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FULLY NONLINEAR ELLIPTIC EQUATIONS AND APPLICATIONS 

P. L. Lions 

Paris, France 

I n t r o d u c t i o n ' 

We want to present here some results on fully nonlinear second 

order elliptic equations i. e. equations of the following form: 

( 1 ) F(D2u, Du, u, x) » 0 in G 

where ft is an open set in R , u is a real-valued function and F 

is a given nonlinearity continuous on SLj, x R x R x a (where Slu. 

is the space of N x N symmetric matrices) . The ellipticity of the 

equation is expressed by the condition 

(2) F(A, p, t, X) & F(B, p, t, x) if A i B, A, B 6 SI^, p e RN, 

t 6 R, X e 8. 

Of course when F is C ,(2) is equivalent to 

(2') ( r ^ (€, P, t, X)) £ 0 V(£, p, t, X) € SLj, x RN x R x fl. 

Obviously these equations may degenerate; in particular this 

class of equations contains the classical first-order Hamilton-Jaoobi 

equationsi 
(3) F(Du, u, x) * 0 in Q. 

In what follows we will first (Section I) present the notion of 

viscosity solutions of (1) or (3) introduced by M. G. Crandall and P. 

L. Lions [9j , [10J - see also P. L. Lions [31J , [32j ; M. G. Crandall, 

L. C. Evans and P. L. Lions [8j ; P. L. Lions [33j . Next (Section II) 

we indicate a few existence results for first order Hamilton-Jacobi 

equations (HJ equations for short) . Finally in Section III we pre­

sent existence and regularity results for Hamilton-Jacobi-Bellman 

equations and we will apply these results to the solutions of Monge-

Ampere equations. 

We will present many results on some special subclass of (1) 

namely the class of Hamilton-Jacobi-Bellman equations (HJB equations) 
2 

i. e. equations like (1) where F is convex in (D u, Du, «) or 
equivalently equations of the form 

(-0 sup [Aau - faJ - 0 in fi 
ael 
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where I is a given set, (A ) _ (resfo 

second-order linear elliptic operator 

family of given functions). As we will 

contain the famous Monge-Ampere equations 

.(fa)a€l) is a family of 

(possibly degenerate) (resp. 

see below these equations 

(5) det(Du) - H(x, u, Du) in ň, u convex on a. 

Of course when we will discuss 

equations we will impose on u boundary 

here our attention to Dirichlet type 

To conclude this introduction, let 

arise in many situations:calculus of 

differential games, geometrical optics 

equations occur in optimal control, HJB 

stochastic control (see for example P. 

Krylov [26]). Finally it is well-known 

arise in differential geometry (see S. 

I. Bakelman [3], A. V. Pogorelov [47]). 

existence 

0 n v i s c o s i t y s o l u t 

In this section we want to introduce a notion (and to present a 

few properties) of weak solutions of (1 

(totally degenerate) of (3). 

results for all these 

conditions:we will restrict 

conditions. 

us mention that HJ equations 

variations, optimal control, 

•. In the same way HJ 

equations occur in optimal 

L. Lions [31], [32], If. V. 

that Monge-Ampere equations 

Y. Cheng and S. T. Yau [7], 

li o n S o f Jãl 

). We will begin by the case 

1.1. Viscosity solutions of HJ equationjs 

Й. 

Before introducing the notion of solutions of (3) that we want 

to discuss, let us explain a few difficulties associated with (3): 

(3) F(Du, u, x) « 0 in 

Since (3) is a global nonlinear first-o^rder problem, it is well-

known that in general there does not exist classical solution u 

(6C ) of (3) - see Example 1 below for example. Then locally Lip-
1 a 

schitz solutions u of (3) - that is functions u e w
i

Q
c ^ satis­

fying (3) a. e. in 8 - were considered by many authors (A.Douglis 

[12j;S. N. Kruzkov [24] , [25] ; W. H. Fleming [18], [19]; A. Friedman 

[20]).It has been proved by these authors that under general assump­

tions there exist locally Lipschitz solutions of (3). Unfortunately 

as it will be seen in the following examples, with this notion of 

solutions one loses uniqueness, stability properties: 

EXAMPLE 1. Consider the one-dimensional 

(6) lu' | - l - o in (0, 

problem: 

