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FULLY NONLINEAR ELLIPTIC EQUATIONS AND APPLICATIONS

P. L. Lions
Paris, France

Introduction

We want to present here some results on fully nonlinear second
order elliptic equations i. e. equations of the following form:

(L F(Dzu, Du, u, x) = 0 in @

where @ 1is an open set in RN, u is a real-valued function and F
is a given nonlinearity continuous on SLN x RN x R x @ (where SLN
is the space of N x N symmetric matrices) . The ellipticity of the
equation is expressed by the condition

(2) F@A, p, t, X) 2F(B, p, t, x) if AZB, A, BesL, pek,

teR, X €.
Of course when F is C1,(2) is equivalent to

() (2 (& po £, %) S0 V&, b, t, X) € Shy x R' xR x a.

'Eij

Obviously these equations may degenerate; in particular this
class of eguations contains the classical first-order Hamilton-Jacobi
equations:
(3) F(Du, u, x) =0 in Q.

In what follows we will first (Section I) present the notion of
viscosity solutions of (1) or (3) introduced by M. G. Crandall and P.
L. Lions [9], [10] - see also P. L. Lions [31],[32]; M. G. Crandall,
L. C. Evans and P. L. Lions [8]; P. L. Lions [33]. Next (Section II)
we indicate a few existence results for first order Hamilton-Jacobi
equations (HJ equations for short) . Finally in Section III we pre-
sent existence and regularity results for Hamilton-Jacobi-Bellman
equations and we will apply these results to the solutions of Monge-
Ampére equations.

We will present many results on some special subclass of (1)
namely the class of Hamilton-Jacobi-Bellman equationé (HJB equations)
i. e. equations like (1) where F is convex in (Dzu, Du, u) or
equivalently equations of the form

) sup [A%m - £%] =0 in Q@
a€l
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where I is a given set, (Ia."")meI (rest.(f“)usI) is a family of
second-order linear elliptic operator (possibly degenerate) (resp. a
family of given functions). As we will @ee below these equations
contain the famous Monge-Ampere equatio%s:

(5) det(Dzu) = H(x, u, Du) in ®, u convex on Q.

Of course when we will discuss existence results for all these
equations we will impose on u boundary conditions:we will restrict
here our attention to Dirichlet type conditions.

To conclude this introduction, let us mention that HJ equations
arise in many situations:calculus of va&iations, optimal control,
differential games, geometrical optics ... In the same way HJ
equations occur in optimal control, HJﬁ equations occur in optimal
stochastic control (see for example P. L. Lions [31], [32], N. V.
Krylov [26]). Finally it is well-known fthat Monge-Ampére equations
arise in differential geometry (see S. Y. Cheng and S. T. Yau [7],
I. Bakelman [3], A. V. Pogorelov [47]).

I.0On viscosity solutions of 1)

In this section we want to introdqce a notion (and to present a
few properties) of weak solutions of (1). We will begin by the case
(totally degenerate) of (3). |

I.l. Viscosity solutions of HJ equatiodg

Before introducing the notion of splutions of (3) that we want
to discuss, let us explain a few difficulties associated with (3):

3) F(Du, u, x) = 0 in Q.

Since (3) is a global nonlinear first—jrder problem, it is well-
known that in general there does not exist classical solution u

(€ C1) of (3) - see Example 1 below foﬁ example. Then locally Lip-
schitz solutions u of (3) - that is functions u ¢ wl;:(n) satis-
fying (3) a. e. in Q - were considerei by many authors (A.Douglis
[12]3S. N. Kru¥kov [24],[25]; W. H. Fleming [18], [19]; A. Friedman
[20]) .1t has been proved by these authors that under general assump-
tions there exist locally Lipschitz solutions of (3). Unfortunately
as it will be seen in the following examples, with this notion of
solutions one loses uniqueness, stability properties:

EXAMPLE 1. Consider the one-dimensional problem:

(6) juwul -1=0 in (0;‘1), u(0) = u(1) = 0.
I
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Obviously there is no classical solution of (6). Now, if we lonk for
Lipschitz solutions of (6), we see that for n z un(x) defined
by:

2 2 2
=-d__ 2j - 1,513 £ 5 2 0!
un(x) Zn—1 x if on X in_1 (1 3j 2 )

are Lipschitz, piecewise analytic functions on (0, 1) and satisfy
(6) except at a finite number of points. Thus, we see that (6) has
infinitely many solutions and furthermore, remarking that 0 < u, 2

s 1; in (0,1), un converges uniformly on (0, 1) to 0 which is
2

not solution of (6).

EXAMPLE 2. Consider the following Cauchy problem:

du o : N N
%)) 5¢t Ibul®=0 in R x (0,=), u[ =0 on R
(where Du denotes the gradient in x and o > 0).
Obviously u = 0 is a solution of (7); but u(x, t) =
= Min (|x| - t, 0) is Lipschitz, piecewise Cc” and satisfies (7) a.e.

This explains the need of finding a selection rule among (local-
ly Lipschitz - for example) solutions of (3) such that we keep exis-
tence and we obtain uniqueness, stability results. Natural restric-
tions are also that any notion of solutions of (3) should contain
solutions of (3) obtained via the vanishing viscosity procedure or
optimal control - differential gameé problem. As we will see below,
all these questions and requirements are answered by the following
notion of viscosity solutions of HJ equations - in addition it can
be proved that any notion of solutions satisfying these properties is
contained in our notion. All the results presented below are taken
from M. G. Crandall and P. L. Lions [10] (see also [8], [33]).

