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NONLINEAR DIFFERENTIAL EQUATION^ FROM BIOLOGY 

K. P. Hadeler 

Tübingen , FRG 

In this lecture some results on 

equations are presented, ordinary 

first order partial differential 

equations. In each case the study 

a problem from biology or a biological 

nonlinear differential 

differential equations, 

equations, elliptic 

has been motivated by 

model. 

1. An Epidemic Model 

We consider a population infected &y parasites, where the 

number of parasites per host is an; important feature, and 

where the life expectancy of hostsj is influenced by the 

number of parasites. The nucleus of the model is the classi­

cal model for an age structured population [1]. 

Let n(t,a,r) be the number of individuals of age a carry­

ing r parasites at time t. Let tp(tj) be the rate of acquir­

ing parasites at time t. It is assumed that <P depends only 

on the average number of parasites! per host 

Ф(t) - fłf(uҶt)), 

5(t) - í0 ZZ rn(t,a,r)da / (0 n(t,a,r)da. 

(1.1) 

(1.2) 

Here f : [0,«) -> [0,») is a continuously differentiate 

function, such that f(0) = 0, f'(J0) - 1, f(u) > 0 for 

u > 0, and $ >0 is a constant which, will be used as a 

bifurcation parameter. 

We assume that individual hosts di|e according to the death 

rate /i(a) + ot,r, where ;i(a) is the age-dependent death rate 

of individual hosts and a is the ctifferential death rate 

due to the presence of one parasite. The death rate of 

parasites is CT. 
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Thus the functions n(t,a,r) satisfy an infinite system of 

ordinary differential equations 

^(t,a,r) . dn(t,a,r) 
7>t da 

= - [q>(t) + 71(a) +o(r +crr]n(t,a,r) 

+ cp(t)n(t,a,r-1) + cr(r+1 )n(t,a,r+1) (1.3) 

for r =- 1, and for r -= 0 

9n(t,a,0) + 3n(t,a-0) „ _ [cp(t) + p(a) ] n(t,a,0)+ ffn(a,t,1). 

With assistance of the generating function 
00 

u(t,a,z) - > ', n(t,a,r)zr (1.4) 
r=o 

these equations can be condensed into one partial differen­

tial equation 

ut + u a + [az+(T(z-1)]u2 - [0(z-1)f (u) - ;i(a)]u - 0 (1.5) 

where 

00 00 

u • / u (t,a,1)da / / u(t,a,1)da. (1.6) 
o o 

This equation is accompagnied by initial and boundary 

conditions 

u(0,a,z) = uQ(a,z) at t * 0, (1.8) 

u(t,0,z) « N(t,z) at a =- 0. (1.9) 

This model has been discussed in a joint paper with 

K. Dietz [ 2 ]. In a first approach the boundary datum N is 
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assumed as a given function. In a more realistic model N 

should depend on the actual state of population, e. g. 

N(t,z) =- J ° ° B A t , a , z ) u ( t , a , z ) d a (1.10) 
o 

where B is a kernel describing fertility depending on 

time, age, and parasite load. 

If u does not depend on z, then u • 0, |u «- 0, and the 

equations reduce to the well-known modei for age structure 

u. + ua + p(a)u = 0. 

Our approach to the equation is the following: assume cp(t) 

were known, then the equation becomes linear, 

u. + u + [*z-cr]u - [ (z-1)<p(t) - n(aj ]u « 0 (1.11) 
XL a z 

where X-= a + <r . 

This equation can be solved by the method of characteristics 

take care of the in a straightforward manner. One has to 

discontinuity at t = a. 

The solution for a > t is 

u(t,a,z) -* u (a-t,L(z,t)) exp K(t,a,z) (1.11a) 

where 

t a 
K(t,a,z) = J (L(z,t-s)-1)<p (s)ds - J £i(s)ds 

o a-t; 

and the solution for t > a reads 



u(t,a,z) = N(t-a, L(z,a)) exp K.. (t,a,z) (1.11b) 

a a 
K A t , a , z ) = / (L(z,a-s) - 1)ф(t-a-s)ds - / ji(s)ds 

o o 

where 

L(z,t) = l-d-zje"
5
* - ^ (1-e""

xt
). (1.12) 

From this explicit representation one easily obtains 

expressions for /u (t,a,1)da, /u(t,a,1)da which can be 

inserted into equation (1.1), (1.6). The result is an 

integral equation for the function <p, 

cp(t) = (3-ip)(t) (1.13) 

/ eA l p{N z+NBtp]da + e C ( p [ F z + FD(p} 

(J <P)<t) = 3f ( — T ) - (1-14) 
V / eA ( pNda + eC c pF ' 