D , u(0) u(1) - 0. 
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Obviously there is no classical solution of (6). Now, if we look for 

Lips 

by: 

Lipschitz solutions of (б), we see that for n = 1
 u

n
(

x
) đefineđ 

V->---$ if f ^ - ^ <oi Jia-"i-i,. 

t . V - > - ^ = T - - " ^ = X = ̂ T Ci = ^ - n " 1 ) 

are Lipschitz, piecewise analytic functions on (0, 1) and satisfy 

(6) except at a finite number of points. Thus, we see that (6) has 

infinitely many solutions and furthermore, remarking that 0 <, u 4 

=- — in (0,1), u converges uniformly on (0, 1) to 0 which is 
2 n n 

not solution of (6). 

EXAMPLE 2. Consider the following Cauchy problem: 

(7) |~ + |Du|a = 0 in R N x (0,-), ulfo" ° o n R N 

(where Du denotes the gradient in x and a > 0). 
Obviously u = 0 is a solution of (7); but u(x, t) = 

- Min (|x| - t, 0) is Lipschitz, piecewise c" and satisfies (7) a.e. 

This explains the need of finding a selection rule among (local­

ly Lipschitz - for example) solutions of (3) such that we keep exis­

tence and we obtain uniqueness, stability results. Natural restric­

tions are also that any notion of solutions of (3) should contain 

solutions of (3) obtained via the vanishing viscosity procedure or 

optimal control - differential games problem. As we will see below, 

all these questions and requirements are answered by the following 

notion of viscosity solutions of HJ equations - in addition it can 

be proved that any notion of solutions satisfying these properties is 

contained in our notion. All the results presented below are taken 

from M. G. Crandall and P. L. Lions [10] (see also [8], [33]). 

We first need to recall a few facts about sub- and superdif-

ferentials of continuous functions: let <j> € C(G); we define the sub-

differential of # at x (6 8), that we denote by D~<j>(x), and the 

superdifferential of $ at x, denoted by D <(>(x), as follows: 

D+ф(x) - { p € R N : l im sup [ф (y) • 
y->X 
y є ß 

- Ф(x) -- (p» y -• x ) ] | y -• x Г 1 * 0), 

D~ф(x) - { p Є |RN:lim i n f [ф(y) • 
y->-x 
y e ß 

- Ф(x) • " (P» У -- x Д І У -- xf 1-- 0 } . 
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REMARKS. 

1. D <j>(x) (resp. D $(x)) is a closed, cohvex set in R , possibly 

empty. 

2. If <j> is differentiate at x € Q, then D"1"* (x) 

- (D<Kx)}. 
-.+ , 3. If D>(x) and D +(x) ?< 0, then $ 

-.+ . 4. D <|»(x) (resp. D <|>(x)) is nonempty on ^ dense set in Q. 

We may now give the definition of viscosity solutions of (3): 

DEFINITION, u € C(S2) is said to be a viscosity solution of (3) if 

the following inequalities hold: 

(8) F(p, u(x),x) = 0 V p € D+u(*c), V x 6 a ; 

(9) F(p, u(x),x) = 0 V p 6 D~u(^), V x € a 

REMARKS. 

1. If u 6 Ci(ft) is a classical solutio^i of (3), then obviously u 

is a viscosity solution of (3). 

2. If u is a viscosity solution of (3) and if u 

r,N 

D <|>(x) -

is differentiable at x 

at xQ € ft, then we have F(Du(xQ), u(xQ), xQ) 

In particular if u is locally Lip^chitz in 

is differentiable 

0 . 

ft, then (3) holds 

EXAMPLE. If we go back to the case of (6| 

easily that u- is a viscosity solution 

except at -c and satisfies (6), we just have to consider the point 

x - j . At 1 - 1* 
x - | we easily obtain D u- M 

fr-1 
and (8) holds. On the other hand u fofc 

solution of (6): indeed taking x » 1/2 

D\(1/2 n" 1) - [-1, +1], D+un(1/2
n~1) 

A more workable definition of viscosity solutions is given in 

the 

PROPOSITION 1. Let u € C(ft); then u i^ a viscosity solution of (3) 

if and only if for all <J> €. C1(Q) the following conditions hold: 

(8') 

(9') 

at each local maximum point x of 

F(D<fr(x), *t(x), x) * v 

at each local minimum point x of u - <J> 

F(D<f>(x), u(x), x) M 

REMARKS. 