We first need to recall a few facts about sub- and superdif-
ferentials of continuous functions:let ¢ € C(R); we define the sub-
differential of ¢ at x (ef), that we denote by D ¢(x), and the
superdifferential of ¢ at x, denoted by D+¢(x), as follows:

{pe®:lin sup [b(y) - 90 - (@, ¥ - 0]y - x| 7% 0},
yox
YEQ

tp e RV:1im inf [o(y) - 40 - (@, ¥ - ©]|y - x| 7% o}.
y*x
yeQ

p*e(x)

D¢ (x)
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|
|
pte(x) (resp. D ¢(x)) is a closed, coﬁ
empty . |
If ¢ is differentiable at x € @, tg
= {D$(x)}.

1£ DYe(x) and D ¢(x) # @, then ¢
pt4(x) (resp. D ¢(x)) is nonempty on

REMARKS .

3.

4. a

We may now give the definition of vi

DEFINITION. u € C(R) <& said to be a vis

the following inmequalities hold:
8)
)
REMARKS .

1. If u & Q)
is a viscosity solution of (3).

F(p, u(x),x) = 0 V p € ptux

v

F(p, u(x),x) =0 YV pe D uk

is a classical solution

2. If u is a viscosity solution of (3)
at xo € Q, then we have F(Du(xo), u

In particular if u is locally Lip
e.

S.
a. i
EXAMPLE. If we go back to the case of (6
easily that u, is a viscosity solution
excegt at 7 and1satisfies (6)y we just h
X = 5. At x 3 we easily obtain D u (2
and (8) holds. On the other hand u,
solution of (6): indeed taking x

for
1/2

- n-1, _ + n-1, _
Du (1/277) = [-1, 1], D'u (1/277") = ¢

A more workable definition of v1sco$
the ) , ;
PROPOSITION 1. Let wu € C(R); then u <8
if and only if for all ¢ € Cl(Q) the f‘

. at each local maximum point x o;
&5 F4G), u, x 20
9") at each local minimum point X o*

F(D¢(x), u(x), x) 20
|
REMARKS . ‘

1. It is clear that there is a parallel
and the use of distributions theory

:

n-

vex set in RN,possibly

en DYo(x) = Do (x) =

is differentiable at x .
dense set in Q.

scosity solutions of (3):

costity solution of (3) <f
)y, Yxea;
) V X €9 .
of (3), then obviously u

and if u is differentiable
xo), xo) =0
chitz in Q, then (3) holds

- Example 1 - we check

of (6):since u, is C1

ave to consider the point

=4, D+u1(%) = [-1, +1]
n 2 1is not a viscosity
1 , we have easily

and (9) does not hold.

ity solutions is given in

a viscostty solution of (3)
llowing conditions hold:

u - ¢

e .
]
-

.

etween viscosity solutions
r (nonlinear) equations in
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divergence form: the integration by parts is now replaced by some
"differentiation by parts" performed inside the nonlinearity.

2. This form of the definition of viscosity solutions of (3) is some-
what related to the theory of accretive operators in L” (see L.
C. Evans [13]).

3. Let us also mention that the notion of viscosity solutions has
some similarity with the so called entropy conditions for scalar
conservation laws. This similarity is due to the relations between
HJ equations and hyperbolic systems (see P. L. Lions [33] for more
details).

4. Finally we want to point out that we could replace in the above
proposition ¢ € C1(Q) by ¢ € CZ(Q) or ¢ € Cw(Q), and local
maximum point by local strict, global, global strict maximum
point ...

Proof of Proposition 1. If u is a viscosity solution
and if u - ¢ has a local maximum at x € 2, we have for y € Q,
y near x ,

A

uy) = u(x) + ¢(y) - ¢$(x) = u(x) + (V¢(x), y - x) + o(|y-x]).

Thus V¢ (x) € D+u(x) and (8”)holds. Conversely if (8°) and (9°)
hold and if £ € D'u(x) we have

<

u(y) = u(x) + (&, y - x) + o(]ly - x|)
and it is an easy exercise in real analysis to find ¢ € C1(ﬂ) such
that
u(y) 2 ¢(y) in @, u(x) = ¢(x), D(x) = £ .
An application of the above proposition is the following:

COROLLARY 1 (Stability). Let u, € C(R) be viscosity solution of
the equation Fn(Dun’ uos X) =0 Zn Q , where Fn(p, t, x) »

+ F(p, t, X) uniformly on compact sets of RN x R x Q. We assume
that u, converges unt formly on compact subsets of Q to some
funetion u. Then u <8 a visccsity solution of (3).

Proof . It is encugh to consider a local strict maximum
point Xq of u - ¢ where ¢ € c1(n). Then, for n large enough,
u, - ¢ has a local maximum point X, and X, * X
we have

0" By definition

<
FoDé(x ), u (x), x) =0
and we conclude easily sending n to .

A related result is the following proposition showing that any
limit function obtained via the vanishing viscosity method is really
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a viscosity solution: more precisely we Lake u, - the solution of

(10) - eAu8 + FE(DuE, Lo, X) = 0 in #, U, € Cz(n), e >0 .

