.2) [p{2 - k < F(x,u,p) < a|p|2 + k .

We are not allowed to think of u as|a solution of the Euler equa-
tion; and if we want to use the Euler lequation with natural conditions
we need i

1) growth assumptions on Fu and ‘Fp , for example
Lip| ,

2
Lip|® i

}Fp(x,u,p)l

(LS

Ia

|F,(x,u,p) |
(ii) to assume that u is bounded.

Of course we can assume (i), (ii), but we do not know when (ii) holds.
Under the assumptions (i) and (ii), 4 is a solution of a system of
the type
i i 1 ™
(2.3) I[A;(x,u,Du)Da¢ + B, (x,u,Du)¢ Jax = 0 ¥4 € Hy NnL
Q I

and it does not seem easy to get some partial regularity result in
that case simply requiring the natural growth, i.e.

|afx,u,p)| < Llp|

(2.4) IAZ )| <L,
Pg
[a% ,x,u,p)| < Llp| ,
iu
(2.5) |B(x,u,p)| < alp|® + b,
and the strong ellipticity
(2.6) a® geled 2 alel? ve 0> o0 .
ipB !

We note that in general (2.3), ..., (2.6) are not sufficient for

proving that u € Hiéz and satisfies}the system in variation, i.e.
are not enough for linearizing the sy%tem even in the case B = 0 .
We should need to know that u is not only bounded but also conti-

nuous.



Anyway, for systems of the type (2.3) we have the following re-
sult, [44]:

THEOREM 2.1. a) Let u € Hl’Z(Q,RN) be a weak solution to system
- DuA;(x,u,Du) =0 i=1,...,N.

Suppose (2.4), (2.6) hold. Then the first derivatives of u are HOL-
der-continuous in an open set Q and meas(ﬁ‘\ﬂo) =0 .
1,2

0
b) Let u € H Lm(n,RN) be a weak solution to (2.3). Suppose
that (2.4), (2.5), (2.6) are satisfied and that 2aM < A where
|ul £ M . Then the first derivatives of u are Holder-continuous
in an open set no and meas(Q \Qo) =0 .

We refer to [44] for the proof in principle uses the technique
of [38], [43] plus some sharper LP-estimates for the gradient, and
to [44], [36] for a discussion of this result.

Theorem 2.1, however, leaves the problem of the regularity of
the minima of the functional (2.1) under "natural" conditions open,
except in dimension 2, compare also C. B. Morrey [95]. In fact, if

n = 2 , under the assumption of Theorem 2.1, we have u e Hiég for
some p > 2 ; then by the Sobolev imbedding theorem, u is HSlder-
continuous. Therefore u e Hiéi

[44], [14], that u € Hiég . Hence we can conclude:

and, moreover, one can show, see

a) Under the assumptions of Theorem 2.1, 2if n = 2 , then the deri-
vatives of weak solutions are Holder-continuous everywhere.

Moreover, since the minimum points u € Hl’z(Q,RN) of the functional
(2.1) are HSlder-continuous in dimension 2, compare Sec. 3, Chap. II,
we get:

b) The minimum points u of the funetional (2.1) are, <if n = 2 ,
Ci-Halder-continuous *). Therefore they are as regular as F permits.

In the rest of this section we, want to describe two contributions
to the problem of the partial regularity of minima in dimension n 2
> 3 , due to M. Giaquinta, E. Giusti [39], [40] and refering to the
special case of quadratic functionals, i.e. multiple integrals of the
type
2.7) F [u;e] = IA‘;_? (x,u)uniD
Q

8u:'dx N

*) Of course, provided that the analogues of (2.4), (2.5), (2.6) hold.
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where Agg(x,u) are continuous (for thé sake of simplicity we shall
assume uniformly continuous), bounded:

(2.8) |A }
and satisfy the ellipticlty condition
uB 1 2
(2.9) A{5E, 8 2 rlg] N¥E (A >10) .

We have, see [39],

THEOREM 2.2. Let u € Hl’z(Q,RN) be a minimum point for the functi-
onal ¥ in (2.7); let Agg be (unifoﬁmly ) continuous and let
(2.8), (2.9) hold. Then there exists an|open set Qo C @ such that

u e CO’Y(QO,RN) ¥y < 1 . Moreover kn‘q(ﬂ N\ QO) = 0 for some g >
> 2 .

Proof . Let us sketch the proof. Let x, € @ , R <

0
< % dist(xo,an) and let v Dbe the solqtion of the variational prob-
lem

aB i J f
JAij(xo,uxo.R)Duv DBV dx — min ,

v-ueH(B(X)R)
Then we have, compare Sec. 3, Chap. I,

n |
(2.10) J lov|ax £ c, (&) f Ipv|2dax Ve < R
B, (xo) BR(xd)
and moreover

(2.11) |pv|Pax < ¢ [od|Pax (2 < p < o) .
. Bp(x4)

Let w=u-=-vVv ; we have w € H (B RN) and

2 i 3j
ey I |pw|“ax < [ i](xo,u R)Duw Dw-dx .
BR(xo) BR(x )
On the other hand,

iy gy o
J lj(xo,u ,R)D v Dgw dx = 0
BR !

and therefore !