1. It is clear that there is a parallel 

and the use of distributions theory 

Example 1 - we check 

of (6):since u . is C 

0, D+u^I) - [-1, +1] 
= 2 is not a viscosity 

, we have easily 

and (9) does not hold. 

u - Ф 

between viscosity solutions 

fpr (nonlinear) equations in 
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divergence form: the integration by parts is now replaced by some 

"differentiation by parts" performed inside the nonlinearity. 

2. This form of the definition of viscosity solutions of (3) is some­

what related to the theory of accretive operators in L (see L. 

C. Evans [13]). 

3. Let us also mention that the notion of viscosity solutions has 

some similarity with the so called entropy conditions for scalar 

conservation laws. This similarity is due to the relations between 

HJ equations and hyperbolic systems (see P. L. Lions [33] for more 

details). 

4. Finally we want to point out that we could replace in the above 
1 2 oo 

proposition ^ 6 C (Q) by <j> e C (fi) or <j> 6 C (a), and local 

maximum point by local strict, global, global strict maximum 

point ... 
P r o o f of Proposition 1. If u is a viscosity solution 

and if u - <f> has a local maximum at x e fi, we have for y e ft, 
y near x , 

u(y) -- u(x) + <j>(y) - *(x) = u(x) + (V*(x), y - x) + o(|y-x|). 

Thus 7<J>(x) e D+u(x) and (8')holds. Conversely if (8') and (9') 

hold and if £ 6 D u(x) we have 

u(y) = u(x) + U , y - x) + o(|y - x|) 
and it is an easy exercise in real analysis to find <{> e C (Q) such 
that 

u(y) = 4>(y) in «, u(x) =- <j>(x), D<j> (x) « 5 • 
An application of the above proposition is the following: 

COROLLARY 1 (stability), Let u € C(Q) be viscosity solution of 
the equation F (Du , u , x) = 0 in Q , where F (p, t, x) ->• 

XI XI IX -&1 XI 

-> F(p, t, x) uniformly on eompaet sets of R x R x Q . We assume 

that u converges uniformly on eompaet subsets of ft to some 
function u. Then u is a viscosity solution of (3). 

P r o o f . It is enough to consider a local strict maximum 
1 

point xQ of u - <J> where <j> e C (Si). Then , for n large enough, 
u - <j> has a local maximum point x_ and x^ -> xrt. By definition 
n r e n n 0 J 

we have 
Fn(D+(xn>* W > V • ° 

and we conclude easily sending n to «>. 

A related result is the following proposition showing that any 

limit function obtained via the vanishing viscosity method is really 

130 



a viscosity solution: more precisely we take 

(10) - eAUf + F^(Duo 

COROLLARY 2, i 

u£> X) íf, uc € C (Q) , e > 0 

u be a solution of 00) and assume that F con-
e N 

verges uniformly on aompaat sets of R 
u converges uniforml We assume that 

some function u . Then u 

P r o o f * It suf.free 

point xA of u - $ where $ c C"(3) 

al m« 

and 

^̂c a vvseo3%-
to consider 

*> 

u - $ has a local maximum at. some poin^: 

Duc(x£) « D^(xe) 

(10) that 

ÄU £ ( X Є
) = Дф(x£), 

- the solution of 

f R x Q t o some function F . 

<̂ rc c2omp<Z6»£ s e t s of n t o 

y solution of ( 3 ) . 

a local strict maximum 

i'hen, for e small enough, 

anđ Since 

we deduce from the equation 

F
e
(Dф(x

c
), u

c
(x

e
), x

є
) єДu (x ) « єAф(x ) 

є
 т
 є є 

to 0 and we conclude easily sending 

REMARK. Let us also mention that the val̂ ie function in deterministic 

optimal control or in deterministic differential games is always a 

viscosity solution of the associated Hamllton-Jacobi equation (often 

called the Bellman or the Isaacs equation in the engineering 

literature). We refer the interested reader to P. L. Lions [33] , 

[32], P. L. Lions and M. Nisio [45]. 