COROLLARY %, uet u, be a solution of (*0) and aseume that FE con-
verges uniformly on compact sets of Ry % R x Q to some function F.
We assume that u,  converges untformly &n compact sets of Q9 to
some functien u . Then u 1ic a viscosi*y golution of (3).
Proof, It suffrcez to constéoria local strict maximum
point xg of v~ ¢ whore ¢ € C (a). #hen, for e small enough,
u, - ¢ has a local maximum at some poin? X and X, rx. Since
Du (x ) = D¢(x ) and Aue(xe) 2 A¢(xe),§we deduce from the equation
(10) that j
FE(DQ(xc), ue(xe), xe) = eAue(#e)

A

eA¢(xe)
and we conclude easily sending ¢ to O

REMARK. Let us also mention that the value function in deterministic
optimal control or in deterministic differential games is always a
viscosity solution of the associated Hamilton-Jacobi equation (often
called the Bellman or the Isaacs equation in the engineering
literature). We refer the interested reader to P. L. Lions [33],
[32], P. L. Lions and M. Nisio [45].

I.2. Uniqueness results for viscosity solutions of HJ equations

We will treat only two simple cases|and we refer the reader to
[10] for more general results (and for complete proofs). The first
case is |
(11 H(Dw +)u=£ ih &Y

where H € C(R ), A >0 and £,9 will be two functions in the
space BUC(R ) = {u € C (R ): u is unifotmly continuous on R }.

THEQREM 1. Let u, v € Cb(R ) be vtscospty solutions of (11)or of
(11) where £ <8 replaced by g. Then w% have

(12) N - o, =3 flee = o).
REMARKS .
1. (12) implies the uniqueness of the sollution u of (11): indeed if
f = g' ther u =
2. In addition if f
solutions then u

<

and by symmetry u = v.
g and u, v arel the unique corresponding

#IA i

V.

Proof of Theorem 1. We will give the proof only in the
special case when u, v » O as |x]| + =. In this case, we first
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show that if u, v are of class C1, the proof of (12) is immediate.
Indeed, let max (u - v) >0 and x € arg max (u - v). Obviously,

since u, v € C1

equations that
N = ¥ = - v(xy) = T[E(x,) - HiDulx, ))J -
[g(x ) - H(Dv(xo))] =

, it is Du(xo) = Dv(xo) and we deduce from the

I - oM.

A

7 (£ - 9) (%)

Next, if we assume that u, v € CO(RN), we may modify the
above proof with the help of the following lemma on continuous func-
tions:

LEMMA 1. Let u, Vv € CO(RN) be such that max (u - v) > O . Then,
for e > O, there exist Xes Yoo ge € RN
€ arg max (u - v) and ge €D u(x )N D v(y ).

such that X+ Xg, Y

> X where x

0
If we admit temporarily this lemma, we may use the definition

of viscosity solutions to obtain

H(E) + rulx) 2 £(x)), H(E) + Avi(y,) 2 g(y.).
Thus ulx,) - vy, = —[f(x ) - g(y )]
and letting € +~ O we conclude H(u - v) H A”(f - g) ”w,

Proof of Lenma 1. Let M > max (”u”w, fIvil)) and let
B€ D, (R) besuch that 0= 8= 1, supp 8 C B(O, 1), B(O) = 1. We
denote by Be (g) = B(é). Finally we introduce the functions

w (X, ¥) = u(x) - v(y) + 3M8_(x - y) .
We claim that W has a global maximum on RN x R at some point
(x s Yo ) such that X - Y € supp B and X5 ¥, remain in a
bounded set in R . Indeed, observe first that
lim sup W (x, y) s 3M uniformly with respect to
|x|+|y|>= © e € (0, 1] .

On the other hand if x is such that u(x ) - v(x ) > O, we obtain

1
sup w, (x, y) 2 w (x1, x ) = u(x ) - v(x ) + 3M > 3M .

&Y xR
Finally, we prove our claim by remarking that if x - y ¢ supp es,

then W (x, y) 2 eM.

Since W (x, Y, ) has a global maximum at x = X, we deduce
- 3M Dse(x - Y, ) €D u(x ). In a similar way, since - we(xe, y)
has a global minimum at y = Yo, we deduce -~ 3MVBe(x€ - ye) €

€ D—v(yc). To conclude we remark that if X, X (with €y ™ o),

n 0

then Y. * X, and
n
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u(xg) - vixy) + 3M = lim [u(xen) - v(%

) + 3M] 2
n n

v o

2 lim sup w_ (x_ -y_ ) = sup (u - v)(x) + 3M .
n n n ®n | X

Another example of the uniqueness results proved in [10] is the
following result concerning the Cauchy brcblem:

(13) -g% + H(u) + du=f in R' x (0, T)

where He C(RY), x€ R, £, g € BUCR" x [0, T]) and T > O.

\
THEOREM 2. Let u, v € BUC(RS x [0, T]) | be viscosity solutions of

(13), or of (13) with £ replaced by g . Then we have for 0 = t =
S j t
19 (@ -w*@l, £ e e - well, + I e Bllie-g) (s, as .

§ o

Finally let us mention that in M. ¢. Crandall and P. L. Lions
[1Q] there are given various extensions%of the uniqueness Theorems 1,
2 to general Hamiltonians H(p, t, x) or H(p, t, s, x). In [10]
there is treated the case of HJ equatio#s (3) in a domain Q as well
the uniqueness holds under the same ass*mptions as in RN provided,
for example, u, v € BUC(R) and u=v %on 8Q.