B R | aB is oday =
{ A (x xo,R)Daw DBW dax J Aij(xo,uR)Dau DBW dx
B ;BR
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= J [Agg(xo,uk) - Agg(x,u)]Da(ui + vi)Dswjdx +

Br
aB _ a0B in o3

+ Aij(x,v) Aij(x,u)JDav DBV ax +

i i

Jaw - aB j
+ D, u-dx I Aij(x,v)Dav DBV ax .

af
ij(x,u)D“u 8
B

[t
BR
j A
Br R
Since u minimizes ¥ and u=v on aBR , the sum of the last
two terms is nonpositive. Therefore

[ 1owl?ax < o[ (Ipul? + 1ovI2) [2(R? + |u - ugl?) +

B B
R R
+ w?(R? + Ju - v|?)]ax

where « is a continuous, bounded, increasing, concave function with
w(0) = 0 and
2 2

|Agg(x,u) - Agg<y,v)| <o(lx=y]+ Ju-v“) .
Now using the L9-estimate for Du , (2.4), the boundedness of w ,
the Poincaré inequality (in the same way as we did in Section 1) and
combining (2.10) and (2.12), it is not difficult to deduce the follo-
wing inequality:

[ (1 + Ipul?ax <

J

Bp(xo)

2
n 1- =
< c[(%) + w(R? + cR?™M [ |pu| %ax) q] j (1 + |pul?)ax
Bp(xy) Byr(%y)

for every p < R < % dist(xo,aﬂ) and for some q > 2 . The result
then follows as in the proof of Theorem 1.1 Sec. 1.
Q.E.D.

Under the assumption that the coefficients split as
aB _ aB
(2.13) Aij(x,u) = gij(x,u)G (x)
we have now, see [4Q], more information on the singular set, and,

more precisely,

THEOREM 2,3. The singular set of a bounded minimum u has Hausdorff
dimernsion not greater than n = 3 . In dimension n = 3 it consists

at most of tsolated points.
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We note that, although of particul%r type, functionals in (2.7)
with coefficients given by (2.13) are of interest in the theory of
harmonic mappings of Riemannian manifolds. In fact if u is a mapping
from a Riemannian manifold M into a Rﬂemannian manifold N (with
metric tensors GaB(x) , gij(x) , respe%tively) the energy is given
in local coordinates by

aB iy ,J ;
Jgij(u)G (x)Dau DBu JG(x) dx

aBy _ -1 = I
where (G )—(GGB) and G det(GaB) .

The method of proof follows closely the one developed in the
theory of minimal surfaces and uses the following two lemmas:

LEMMA 2.4. Let A(V)(x,z) = Azg(“)(x,z) be a sequence of continuous

funetions in B x RrY ( B <& the unit ball in r" ) converging to
A(x,z) and satisfying the inequalities |

]A(")(x,z)l <M,
(2.14) A™eeg s g7 ve,
]A(v)(x,z) - A(“)(x',z')l i m(]x - vaZ + )z - z,|2)

where w(t) <8 a bounded continuous coneave funetion with w(0) = 0 .
For each v = 1,2,... let 'u(v) be a minimum on B for the fureti-
onal

FV @) = fA(")(x,u("))Duf(")Du(")dx

and suppose that ™ Ly weakly in n2s,RY) .
Then v 18 a minimum in B for the funmetional

IA(x,u)DuDudx .

v)

Moreover, if x, 18 a eingular point for u and X, = X then

0 °?

X 18 a singular point for Vv .

0

The second lemma is a monotonicity |result (very similar to the
one which appears in the theory of minimal surfaces). And it is for
this lemma that the special form (2.13)§of the coefficients is needed
*)

. We may assume }
(2.15) c*8(0) = s*F ;

moreover, we assume that

*
) Any extension of this lemma to a moﬂe general class of coeffici-

ents would imply an immediate extension lof Theorem 2.3.

83




1
2
(2.16) J ﬂi%-l at < + = .
0

Then the monotonicity result is

LEMMA 2.5. Let U be a local minimum in B for % in (2.7) with
coefficients A given by (2.13) and satisfying (2.14), (2.15),
(2.16). Then for every p , R, 0 < p < R < 1 we have

(2.17) [ 1w - uex|?a B < v, 100 B [em) - 00013
2B
where
£ 2
(2.18) a(t) = £270 exp(YQI 2ls) ds)I A(x,u)DuDudx .
0 B,

We confine ourselves here to proving the second part of Theorem
2.3 and we refer to [40] for the first part and for the proof of
Lemmas 2.4, 2.5.

Proof . We first observe that the function ¢(t) in (2.18)
is increasing, and therefore tends to a finite limit when t — 0
(since it is also bounded). Suppose now that u has a sequence of
singular points X, » converging to x, = 0 and let R, = 2|xv] <
< 1 . The function u(V)(x) = u(Rvg) is a local minimum in B for
the functional

jF(V)[p“;B] = JA(V)(x,u(“))Du(V)Du(“)dx . A% (x,2) = A(R x,2) .
B

(v)

Moreover, each u has a singular point vy with y =1 .
v 0 2

Since the u(v)

sibly to a subsequence) that u(V) converge weakly in LZ(B) to

are uniformly bounded, we can suppose (passing pos-

some function v and that y — y, . The coefficients A®) (x,u)
are bounded and uniformly continuous in B x B ( L being a bound
for |u| ) and hence we may apply Lemma 2.4 and conclude that v is
a minimum for

¥,[vsB] = JA(O,V)DVDde .
B
Also from Lemma 2.4 it follows that v has a singular point at Yo -
Let now 0 < A < y < 1 , and let us apply inequality (2.17) to p =
= ARv and R = “Rv . We have
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[ lu’ ) - u ey |Zaa™t < iog [eur,) - ¢OR)] .
oB

If we let v — = , the right-hand side converges to zero and hence
for almost every value of A and we have

lvox) - vax) [2a %771 =0
9B
so that v is homogeneous of degree zero.
We may therefore conclude that the whole segment joining 0 with
Yq is formed by singular points for v |. This contradicts Theorem 2.2
and in particular the conclusion that the set of singular points has
dimension strictly less than 3 - 2 = 1.
| Q.E.D.
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