1.2. Uniqueness results for viscosity solutions of HJ equations 

We will treat only two simple cases and we refer the reader to 

[10] for more general results (and for complete proofs). The first 

case is | 

(11) H(Du) + xu - f iji R
N 

where H € CflR ), X > 0 and f,g will be two functions in the 
N N N 

space BUC(R ) =- {u € Cb(R ) : u is unifopily continuous on IR }. 
N 

THEOREM i. Let u, v € C. (R ) be viscosity solutions of (11)or of 
(11) where f is replaced by g. Then we have 

< I 
X 

(U V > + L (12) 

REMARKS. 

1. (12) implies the uniqueness of the solution 

f « g thai, xi 

In addition if 

solutions then 

and by symmetry 

(f ł- g) 

of (11) : indeed if 

f « g and 

u * v. 

v are I the unique corresponding 

P r o o f of Theorem 1. We will gp.ve the proof only in the 
special case when u, v -»• 0 as |x| •+• •• In this case, we first 
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show that if u, v are of class C , the proof of (12) is immediate. 

Indeed, let max (u - v) > 0 and x € arg max (u - v). Obviously, 

since u, v e C , it is Du(xJ = Dv(xJ and we deduce from the 

equations that 

IK" - v)+|L= (u - v)(x0) = i[f<x0) - H(Du(x0))J -

- x[g(Jf0) - H(Dv(xQ))] = 

- y (f - g)(x0) ^ 1 ||(f - g)
+||„. 

Next, if we assume that u, v € CQ(R ), we may modify the 

above proof with the help of the following lemma on continuous func­

tions : 

LEMMA 1. Let u, v € C J R ) he such that max (u - v) > 0 . Then* 

for e > 0, there exist x , y . £ 6 R such that x -> xQJ y -*• 

•+ xQ where xQ e arg max (u - v) and £ € D u(x ) O D~v(y ) . 

If we admit temporarily this lemma, we may use the definition 

of viscosity solutions to obtain 

H U J + Au(xJ = f(xj, H(e ) + Av(yJ = g(yj. 

t E & E E E 

Thus u(x£) - v(ye) = I[f (xe) - g(yc)] 

and letting e -*- 0 we conclude ||(u - v)*)^ = y||(f - g)+||,_ . 

P r o o f of Lemma 1. Let M > max (f|u||w, llvjlj and let 

3 e 2>+(R
N) be such that 0 = 3 = 1, supp 3 C B(0, 1), 3(0) = 1. We 

denote by 3 (K) = 3 (-*•) . Finally we introduce the functions 
w (x, y) = u(x) - v(y) + 3M3_(x - y) . 

N N We claim that w has a global maximum on R x |R at some point 

(x , y ) such that x - y e supp 3 and x , y remain in a 

bounded set in R . Indeed, observe first that 

lim sup w (x, y) = 3M uniformly with respect to 
|x| + |y|-*» e £ € (0, 1] . 

On the other hand if x1 is such that u(xj - v(xj > 0, we obtain 

sup w(x, y) = w (x., x j = u(xj - v(xj + 3M > 3M . 
N N E I I i i 
R XRW 

Finally, we prove our claim by remarking that if x - y 4 supp 3 , 
< e 

then w (x, y) = EM. 

Since w (x, y ) has a global maximum at x = x , we deduce 

- 3M D3 (X - y ) € D u(x ). In a similar way, since - w (x , y) 

has a global minimum at y = y , we deduce - 3MV3 (x - y ) G 
_ - * • - £ ' £ £ £ 

€ D v(y ) . To conclude we remark that if x -> x_ (with E -*• 0) , 
then y -> xrt and en ° 
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u(x
0
) v(x

n
) + ЗM -« lim [u(x ) - v(i

e
 ) + ЗM] = 

:> lim sup. w (J 

n n n n 

Another example of the uniqueness results proved in [10J is the 

following result concerning the Cauchy broblem: 

sup (u 
x 

v) (x) + ЗM 

(13) |~ + H(Du) + Xu « f in B
N x (0, T) 

where H e C(R
N
), X 6 (R, f, g € BUC(IRN * [o, T]) and T > 0. 

THEOREM 2. Let u, v 6 BUC(RN x [o, T] ) 

(13), or of (13) with f replaced by 
i T 
(14) ||(u - v) + (t)||a> = e"

At||(u - v) + (s) 

Finally let us mention that in M. 