REMARKS. Let us mention a few applicati&ns of these uniqueness re-
sults (and uniqueness proofs): in M. G.!Crandall and P. L. Lions [11]
they are used in order to prove the con&ergence of finite difference
schemes and error estimates for the num%rical approximation of HJ
equations. These results are also used in P. L. Lions and M. Nisio
[45], P. L. Lions [34] to obtain abstract characterizations of HJ
semi-groups. Finally these consideratioﬁs are used in P. L. Lions, G.
Papanicolaou and S. R. S. Varadhan [46] in the study of asymptotic
problems in HJ equations - in particulaf homogeneization of HJ
equations or of associated problems in éhe Calculus of Variations.

I.3. On viscosity solutions of fully nohlinear elliptic equations

We now turn to the general equations (1). We first need to
define some kind of second-order derivatives of continuous functions.
Let ¢ € C(R); we consider the followin

Dyy6(x) = {(A, p) € s x R :

sets:

lim sup [¢(y) - ¢(x) - (p, y - x) -

§:§ - %(A(y -ix), y - x)]ly - x|"2 2 0} ,
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D, 4(x) = {(a,p) € suy x & :
Lim inf [$(y) - ¢(x) = (p, ¥ = %) -
y+X

YeQ
2

-3 @ -n, y-x]ly - x| 0} .
REMARKS ,

1, D;1¢(x) (resp. D;1¢(x) ) is a closed, convex set in SLN X RN N
possibly empty.

2. D;1¢(x) (resp. D;1¢(x) ) is non-empty on a dense set in .
+ -
3. If (A,p) € D21¢(x) (or D21¢(x) ) then (B,p) € D;ié(x) (oxr
D;1¢(x) respectively) for all B € SLN such that B > A (or
B < A respectively).

4. If ¢ satisfies ¢(y) = ¢(x) + (p, ¥ - x) + %(A(y -x), y-x +

+o(ly - x|?) for some (a,p) € SLy x RY  then
D;:l@(x) = {(8,p) with B & sL and B2 A},
D'2'1¢(x), = {(B,p) with B € SLy and B g A} .

We may now define viscosity solutions of (1):

DEFINITION. Let u €& C(Q) . The function u ts8 satd to be a vieco-
sity solution of (1) <f the following tnequalities hold:

(15)  F(a,p,u®,x) 20 ¥(&,p) € Dyux , ¥xeo,
(16)  F(a,p,u(x),x) 20 (A,p) € Dyqu(x) , ¥x€Q .

REMARKS .

1. It is clear that if u € 02(9) is a classical solution of (1)
then u 1is a viscosity solution of (1) (recall that F satis-
fies (2)).

2. On the other hand if u is a viscosity solution of (1) and if u
is differentiable near a point x, € € and if u is twice dif=-

0
ferentiable at X then

F(p2u(xg) ,Duxy) ,ulxy),xg) = 0

In particular, if u € Wiég(n) for some p > N, then u satisfies
(1) a.e.
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A sharper result than Remark 1

PROPOSITION 5. Let u € W2’ (q)

F(Dzu,Du,u,x) =0 a.e. in

abgve 1is given by the

be a golution of the equation

Q.

This result is qguite sharp as it is shown by the following

Then u %8 a viscosity solution of (1)i
REMARK .
example: Take u(x) = - |x| . Obviously

and D2u € MN(RN) (Marcinkiewicz space
not a viscosity solution of the followin
equation):

0 in ®Y

|Du|

.

(Indeed,
0

F(g, p,t x) =1 - |p|

1} .

>
<

lpl =

s

Proposition 2 is proved in P. L. Li

tension of Bony’s maximum principle [4]

+
D21u(C)

2,pP N
u € Wlac(R ) for p < N
. And it is clear that u is
lg equation (actually HJ

RN

A >

= {(A,P) € SLN X

ons [35]: it involves an ex-

land is somewhat related to

Alexandrov study on maximum principle [i].

Exactly as in Section I.1, we deri?e the following results:

PROPOSITION 3.

€ C Q) : |

(15) F(D%4 (%) ,D¢ (x) ,u(x),x) < 0
x of u-9¢ ;

2 |

(16’) F(D“¢ (x),D¢ (x),u(x),x) 2 0

x of u-+¢ .

PROPOSITION 4.

tion

Let un € C(Q) be

2 .
Fn(D u, ,Du ,un,x) =0 iIn
Let us assume that

pact sets of SLN X RN X R X Q ta some
converges uniformly on c

Then

sume that u,

funetion u . u <8 a viscosity 8

REMARKS .

1. If F does not depend on A € SLN

Let u € C(R) . The fun&tion
tzon of (1) 2f and only <f the foZZowLné conditions hold for all

ompact sets of Q
olution of (1).

u <8 a viscosity solu-

be

at each local maximum point

at each local minimum point

viscosity solutions of the equa-

Q .

(F ) satisfy (2) amnd converges uniformly on com-

funetion F . Finally we as-

co some .
A

(i.e. if (1) reduces to (3))
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then viscosity solutions of (1) are viscosity solutions of (3).

2. In Proposition 3, we may replace ¢ € CZ(Q) by ¢ € C”(n) and
local extremum by local strict extremum (or global, or global
strict,...).