Here, w i t h L.. ( t ) = L ( 1 , t ) - 1, 

t 
(A(p)(t,a) - / L . . ( t - s ) ( p ( s ) d s , 

t - a • 

t 
/ 
t - a 

( B ф ) ( t , a ) = / e ~ * ( t ~ s )

Ф ( s ) d s , 

t 
(Cф) ( t ) = / L . . ( t - s ) ф ( s ) d s , 

o 

t 
í 
o 

(DфHt) = / e " " * ( t ~ s )

Ф ( s ) d s . 
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g « e~
M(a)
N(t-a,L(1,a)) 

5 « e ^ ^ ^ l t - a ^ d , ! ) ) 

F = J e^^^^^u(a-t,L(1,t))4a 

t ° 
P

z
= / «-"

( a , + l l < a r t )
u

o s
(«-t)

f
I.(1,t) 

So far we have obtained local and global 

assumptions on the functions f, u, u and N [1 ]• The 

main difficulties in the proofs are the 

whole equation and the fact that the denominator may 

are exponentially 

decaying functions of a 

Next try to find stationary solutions. Suppose that N is 

constant in t. For simplicity we assume 

constant in z: This assumption is quite 

are not infected. 

)da 

existence under reasonable 

3 N [1 ]. The 

complexity of the 

that N > 0 is also 

naturals newborns 

For stationary solutions (p becomes a constant which satis­

fies a certain scalar equation. Let 

q(a) - iu-e"*
0
) 

Q(a) » Jq(s)ds - ~(a-q(a)) 
o
 л 

I
 Ы
 - f

e
-o,Q(a)Ф-M(a)đa 

-,<»> - j V a Q ( a ) < p " M ( a ) q u > a a 
O 

w(<p) » it(«>)/i0(<p) 

(1 .15) 

(1 .16) 

(1 .17) 

(1 .18) 

(1 .19) 



Then the constant <p is obtained from the equation 

<P - &f(W(<P)<P), (1.20) 

and the corresponding solution of the full problem is 

u(a,z) - N exp[-((1-z)q(a)-aQ(a))cp-M(a)3 . (1.21) 

The branch of nontrivial solutions can be represented 
explicitly as 

& - ip/f (W(<p)<p). (1.22) 

It starts at (Po,0) where 

0O = /V
M ( a )da/ jVM(a)q(a)da . (1.23) 

o o 

If f does not grow too fast, i.e. if 

u""2f (u) -> 0 for u -» • , (1.24) 

then the branch exists for all $ > B . If f satisfies cer­

tain monotonicity and concavity conditions 

^ • ^ 0 , !;<-*--> - 0 , (1.25) 

then for each $ > B there is exactly one positive <p . 

The conditions (1.25) are met for acquisition functions 

which have some tradition in epidemiology such as f(u) = u, 

f(u) - u/(1+u), f(u) - 1-e"u. 
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A direct stability analysis of equation (1.5) appears 

difficult. On the other hand, if one uses the integral 

equation (1.14) and the derivative 3«f/()tp which is used in 

the existence proof anyway, one can reduce the stability 

problem to the study of a linear integral equation: If 

S(t) contains the influence of the perturbation of the 

initial data and y the deviation in <P f^om the stationary 

constant then y satisfies an integral equation 

fit) **ftf(t) + S(t) . 

One can show that the stationary solution 

to <p =- 0 (no parasites, natural age disiributi 

(1.26) 

linearly stable for 3 < $Q with respect 

decaying (as functions of a) perturbations 
to 

corresponding 

on) is 

exponentially 

2. Reaction-diffusion equations and invariant sets 

Many phenomena in biology can be described as the result 

of the interaction of diffusion and reactions between 

species: Let the interaction of species 

an ordinary differential equation 

be described by 

f(u) (2.1) 

where u € Rm and f: Rm-+Rm. Let u -= u be| a stationary 

solution. It is exponentially stable if jail eigenvalues of 

f»(u) are located in the left half-plane^. 

The ordinary differential equation describes the chemical 

reaction under well-stired conditions. If the reactands 

diffuse, possibly with distinct rates, tne reaction can be 

described by an equation j 

u t « DAu + f (u) (2.2) 
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where A is the Laplacian, acting componentwise on the vec­

tor u, and D ~ (D.i6.jJ is the matrix of diffusion rates. 