[10] there are given various extensions 

2 to general Hamiltonians H(p, t, x) or H(p, t, s, x) . In [10] 

there is treated the case of HJ equations (3) in a domain ft as well 
the uniqueness holds under the same assifimptions as in 

for example, u, v 6 BUC(fl) and 

be viscosity solutions of 
. Then we have for 0 = t * 

t 

, + f e"Xs||(f-g) + (s)||oo ds . 

$. Crandall and P. L. Lions 

of the uniqueness Theorems 1, 

provided, 

on őfì. 

REMARKS. Let us mention a few applications of these uniqueness re­

sults (and uniqueness proofs): in M. G.jCrandall and P. L. Lions [11] 

they are used in order to prove the convergence of finite difference 

schemes and error estimates for the numerical approximation of HJ 

equations. These results are also used in P. L. Lions and M. Nisio 

[45], P. L. Lions [34] to obtain abstract characterizations of HJ 

semi-groups. Finally these considerations are used in P. L. Lions, G. 

1.3. On viscosity solutions of fully noijilinear elliptic equations 

in the study of asymptotic Papanicolaou and S. R. S. Varadhan [46] 
problems in HJ equations - in particular homogeneization of HJ 

equations or of associated problems in ̂ he Calculus of Variations. 

We now turn to the general equations 
define some kind of second-order derivatives 
Let (j) e C(fi); we consider the following 

..+ 

(1). We first need to 

of continuous functions, 

sets: 

D ^ ф í x ) - | ( A , p) 6 SLN x IRN : 

l im sup [ф (y) 
y-*x 
yeй 

Ф(x) - ( p , v 

' - £ ( A ( y -
x) 

x ) , y x)]ІУ " x Г 2 -̂  c] , 
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D
2 1

Ф ( X ) " Í(A»P} € SLN * ^ 

iim inf |><y) - +(x) - (p, y - x) -
y-j-x 
y e n 

- i (A(y - x), y - xQ|y - xj"2> 0} 

REMARKS. 

1. D2i^(x^ (resP» D2i^(x^ ^ i s a closed> convex set in SI.J. x R , 
possibly empty. 

2. D21«Kx) (resp. D2i*^x^ ) is non-empty on a dense set in £. . 

3. If (A,p) 6 D+^tx) (or D~14(x) ) then (B,p) £ D+^x) (or 

D~ $ (x) respectively) for all B e SLN such that B >, A (or 

B 4 A respectively) . 

4. If * satisfies <j> (y) «• $ (x) + (p, y - x) + |(A(y - x), y - x) + 

+ o(|y - x|2) for some (A,p) e SLN x RN then 

D^(x) » {(B,p) with B € SLN and B > A} , 

D" <Kx> = {(B,p) with B 6 SLN and B < A} . 

We may now define viscosity solutions of (1): 

DEFINITION. Let u e C(Q) . The function u is said to he a visco­
sity solution of (1) if the following inequalities hold: 

(15) F(A,p,u(x),x) < 0 V(A,p) € D^u(x) , V x € « , 

(16) F(A,p,u(x),x) > 0 Y(A»P) € D2iu(x> » Vx € ft . 

REMARKS. 

2 

1. It is clear that if u e C (&) is a classical solution of (1) 

then u is a viscosity solution of (1) (recall that F satis­

fies (2)). 

2. On the other hand if u is a viscosity solution of (1) and if u 

is differentiable near a point xfl 6 Q and if u is twice dif­

ferentiate at xfl then 
F(D2U(X0),DU(XQ),U(X0),X0) - 0 . 

In particular, if u e wioc(Q> f o r s o m e p * N ' t h e n u s a t i s f i e s 

(1) a.e. 
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A sharper result than Remark 1 abcjve is given by the 

PROPOSITION 2. Let u <r W2^(Q) be a Solution of the equation 

F(D u,Du,u,x) = 0 a.e. in \ Q . 

Then u is a viscosity solution of (1), 

REMARK. This result is quite sharp as $t is shown by the following 

• Ixl u € W2^(IRN) for p < N 

And it is clear that u is 

example: Take u(x) =- - |x| . Obviously 

and D u € M (ft ) (Marcinkiewicz space) 

not a viscosity solution of the following equation (actually HJ 

equation): 

1 - |Du| = 0 in JRN 

(Indeed, F(?,p,t,x) - 1 - |p| , D^uCO) » {(A,p) £ SLN x R
N : A > 

>. o , |p| < 1} .) 