3. If one considers the optimal cost function of optimal stochastic
control problems (or the value function of stochastic differential
games) then it is a viscosity solution of the associated HJB
equation (or Isaac’s equation) - for more details see P. L. Lions
[31], [32].

4. The combination of the preceding remark and Propositions 2, 4
yields immediately the stability results proved in N. V. Krylov
[22], [28] by sophisticated probabilistic methods.

Of course, the remaining qguestion concerns the uniqueness of vis-
cosity solutions of (1) and this is an open question except essential-
ly two cases: 1) when N < 2 and the equation is uniformly elliptic;
2) when F is convex with respect to A € SLN (i.e. for HIB equa-
tions). To be more specific, let us consider the following simple ca-
- se:

(17) F(Dzu,Du) + Au = £(x) in RN
where X > 0 , £ € BUC(R') and the function F € W) (SLy x R') -
for example - satisfies the condition: ¥R < « ij 20

N
(18) (a—g—%(g,p)) 2 vpIy for a.e. (£,p) € SLy x &,
lell + lel <R .
The following result holds:

THEOREM 3. Let wu, v € Cb(RN) be viscosity solutions of (17), or of
(17) with £ ©replaced by §. Let one of the following conditions hold:

(19) Ng2, Frew  (shyx®) , vg2v>0 ¥R<o=;
2
, , 3°F
(20) F is convex in § , vp2v >0 ¥R < » and SEp €

€ L(SLy x &Yy
(21) F 18 convex in (E,p) .

Then we have

(12) -0, <3 1eE- %0, .
A
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REMARKS.

1. We could treat more general nonlinéaritiea F , as well, but no
final result without severe restriétion like F aconvexin £ has
yet been proved. Another example of uniqueness result is given
in Section III. |

2. The proof of the above result is b%sed in each case on existence
results: the case when (21) holds ﬁelies on results given in Sec-
tion III while the cases when (19)1and (20) hold depend on the
fact that if f e Wz’"(RN) in eacﬁ case there exists u € Ci(RN),
the solution of the equation ‘

F(Dzu,Du) + ixu=£f in RN .

II. Existence results for viscosity

solutions

II.1, Existence results for HJ eguatfcns

In P. L. Lions [33], [43] there are discussed existence results.
We will give here only two easy examplqs and we refer to [33] for mo-
re general results including boundary value problems.
First we consider the case of (11):

an H(Du) + \u = £ in RY

where He C®) , A>0, feBUICRY) .

PROPOSITION 5. (i) There exists a uniq@e viscosity solution u of
(11) in BUCRY) . ‘

(ii) PFor all h > 0 the estimate
sup jlux) - uy)| < % L osup |Ex) - £(¥)]
Ix-y|<h l|x-y| gh
holds. H

In particular if £ € CO’“(RN) (0 <a

<
=

1) then u € Co’adRN)

Proof . Consider the vanishing viscosity method for the equa-
tion (11):
(22) - ebu + H_(Du) + du_ = fL: in RV
where H € Cw(RN) » H — H uniforml& on bounded sets and £ €
e cp®) , £ — £ in L"@®) .

|
|
It is quite easy to show that, if ¢ > 0 , there exists a unique
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solution u of (22) and u, € CE(RN) . Applying the maximum prin-
ciple, we find easily that

|u <Ly -H )| < C (independent of ¢ ).
A € 1l =

€

Now, if we assume f € W (R ) , we may take fe such that fe is

bounded in C1(RN) . Differentiating the eqguation (22) and applying

again the maximum principle, this yields:

[‘Du e = % IlDf ||, £ C (independent of ¢ ).

Therefore u. (or a subsequence u, ) converges uniformly to some func-
tion u (¢ W (R )) which, by Corollary 2, is a (and thus the)
viscosity solution of (11). Therefore for £ e w °°(IRN) there exists
a unique viscosity solution u(f) (€ w ’ (R )); in addition, in
view of Theorem 1 we have: V¥f, g € W (IR )

(23) Hut®) - w@|l, =5 |1£ - gall, -

By the density and Corollary 1, we deduce the existence (and unique-
ness) of a viscosity solution u(f) for any f € BUC(RN) 3 in addi-
tion, (23) holds for £, g € BUCURN) . Finally,part (ii) of Propos.

5 follows easily from the fact that the map f ++ u(f) commutes with
translations of RN .

In a similar way one obtains the following result concerning the
problem

du N
(13) 3¢ * HOW + iu=f in R x (0,T) , u|t=0 = u,

t
N N N
where H € C(R') , A€ R, fe& BUC(R x [0,T]) , uj € BUCR) .
PROPOSITION 6. (i) There exists a unique viscosity solution u of
(13) in BUC@®" x [0,T]) .

(ii) For all h > 0 , we have:

¥t e [0,T] sup |u(x,t) - uly,t)| <
1x=yt <h

e sup lug(x) - UO(Y)I +
Ix~y| <h

ia

+ fe“s sup |£(x,s) - £(y,s)|ds .
0 Ix-y| <h

In particular, if u, € W (R ) f(- t) is bounded in w (R )
uniformly for t € [0,T] , then u € wh e ® N x (0,m)) .
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Ir.2. Existence results for equation (ﬁ)
\
Just to give an example, we menti#n the following existence re-

sult: Let F € C(SLy x &) and satisfy (2). Then it holds

PRGPOSITION 7. Let £ € BUC(RN) and }et X > 0 . Then there exists

u € BUC(RN) viscosity solution of

a7 F(0%u,Du) + Au = £ in B .