In typical situations equation (2.2) is studied in some 

bounded spatial domain A with smooth boundary, together 

with homogeneous Neumann conditions 

3u(t,x) = 0 on dll (2.3) 

av 

(V = outer normal) or nonhomogeneous Dirichlet conditions 

u(t,x) =- f(x) for x €3-1. (2.4) 

It is well-known that the spatially homogeneous solution 

u = u of (2.2), (2.3) may become unstable, if the diffu­

sion rates are sufficiently wide apart and the domain 

is large. A necessary condition is that the matrix £'(u) is 

excitable. For m = 2 the matrix 

(3) - ( a ) 

is stable, but excitable, if the determinant ad - be is 

positive, the trace a + d is negative, but either a > 0 

or d > O. If a > 0, and d < 0, the reactand u- acts "auto-

catalytic", the rectand u2 "inhibitory". 

If the homogeneous state looses its stability, non-homo­

geneous stationary solutions may arise. In the neighbor­

hood of the bifurcation point their shape will be deter­

mined by the linearized equation, farther away they may 

change their behavior, undergo secondary bifurcations 

a. s. o. Similar complicated behavior can be expected in 
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the Dirichlet problem. A first step in 

the proof of existence for stationary 

the analysis is 

solutions. 

Suppose M C R*1 is a positively invariant set for the or­

dinary differential equation, i. e. for any u € <)M and any 

outer normal p to 3 M at u holds 

f(u) (2.5) 

One could conjecture that the cylinder dccm(.ci), 

G - { uecFicbi U(5.)CM } 

is a positively invariant set for the equation (2.2) with 

boundary conditions (2.4), provided the 

satisfy fi'dSDc M. However, this claim 

boundary data 

is invalid. 

If the diffusion rates D. are equal, then, according to 

an invariance theorem of Weinberger [3], the conjecture 

can be shown for M compact, convex, with interior points, 

with some regularity conditions on 3M. 

If the diffusion rates are distinct, then, in general, 

only sets of the form 

M {u: a. - u. 
3 3 

bj, j - 1, Ч'
 m ì (2.6) 

can be allowed. However, in many applications the diffu­

sion rates are essentially distinct and £he vector field 

f does not admit positively invariant sets of the form 

(2.6). 
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Nevertheless one can exploit the fact, that many well-known 

examples f allow convex invariant sets, and that in many 

cases the vector fields f and g, where 

g(u) m D~
1
f(u), (2.7) 

have a similar structure. Then the Dirichlet problem 

-Au » g(u) in -il, u =f on "dil (2.8) 

can be approached via Weinberger's invariance principle 

for vectorvalued elliptic equations and a degree argument 

[4]
f
 [5] vector q valued. 

This approach can be carried through [4] for the Lotka-

Volterra model 

u. = au(1-u/K)-buv+D..Дu , 

v. = cuv - dv + D^åv , 

(2.9) 

tne Brusselator 

u = u2v - (G+1)u + A + D.jДu 

2 

v. = -u v + Cu + D^Дv , 

and t h e Gierer-Meinhardt model 

2 
u. = ö u v - u u+ D-Дu , 

2 
v. = b u - yv + d + D^Дv . 

(2.10) 

(2.11) 
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In each of these cases a family of c< 

be constructed, which are positively 

the quarterplane u > 0, v > 0, i. e. 

of u > 0 , v > 0 is contained in one of 

compact sets can 

and exhaust 

compact subset 

these sets [4] . 

invariant 

evéry 

In the Lotka-Volterra case the sets are(related to the 

well-known Lyapunov function, in the case of the Brussela-

tor there is a family of convex pentagons, and for the 

Gierer-Meinhardt model there is a family of sets bounded 

by straight lines and exponential arcs, j 

Brusselator 

Lotka-Volterra 
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3. The classical model of population genetics 

The Fisher-Wright-Haldane model of population genetics 

describes the development of a population under selection 

and Mendelian segregation. It is assumed that the popula­

tion is genetically homogeneous with the exception of a 

single locus with n * 2 alleles a..,..., a . Then there are 

2 '
 n 

n genotypes a.a^, j, k^-l,..., n. We shall not identify 

a.a. and a. a. but always assume that these types occur with 

the same frequency. 

To each genotype a,a. we attribute a fitness parameter, 

which measures the proportion of the descendants of this 

type among the offspring. Other interpretations derive the 

fitness parameter from a notion of viability. 

The state of the population is described by the genotype 

frequencies 

V - «kj * 0 ' 5 ~ «jk - v . <З.D 
n 

From these the gene frequencies 

n n 

pj • LZ ajk - °» ӣ Pj - 1 

Tč=T j=i 

<3.2) 

can be computed. Of course, in general one cannot obtain 

the genotype frequencies from the gene frequencies. However, 

if the total population is formed by random mating then 

these frequencies are related by the Hardy-Weinberg law 

°jk - PjPk- < 3 - 3 ) 
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The state space of the population can always be Interpreted 

as a simplex in some space of appropriate dimension. For 

n = 2 the state space of gene frequencies is a segment, the 

state space of genotype frequencies is the de Finetti dia­

gram, (now a1a2 and a2a1 identified), and the set of all 

populations satisfying (3.3) is the Hardy-Weinberg parabola. 