REMARK. This proposition can be easilf proved by stochastic conside-
rations or by the use of results due t# R. Jensen and P. L. Lions
[23]. By similar methods, one can givelvery general existence results
for equations (1) (with boundary condifions) - see in particular Sec-
tion III. But as long as no satisfactoty uniqueness result exists,
this seems to be without great 1nteres#.

III. On Hamilton-Jacobli-Bellman

equations

In this section, we restrict our attention to equations (1) in
the case when F is convex in (D u Dﬁ,u), that is when (1) reduces
to the HJB equation

4) sup [A%w - £%] = 0 in g
@ 1

and we will impose for example Dirichl%t boundary conditions
(24) u=0 on 3R .

In all what follows, we assume that Q% is a regular domain in RN
and we denote by u(x) the unit outwa#d normal to Yaﬂ at x .

In the following subsections III.1-2, te present and show in a parti-
cular case an existence and a regularity result for (4). Finally in

Section III.3 we will consider Monge—A@pére equations.

III.1. An existence and regularity resﬁlt

First, we need some notations and|assumptions: I will be a se-
parable metric space; for a € I , 2% is given by

AG

- Al o 3 « _ o o
ajj (08,4 + i), + cT(x) gy oikajk

where U:j » b; , ¢® , £2 remain in a\bounded set of W “@) as a

describes I and are continuous in o (for x € © ) and where
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(25) A= inf _ c®(x) >0 .
(a,x) € IXQ
Let us give a typical example of existence, uniqueness and regu-
larity results:

THEOREM 4. Let us assume
(26) Iv > 0 ¥(x,a) €30 x I a;j(x)ni(x)nj(x) v .

(1) Then there exists a unique viscosity solution u of (4) - (24)
in BUC(R) . In addition u € Co’e(ﬁ) for some 6 € (0,1] depending
only on v , ¢ , b%® .

(ii) There exists ), depending only on I|DB¢H w for |B| =
L

=1,2, ¢ =20¢%,p" (hg = 0 if ¢ , b®* do not depend on x )

such that if 21 > ).0 , we have

(27) uew: @ , sup ||a%]_ <=3
ael
(28) u is semi-concave on © : 3JC > 0 , ¥ € &Y le] =1,
azus_c in 2'(Q) ;

(29) sup [A%u - £%] = 0 a.e. in a .
o

(iii) If 2 > A and if for some open set w C Q there exist v >
>0, pe {1,...,N} such that for all x € w , we can find n > 1 ,
Bgseees0 € I and 61,...,en € (0,1) such that

(30) o, =1, Fo,at(orct, 2 el wvee®
i i~ ’ i i“ke kL = j ’
then aiju € L”(Q) for 1 <i,jzp.
(iv) If for some open set w C @ there exists v > 0 such that

31 ¥Vxew VYael (a:j(x)) 2 vIyg

then u € C2’8(m) (for some B € (0,1) dependingon w , v ,
sup |[a%[], ).
a

THEOREM 5. Assume (26).
(1) If we W (@) satisfiees
(32) 2% < £* in 9'(Q) , w0 on 232,

then w < u .
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(ii) If w satisfies (27), (29) with
(33) ic > o0 Aow g C in DI
then w=au.

REMARKS .

1. Since we want u to be 0 on 23Q

4.
(34)

(24’

has to be assumed (more general ass
Lions [31], [32] where cases when w
some part of 98Q are also consider
If o =R , the condition (26) bec

w and

@ ,

0 on 09

, some assumption like (26)
umptions can be found in P. L.
e want u to be 0
ed) .

bmes vacuous.

only on

It is possible to show on easy examples that the regularity in-

volved in Theorem 4 is optimal. In

> XO

and Krylov [22] for an example). In

is in general necessary in or

however,this condition is not neces

Theorem 4 is an easy consequence of

L. C. Evans [15], [14].

All these results adapt easily to t
du

5t * s:p [A% - £%] =0 i

Uleog = Yy

0 on

)

u 8e x [0,T] .

in

particular the assumption i >
der to have (27) (see Genis
the uniformly elliptic case,
sary (see below). Part (iv) of

the regularity results due to

he case of Cauchy problems:

nh Q@ x (0,T)

’

e,
1

In this case A may be taken arbit#arily in R .

|
These results extend some particula# results obtained by N. V.

Krylov [29], [30], [26]; P. L. Lion
case Q R is treated in P. L. L
listic methods and the general case

!

and J. L. Menaldi [44]. The
ons [36] by purely probabi-
}(announced in [37], [31]) is

treated in [32] by combinations of p. d. e. and probabilistic ar-

guments.

In what follows, we will only tre%t the following

COROLLARY 3. Assume that § 18 a boun#ed smooth domain, x > 0 and

(317) Iv >0 ¥(x,0) € @ x I
Then there exists a untque golution
REMARKS .

1.

Corollary 3 is proved in P. L. Liont

Lions [17] by p. 4. e. techniques s

|
u € W2rT(Q)

kaij(x)) 2 vIg .

of (4) - (24).

|
[38], L. C. Evans and P. L.
etched below. Previously, very
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particular results were obtained by N. V. Krvlov f29], H. Brézis
and L. C. Evans [5], L. C. Evans and A. Friedman [16], P. L.
Lions and J. L. Menaldi [44].

2. The exact range of A such that (4) - (24) is solvable is inves-
tigated in P. L. Lions [42]. This involves a notion of demi~eigen-

values for the operator associated with the HJB egnation.

III.2. Sketch of the proof of Corollary 3

The proof consists first in approximating the problem and getting
uniform a priori estimates in wz'”(n) and next in passing to the
limit. The passage to the limit is an exercise on the notion of vis-
cosity solutions and thus we will skip it. Various. approximations of
(4) - (24) are possible: see L. C. Evans and A. Friedman [1§], R. Sen-
sen and P. L. Licns [23]. We will follow the one introduced in [16],
raking I = {1,...,m} to simplify: one considers a system, called
the penalized system

1.1 1,2y 2 £ 1_ .
Afu_ + BE(uE ue) = f in @ , u_ 0 on aq,
2 2 2 3, _ g2 2 _
A u + Bc(uc ue) = f in @, u = 0 on 30,
(35) .
AN 4 g @™ -ul)y =6 in 2, WP®=0 on a0
€ E € € €

where 8 (t) =2 g(t) and B(t) € C"R) , B8(t) =0 if tsoO,
B'(t) >0 4f t >0 and B'’(t) 20 on R.

It is easy to show that there exists a unique solution (ui,...

...,u?) of (35) in (Cz(ﬁ))m . Of course by an obvious apéroximation
of the coefficients, one may assume ut € Cc7(Q) . Now if we prove
;|ui|| 2 = < C (independent of e ) then it is easy to show first
W52 (@)
. 4

that “: - u (inderendent of i ) (or subsequences of 4. ), and u
e+ 5 - ©
is a viscosity solution of (4). Obviously u € wer () and thus (4)

holds a.e.

The a priori estimates are obtained in three steps: first, ore
proves a priori estimates in w*“(2) by the use of standard barrier
functions and maxinum principle. Then, if we set Me = sup ![DLuz(x)||

X

3
by a convenient adaptation of a device due to Kohn and Nirenberg -
for more details see P. L. Lions [38] - one shows by a sophisticated
argument of barrier functions that

142



NX€E B wie€e {1,...,m} |Dzu

where c¢ is independent of x , i and

Let us now show how we conclude - first

iy s
(O] s ¢+ oM
€

ly in a simple case namely

when ai . bi . ci do not depend on x : Let & be a unit vector
in RN , we differentiate twice (35) with respect to & and we
obtain )
i,.2 4 s i+l 02 4 2 dipd
A (ague) + B (uE u; )(dguE aEu€ ) +
PPN S £ . PODURNE. S i+1.2 _ 2.1
+ B (ue uy )(dg“e ague ) aEf
and since B8 is convex we deduce
i,.2 1 PRV S £ X 2.1 _ 2 i+l 2.1
(36) A (agug) + B (ue u )(ague aEue ) £ aEf <c.
Next let (io,xo) be a maximum point of sup aiui(x) , without loss
i,x
of generality we may assume that io =1 . If X, € 3Q , we deduce
agui‘(x) <c+ CM;: X € Q R ¥i

on the other hand if X, € a2, then app
(36) (for i =1 ) at the point Xy o W
Therefore in all cases, we proved:

veeRrR , gl =1 ¥xe¢

i

Observing that: A uz < ¢ we deduce ea

2 i CI
.|D ue(x)| s ¢+ cM?

and thus Me is bounded.

lying maximum principle in

e obtain 9 uz(x

<

2
£ 0’ c .

+ ch .

- 2 i
Q Vi aaue(x) s c .

sily

In the general case, the dependenc

e of the coefficients on x

creates difficulties (supplementary terﬁs appear in (36)) which are-

solved in [38], [17] in the following way. Let x

io If Xq

may assume without loss

for some .

2 Yo _
|D u, (x0)| =M
if X €

i
N — 0 |
is diagonal and we denote o = akk(xon

, we

E A 2 | 2 L2 -

wo(x) = [Dfu(x) |7+ aNTM i N

where yu > 0 will be determined later
(a*) such that (ai(x)) 2 I, for x¢€

making similar computations as those pe
ferentiating twice the equations (35) a

the inequalities satisfied by Alwi s O

0 be such that

€ 32 , we conclude easily;
i
0

of gencrality that Dzu€ (xﬂ)

. Finally we introduce

2 i
Byug () + uIDu€

on and whére we normalize the
Q i € {1,...,m} . Then
rformed above with Sgui , aif-
nd using maximum principle on

)

ne obtains the following ine~
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quality: if u is large enough, then

(37) max wi(x) <3 M2 +c .
i,x

Thus in particular

2
€

i

i
0 2 2.0
M w (xo) 2N M E “kakue (xo) +C <

[

i, i
2 0.0 1.2
2N MG{A u (xo)} +ZM_+CM_+Cg

[

1,2
7M€+CMS+C

A

and we conclude.