In general the development of the population should be 

described by a difference equation (discrete time) or a 

differential equation (continuous time) | for the â  *jk' 

« ' - Hk>< (3.4) 

àjk s *<ajk>- (3.5) 

In the discrete time case (separated generations), always 

observing the population at birth, the csquation (3.4) is 

equivalent with an equation fpr the gene frequencies 

p j '££ifcl *5»ï/I 
Г,S«1 

s p r p s ( 3 . 6 ) 

In the continuous time case, the equation for 
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the gene frequencies 

pj * J/jlW " r j./r-PrP-Pj (3-7> 
can be interpreted as approximation for equations (3.5), 

for finite time, in the neighborhood of the Hardy-Wein-

berg set. 

Let p = (p.) be the vector of gene frequencies, and 

P - (p . iSjk) be the corresponding diagonal matrix. Let 

F » (f-sjJ be the symmetric matrix of fitness coefficients. 

Then the equations (3.6) and (3.7) assume the form 

p t + 1 - PtFP
t/pt*Fpt , (3.8) 

p » PFp - p*Fp.p . (3.9) 

Then the state space for both equations is the simplex 

of probability vectors 

S - {p * 0, e*p - 1} , e*= (1,.-.,1) . (3.10) 

The mean fitness of the population in state p is the 

quantity 

W(p) = I a.kfjk = I f.kp.pk = p*Fp . (3.11) 

In each of the two models the function W: S -* R is a Lya-

punov function [6][7][8] . Thus every solution approximates 

a continuum of stationary states. 

The stationary states are the solutions of the equation 

PFp « p*Fp»p . (3.12) 
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Each solution of this equation is located in the relative 

interior of some subsimplex, i.e. 

P (3.13) 

with q >0. There is a corresponding partition of the 

matrix F, 

F = 
11 

lF21 

F 12 

22 

(3.14) 

If p is stationary and in the interior of S then 

Fp = p*Fp»e. On the other hand, if x is a positive solu­

tion of the equation Fx = e, then p = x/e*x is a stationa­

ry point in the interior of S. Similarly, stationary points 

(after appropriate in some face S of S of the form (3.13) 

reordering of components) correspond to solutions of the 

equation F^x = e. 

Let F..-X = e have a positive solution x and assume 

dim ker F 11 
: tf -* 1. Let S be the face of S which contains 

the corresponding stationary state. Then the set of 

stationary points in S is a manifold o^ dimension V 

is the intersection of a linear manifoid with *3. 

It 

Corresponding to the faces of S there aire at most 2-1 

continua of stationary points. j 

4. The convergence problem | 

In the case of non-isolated stationary points the asympto­

tic "behavior of trajectories is not obvious. The Jacobian 

at a stationary point is 
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J = PF + [Fp] - 2pp*F - p*Fp-I, (4.1) 

where [Fp] - ((Fp)^.). Equivalently, with (3.13) and 

Q = % ^ k ) f 

QF.J.J - 2q*F
n
q.qe* (Q-2qq*)F

12 

O [F
21
qЗ - q*P

n
q«I 

(4.2) 

If there is a manifold of stationary points of dimension 

V then dim ker J • V. But from above 

dim ker (QF
11
-2q*F

12
q«ge*) • dim ker P ^ = V . 

The hyperbolicity requirement that dim ker J should not 

exceed the dimension of the manifold leads to the hypothe­

sis 

(F
2 1
q)

i
 * q*F

11
qr i - 1,...,n-m . (4.3) 

A stationary point with the property (4.3) is called 

regular. Regularity has an obvious biological meaning: 

At the stationary point p the genes a.......a are main­

tained, whereas
 a

m
+i'-«»' a' are absent. Condition (4.3) 

says that the fitness of any of the absent alleles is 

different from the mean fitness of the population. 

In [9] a partial solution to the convergence problem is 

given: If for a given trajectory the w-limit set contains 

a regular stationary point, then the trajectory converges 

to that point. 

From the explicit representation of the Jacobian (4.1) one 

can easily derive a stability criterion for a polymorphism, 

i.e. a positive stationary solution: Suppose F has eigen­

values ̂
1
 -* *X

2
 -- .••*^

k
 - °;>^

k + 1
 -* ... * \ . By Sylves­

ter's inertia theorem PF has eigenvalues ja
1
 - juu ~ • • *^1av 

- 0 >A-
+1
 * ••• - >i • By Perron's theorem p«> -/-„• 
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Of course u-

corresponding to the eigenvector e' 

exponentially stable iff F has n-1 

We return to this property in Section $ 

p Fp. Thus J has the 

-
 u

n
>~ Pr Since -u.j ijjj 

tike 

eigenvalues 

negative 

The c l a s s i c a l model does not include mijitation 

T« (y*jV) be a column s tochast ic matri^ <.V 
Tik

 i s t n e
 P

r
°bability that the allele 

Then Fisher's equation assumes the forsji 

a )x2± . . . ^ 

the eigenvalue 

polymorphism is 

eigenvalues. 

Let 

of mutation rates: 

a, mutates into a.. 

where 

^ • ГРГр - И(р)Р 

Г-^ о, е*Р=- е* . 

(4.4) 

(4.5) 

From the implicit function theorem fol1|ows that non-de­

generate stationary points are only sl.ijghtly perturbed 

if F- I is small. However, stationary joints on the boun­

dary of S can move outside S. Consider ja situation where 

for F= i there is an exponentially stable polymorphism p. 

Then p is a global attractor in the inferior of S, and 

W(p) is strictly convex over S. From the biological inter­

pretation one can conjecture that for 71 > 0 there is only 

one stationary point. In fact, at a stationary point near 

the boundary selection and mutation acti in the same direc­

tion, the stationary point could not be| maintained. In 

[10] this conjecture has been proved fo|r the special case 

of equal mutation rates, i.e. for 

T - <1-jГ)l + / ^ (4.6) 

The problem of asymptotic behavior of arbitrary solutions 

of equation (4.4) remains open. 
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5. A related problem for positive matrices 

In reactor physics the following problem occurs [11] : 

Find an optimal distribution of fuel such that a minimal 

total amount of fuel leads to criticality. This problem 

can be formulated in terms of integral operators with po­

sitive kernels of which the following is a finite-dimen­

sional version. 

Let A » (a-iv) b® a symmetric matrix with positive elements. 

Consider the following 

Problem I: Find a positive (nonnegative, but * 0) diagonal 

matrix U =- (u.6., ) such that the positive (non-negative) 
J JK . 

matrix UA has spectral radius 1 and such that e*Ue is 

minimal. 

This problem is equivalent with the following 

Problem II: Maximize the spectral radius ^(UA) under the 

side condition e*Ue -» 1. 

Indeed, if U is a solution to Problem II, and ^ - ^(UA), 

then U/^ is a solution to Problem I. 

Of course Problem II has a solution, because the set u -- 0, 

e*Ue =- 1 is compact. 

/ -

-1, 

1/2 If we put W -= U ' , w -= We, we have 

UA = W(WAW)W 

e*Ue « w*w . 

Thus we can compute the optimum via the Rayleigh quotient 

R* -= sup R(v,w), (5.1) 
v,w+0 
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where 
R(v,w) = £ ™ w - R(w,v) | (5.2) 

in view of Wv = Vw. 

Using this symmetry, we find from 

9Rjv'W) " w^-v^--(v*v)v*WAW - (v*W^AWv).V] 

the Euler equations 

WAWV - 2 g H Й . -

VAW - * ^ . w 

(5.3) 

We can assume v*v = w* w = 1 and put 

% m v*WAWv . | (5.4) 

Then the necessary conditions read 

WAWv=^v
 f

 VAVW =J\w. (5.5) 

From these relations it follows immediately that w and v 

have the same pattern of zeros. 

Case 1s v> 0, w> 0. Put Wv = u. Then AWv =^e, thus 

Au =^e, u >0, % = u*Au . | 

Conversely, if Ax = e has a solution x>; 0 then put u=x/e*x, 

X- u*Au, v = w = u ' e. 

Case 2:v = ( Y
>
) , w = (

w

)
) , where v> 0, w> 0 have the same 

dimension. Then one obtains a similar problem for a sub-

matrix of A. 
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Thus the global maximum has to be sought among the solu­

tions of the equation 

Au - U*Au«u . (5.6) 

This equation is identical with the condition (3.11) for 

stationary points in the population genetic model. It is 

clear from Section 4 that if equation (5.6) has a positive 

solution t^en it is the unique global maximum iff the matrix 

A has n-1 negative eigenvalues. 

6. Fertility depending on mating 

In contrast to Fisher's model one can assume that fitness 

or fertility is not a property of a single genotype but 

rather depends on the mating pair. 

Such models have been constructed by W. Bodmer and others 

(see [12]). The simplest situation arises for two alleles. 