III.3. Applications to the Monge-Ampére equations

We now turn to the solution of the classical Monge-Ampére equa-
tions:

(38) det(Dzu) = H(x,u,Du) in Q , u 4is convex in & ,
u=0 on dQ ,

where Q  is a bounded, convex domain in RN and H e C” (@ x R x RN).
We shall assume that

(39) ¥R < ® 3°R >0  Wx,t,p) e R x [-Rr,+R] x ER

H(x,t,p) 2 ap > 0,

where @F = {x € @ : dist(x,80) > =} and

i

u € C(QR) , convex in ® , satisfying

(40) det(p?u) > H(x,u,Du) in @ .

The precise meaning of the inequality (40) is to be understood in the
sense of A. D. Alexandrov [2] (see also A. V. Pogorelov [47], S. Y.
Cheng and S. T. Yau [7]). Then we have

THEOREM 6. Under assumptions (39) and (40) there existe a solution

u of (38) in C°(R)IN C(R) , uzu in Q.

REMARKS . ) )

1. If -g%(x,t,p) >0 for (x,t,p)e xR x RN , then u is unique.

2. This result is proved in P. L. Lions [39], [40] (and some version
of it was announced in P. L. Lions [41]), where more general re-

sults are proved (requiring less regularity on H ); in particu-
lar the case of non-homogeneous boundary conditions is treated

in [39], [40].
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3. It is easy to show that if H satis}ies the condition
41) lim sup H(x,t,p)|p|_N < » uniformly in (x,t) € @ x R
{pl=—e ;

and if @ is strictly convex then (%0) holds, i.e. a subsolution
u exists. It is of course the case ﬁhen H depends only on x
and thus we see that we recover as aivery special case the result
of S. Y. Cheng and S. T. Yau [7] which is proved in [7] by comple-
ting the method of A. V. Pogorelov [47] based on geometrical ar-
guments involving first the solutioniof the Minkowski problem.
On the other hand, our proof is a di#ect p.d.e. proof and applies
to general non-linearities H(x,t,p)! while the method of Pogore-
lov~Cheng-Yau does not seem to cover| this case.

4. A major open question is the regular%ty of u up to the boundary.

5. Let us consider, as an example, a paiticular case: H(x,t,p) =
= H(x) (1 + Iplz)“ where o > 0 . We @ill also assume, to simplify,
that @ 1is strictly convex and H >/0 in @ . Then (see Remark 3
above):

(i) if o < %
N C(2) . This obviously contains the case « = 0 which gives the

solution of the Minkowski problem.

, there exists a unique solution of (38) in c”@nN

(ii) On the other hand, if o > % and if u solves (38), then ne-
|

cessarily

jH(x)dx J det(Dzu)[l + ]Dé[z)—“dx =
Q Q
dp

Du{n)(l + Ipl?) in (1 + Ipl 2)e

]

Therefore the condition

(42) [H(x)dx 2 e,
Q
is a necessary condition for the existen$e of u (or u).
On the other hand, it has been proved ble. Bakelman [3] that u
exists if | '

(43) Jrzo, ogNELIEA ia(x)dx<cu,

H(x) < C dist(x,a2)”.

Therefore if (43) holds, there exists a $olution ,u € Cw(Q) N ce

of (38). In particular we see that if ai; E—%—l we may take A =0
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and (42) is necessary and "almost" sufficient for the existénce of u .

«N+2
2

- in this case solving (38) amounts to build a convex hypersurface
with prescribed Gauss curvature H(x) . In this case we see that (42)

A case of interest for differential geometry is the case a

is a necessary condition and that if : JH(x)dx < Ca , H(X) =

Q
< C dist(x,9Q) then there exists a unique solution u € Cm(n)f\
nca@ .

Let us mention the main lines of the proof of Theorem 6: The
main difficulty of (38) lies with 8Q since us a priori estimates
for u up to 9@ are known. This is why we approximate (38) by prob-

N

lems in R of the following form:

1

2 N
det (D u€ . puEI

N) = H(x,ue,DuE) in R,
(38-¢)

(D2u -1
€ €

N o N
puEIN) 20 in R, uE € Cb(R )

where p e C;(RN) , p=o0 in @, p>0 on R -F .

The idea of the proof is to solve firstly (38-¢), to let ¢ — 0 and
to make sure that u, — 0 on RN - 2 by the use of appropriate
barrier functions and finally to apply the general a priori estimates
due to A. V. Pogorelov [47], E. Calabi [6].

To conclude, let us explain the relations between Monge-Ampére
equations and HJB equations: This is explained by the following alge-
braic lemma observed by B. Gareau [21] and N. V. Krylov [30].

LEMMA 2. Let A be a symmetric NxN-matrix.

(i) If A0 then (det &)YN = inf{Tr(aB) : B € SLy ., B >0,
det B = 1/NN} .

(ii) If A>0, B = %(det A)“l/N 2"l 15 @ minimum in the above
infimum.
(1i1) If inf{Tr(aB) : B € SLy , B > 0 , det B = 1/N'} > - = , then
A>0.
This shows that (38-¢) is equivalent to:

s 1/N .

sup |- bijaijue + = pufTr(B)} + [H(x,uE,Dus)] =0 in R

Bev
where V = {B € SLy : B > 0 , det B = 1/N'} .
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In particular, if H depends only on X
is then an immediate consequence of Theo

L1

L2]

[3]

L4
[s]

[ el

L7l

L8]
[ 9]

[16]
[
[12]

03]
014

[*s]
el

l, the resolution of (38-¢)
rem 4.
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