Then there are three genotypes x- * a..a.., x2 -
 ai a?' an<^ 

x- « a 3 a v T o t n e mating X4X4 w e attribute the fertility 

f.. «• fk.i> 0. If x . describes the fertility of the corres­

ponding genotype, then, under the random mating hypothesis, 

the functions x. 

equations ([12 3). 

the functions x. satisfy the following set of differential 

x1 = f11xï + f12x1x2 + If22x2 " Ф x
1 

f
21
x,x

2
+ -f.3X.X3 + 2 - 2 2 x 2 + f

23
x
2

x
3

-
 *

x
2
 ( 6

*
1 ) 

• 1 2 2 
X
3 ** 4

f
22

X
2

 + f
32

X
3

X
2
 + f

33
X
3 " °

X
3 

where 
3 

Ф(x) - Г f.AX, . (6.2) 
j,k-1 ^*

 3 K 
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Fishør 

degener^te 

boundary 

These equations represent just another 

system. It bears much similarity to 

three alleles. In fact, for some 

models coincide. On the other hand, the 

more difficult, in general the function 

function; a Lyapunov function is not kno^n 

for three alleles has in general seven s 

one in the interior and six on the 

model only x. = 1 and x~ =- 1 can occur 

on the boundary. In any other state a 

diately replaced by Mendelean segregation 

we expect five stationary points in the 

state simplex and a rather complicated 

stationary states and their stability 

for some restricted part of the parameter 

example is given in the figure 

have 

normalized quadratic 

s model for 

cases the two 

system (6.1) seems 

is not a Lyapunov 

The Fisher model 

^ationary points: 

In the present 

stationary states 

missing type .is imme-

Hence in general 

interior of the 

dynamics. In [11] the 

been investigated 

space. A typical 

We see that there are three basins, whic|i are the domains 

of attraction of the two pure (homozygot.Lc) states x- = 1 

and x„ 1 and of a polymorphism with 0 < x1 « x- < 1/2. 

The question of convergence to equilibrium has been left 

open. 

In [13] Butler, Freedman and Waltman have 

convergence problem via Dulac's criterioiji 

cover a large portion of the parameter s^t 

approached the 

Their results 

but they are 
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not exhausting. 

In the following we review several approaches to the con­

vergence problem and to the problem of periodic orbits. 

7. Exclusion of periodic orbits, copositive matrices 

1) Consider a vector field f: R
n -* Rn

 and the corresponding 

autonomous, differential equation 

x - f(x) . (7.1) 

Are there any periodic orbits? A useful approach to that 

problem is computing the divergence 

div f - tr f' (x), (7.2) 

where f• denotes the Frechet derivative. Suppose a nontri-

vial periodic solution x with period OJ > 0 exists. Then 

we can integrate 

kit) - f(x(t))X(t) , X(0) = I (7.3) 

from 0 to w to find the linearized Poincare map. The eigen­

values of the corresponding matrix X ((&) are the character­

istic multipliers. The Wronskian w(t) satisfies the diffe­

rential equation 

w(t) - tr f»(x(t))w(t) (7.4) 

thus 

ш 
w(w) - exp Jtr f'(x (t))dt. (7.5) 

o 
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If the periodic orbit is completely contained in some 

domain H c R such that 

div f(x) > 0 In .Q (7.6) 

at least one 

1 in modulus: The 

then it follows w(a>) > 1. Hence there is 

characteristic multiplier which exceeds 

periodic orbit is unstable. Equivalently: A domainil with 

the property (7.6) cannot contain a staple periodic orbit. 

For dimension n = 2 the negative criterion of Bendixson 

leads to a sharper result: Suppose for r = 2 there is any 

nontrivial periodic solution. Suppose the trajectory is 

contained in some simply connected domain jfl , where con­

dition (7.6) holds. Then from Gauss' theorem follows 

immediately a contradiction. | 

Similarly, if lie R is simply connected! and 

div f(x) < 0 in Гí (7.7) 

then £l does not contain a periodic orbit. 

This Bendixson criterion can be extended in several ways 

1. For any n one can multiply the vector field f by a non-

vanishing scalar field g, which amounts to a time sca­

ling along trajectories. Since in general 

div (gf) - grad g«f+g • div f*div f one obtains a 

whole family of criteria (Dulac's criterion). 

2. It can be allowed that div f vanishes in isolated points 

3. For n -* 2 the criterion can be extended to k-fold 

connected domains [1^]. j 
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The application of Dulac's criterion to "quadratic" 

differential equations of the type (6.1) can be somewhat 

systematized. Let the differential equations 

y - f (y) , y ^ O 

f±(y) = ] T b
ijkYjyk 

describe the interaction of some species, and let 

x « y/e*y 

represent the relative frequencies. Then x satisfies the 

equation 

x = g(x) - eTg(x)x. 

One can easily check that the function 

D(x) = e*x • tr g'(x) - e^g'fx) - (n-1)e g(x) 

coincides with the divergence of the vector field on the 

state space S. D(x) is a quadratic form with the explicit 

representation 

D(x) - V"""1 a^ lrx jx]c (7 .8) IZ a5*xj3 

a j k = C ( b i j i + b ü k - ^ 1 ^ 
i=1 
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Thus the divergence of f is positive on 

form D is positive on the cone of nonnegative 

Rn, i. 

matrix. 

e. if the matrix A = (a ..) is a so 

vectors 

introduced 

A matrix A is copositive if the quadrat 

negative on the cone of nonnegative 

notion of copositivity has been 

In the space of real symmetric matrices 

copositive matrices form a closed conve^ 

contains the cone S of positively 

and the cone P of matrices with nonnegative 

n -* 5 C + P + S. Several criteria for 

known [18], usually expressed in terms 

eigenvectors or minors. In particular a 

is copositive if 

1. a.... -* 0, a 22 

S if the quadratic 
vectors in 

called copositive 

ic form x*Ax is non-

x -* 0. The 

by Motzkin 1952. 

of dimension n the 

cone C. This cone 

matrices 

elements. For 

copositiveness are 

eigenvalues / 

matrix A of order 2 

semidefinite 

of 

(7.9) 
2. a12 -- 0 or det A -* 0, 

and a matrix of order 3 is copositive if for i,j = 1,2,3 

1. a±i -* 0 

aij -^ÍЛi (7.10) 

^12^^33
 +
 ^гз^Г?

 + a 

31
v
~22 -* 0 

or det A -- 0. 

Observe that the case n = 3 applies to £he case where S is 

a planar triangle. 
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8. Quasimonotone systems 

Application of Dulac's criterion to the example (6.1) does 

not lead to a complete result. 

We introduce the transformation of coordinates 

x1 x3 t 

u = — , v = — , t = Jx 0 (s )ds 
x2 x2 o z • 

which carries the system into 

u = f 1 1 u 2 + f 1 2 u - j 4 f 2 2 - f 2 1 u 2 - 2 f 1 3 u 2 v 4 f 2 2 u - f 2 3 u v 

v " f 33 v 2 + f 32 v + I f 22" ' f 12 u v - 2 f 31 v 2 u "I f 22 V - f 23 v 2 

(8.1) 

We observe that (8.1) with t-»-t is a quasimonotone system 

of differential equations. A system 

x - f (x) 

is called quasimonotone if at each point x the Jacobian 

A(x) = V (x) « (a., (x)) has non-negative off-diagonal 

entries. This condition is equivalent to the property that 

exp(tA) -- 0 for all t - 0. Quasimonotone systems have been 

introduced by M. MUller [16] and Kamke [17] and since then 

have found widespread applications to estimates. 

From a rather simple argument follows [15*] that a quasi­

monotone system in Rn, n =- Z cannot have any exponentially 
2 

stable limit cycles. In R there cannot be any limit 
2 

cycles at all. Furthermore, in R every trajectory for 

t -* ± oo converges to a point or goes to infinity. This 

result has also applications to so called competition 

models in ecology. More detailed results for n > 3 have 

been obtained in [19]. 
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9. Selection in periodic environments 

For n = 2 in the models (3.6) and (3.7) 

p
2
 can be eliminated by putting p.. « p, 

equations assume the form 

the frequency 

p
2
 « 1-p. Then the 

u
t+1 "

 g ( u
t> 

u = f(u) , 

where, with f^ » <T , t^2

 m
 ? > f

22 

(9.1) 

(9.2) 

9-Г= a, o-CГ= b, 

g ( u )
 . ^ I H ) 

(ГU +2^u(1-u)+| 

f(u) - u(1-u)(a-(a+b)ii) 

P(1-uГ 
(9.3) 

(9.4) 

There are essentially four cases: For Jl > 0T
r
 T (heterozygotes 

superior) there is a stable polymorphism, and the pure states 

are instable. If % < <T, V (heterozygotes inferior) the 

polymorphism is unstable, every solution except the poly­

morphism converges to one of the pure states. For <T > f >"C 

(oro~< <f <V , heterozygotes intermediate) there is no 

polymorphism, every solution except p =j 0 converges to 

p • 1 (or conversely). 

Both models have been studied in deterministically or 

stochastically changing environments* In the following we 

consider some simple deterministic cases. Suppose in the 

discrete case there are two alternating environments 

( 6".j, o .j, r*.j) and ( <T
2
, y

2
, T^) defining function 

g
2
, respectively. Then the variable p Satisfies 

g.. and 

u
2k+1

 = g
1

(u
2k> 

u
2k+2

 s g
2

( u
2k+1

} 

(9.5) 
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Essentially the behavior of the population is governed by 
the function g -» g2*>g... 
One would conjecture that a stable polymorphism is main­
tained also in a periodic environment: However, one can 
show [20]: For any given GTj, J-, C with CT. < CTj < £ there 
is a parameter set ^o'^l'^l w i t n °2 <1C2 <3l s u c n t n a t 

the function g2°91
 n a s three fixed points in (0,1). Of course 

these fixed points correspond to two attractors separated 
by a repeller. Thus in a discrete time model with periodic 
environment it is quite natural that a polymorphism bifur­
cates • 

In the case of continuous time a seasonally changing en­
vironment corresponds to periodic coefficients a(t+1)=a(t), 

b(t+1)«b(t). One can easily prove ([20]): If J a(t)dt> 0, 
1 o 

Jb(t)dt> 0 then there is a nonconstant periodic solution 
Sith values in (0,1). If a(t) + b(t)> 0 for all t then 
there is at most one such solution. Of course this problem 
is a special case of the question how many periodic solu­
tions a differential equation 

u(t) - I c..(t)uJ, c..(t+1) =c..(t) 

can have (see [21]). 

j=0 J 3 J 

10. Travelling fronts 

The equation (9.2) (9.3) 

u » u(1-u)(a-(a+b)u) (10.1) 

with constant a,b in the cases of intermediate or of in­

ferior homozygotes is a special case of an equation 

120 



u - f (u) 

,1 

(10.2) 

where f€C [0,1] , f(0) * f(1) « 0, aijid either 

I 

I) f(u)> 0 for 0< u< 1, f»(0)> O, f'|l)< O 

or, for some a€(0,1), 

< u< 1, II) f(u)< 0 for 0< u< a, f(u)> 0 for a 

f'(0)< 0, f•(1)< 0. 

eguations than (10.1) Of course one can realize more general! 

as population genetic models if one introduces density-de­

pendent selection coefficients. 

Now we consider eguation in a one-dimensional habitat with 

density dependent capacity and diffusion rate, 

ut - «fa-<k<«>Vx + f(,i> • ( 1°- 3> 

Here the subscripts x and t stand for pjartial derivatives 

with respect to space and time. 

Suppose eguation (10.3) has a solution 

travelling front 

lin the form of a 

where 

u(x,t) = Ф(x-ct) 

0 * Ф(x) * 1 

Ф(-æ) = 1, Ф(+«) « 0 

(Ю.4) 

(10.5) 

Then the function of one variable o satisfies the ordinary 

differential eguation 



^-щ (k(Ф)Ф')»+ cФ' + f(Ф) - O (10.6) 

or, equivalently, the first order system 

(10.7) 

k(u) k(u) kfu) 

With the function 

1
 u 1 

**<u) - ~ J m(s)ds, 9e - /m(s)ds (10.8) 

*• o o 

one can substitute 

u--h(u), v = ik(u)v (10.9) 

ï(ïï) =£f(h*"1(ïï))k(h**1(ïï)) (10. Ю ) 

WÍfШH* <ю.ii) 

and obtain 

f§ =-cv-í(u) 
(10.12) 

i.e. one can reduce the general case to the case m(u) = 1, 

k (u) •» 1. Of course such a reduction is not possible for 

the partial differential eguation. The type of the eguation 

(I or II above) is not changed by the transformation. 

In Case X there is a half-line [c ,*) of possible speeds 

with c • 2 y ?' (0)'. The minimal speed can be characterized by 

two variational principles 
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c Q « i n f s u p { g ' ( u ) + | ( g . } 

where g€C1[0,1J, g(u) > 0 in (0 ,1 ) , ^(0) - 0 , g'(0) > 0. 

cQ « sup inf inf |g"(u) + | j g j - , 2<)»(0)} 

where g € C 1 [ 0 , 1 ] , g(u) > O in (0 ,1 ) , gCO) « g(1) * 0 , 

g ' (0)g ' (1) < O. 

In case II there i s a s ingle speed c , 

inf sup \ 

sup inf ( ^ *<u ) 

g u ) 

where g€C1[0,1], g(u) >0 in (0,1), g(0) - g(1) - 0, 

g'(0)g'(D < 0, 

It follows a continuity result [221: Tl|ie minimal speed c 

depends continuously on the function ? 

the norm 

0<U<1 U U U' 

with respect to 
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