Proposition 2 is proved in P. L. Lions [35] : i£ involves an ex­

tension of Bony's maximum principle [4j and is somewhat related to 

Alexandrov study on maximum principle [' ] . 

Exactly as in Section 1.1, we deriye the following results: 

PROPOSITION 3. Let u € C(Q) . The function u is a viscosity solu­

tion of (1) if and only if the following conditions hold for all <|> e 

€ C2(ft) : 

(15') 

(16') 

F(D
2
ф(x),Dф(x),u(x),x) < 0 

x of u - ф ; 

ғ(D
2
ф(x),Dф(x),u(x),x) >, 0 

x of u - ф . 

PROPOSITION 4. Let u 6 C(Q) be viscosity solutions of the equa­

tion 

Fn(D un,Dun,un,x) -* 0 in 

Let us assume that (Fn) satisfy (2) and converges uniformly on com-
N pact sets of SLN x IR x (R x Q to some 

8ume that u converges uniformly on abmpaot sets of Q jo some 

function u . Then u is a viscosity solution of (1). 

REMARKS. 

at each local maximum point 

at each local minimum point 

ß 

function F . Finally we as-

If F does not depend on A € SL 
'N 

(i.e. if (1) reduces to (3)) 
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then viscosity solutions of (1) are viscosity solutions of (3). 
r\ w 

2. In Proposition 3, we may replace <j>ec(ft) by $ € C (ft) and 

local extremum by local strict extremum (or global, or global 

strict,...). 

3. If one considers the optimal cost function of optimal stochastic 

control problems (or the value function of stochastic differential 

games) then it is a viscosity solution of the associated HJB 

equation (or Isaac's equation) - for more details see P. L. Lions 

[31]- [32]. 

4. The combination of the preceding remark and Propositions 2, 4 

yields immediately the stability results proved in N. V. Krylov 

[22], [28j by sophisticated probabilistic methods. 

Of course, the remaining question concerns the uniqueness of vis­

cosity solutions of (1) and this is an open question except essential­

ly two cases: 1) when N < 2 and the equation is uniformly elliptic; 

2) when F is convex with respect to A € SLN (i.e. for HJB equa­

tions). To be more specific, let us consider the following simple ca­

se: 

(17) F(Dzu,Du) + Au = f (x) in RN 

wjiere A > 0 , f e BUC(IRN) and t h e f u n c t i o n F e W l o c ( S L N x RN) -

f o r example - s a t i s f i e s t h e c o n d i t i o n : VR < °° - 3 v R > t 0 

(18) (afr:(5»p)) -*. V N for a,e- a 'p ) € S L N x RN » 
1 3 N e l l + I P I < R . 

The following result holds: 

N THEOREM 3. Let u, v 6 C, (R ) be visoosity solutions of (17), or of 

(17) with f replaced by g. Let one of the following conditions hold: 

(19) N < 2 , F' e W1,0°(SLN X RN) , vR > v > 0 VR < - ; 

2 
ft F 

(20) F is convex in £ , vR >, v > 0 TR < «• and - 6 

6 L°°(SLN x IRN) ; 

(21) F is convex in ( £ , p ) . 

Then we have 

(12) | | ( u - v ) + | | „ « i | | ( f - g ) + | 
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REMARKS. 

We could treat more general nonlinearities F , as well, but no 

final result without severe restriction like F convex in £ has 

yet been proved. Another example of uniqueness result is given 

in Section III. 

The proof of the above result is bdsed in each case on existence 

results: the case when (21) holds Relies on results given in Sec­

tion III while the cases when (19) 
„2, «,„-*.. 

and (20) hold depend on the 
2/mNx fact that if f e W ' (R ) in eacn case there exists u e C£(R), 

the solution of the equation 

F(D2u,Du) + Xu « f in R^ 

II. E x i s t e n c e r e s u l t s f o r v i s c o s i t y 

s o 1 u t i o n 

ILL Existence results for HJ equations 

In P. L. Lions [33j , [43] there are discussed existence results. 

We will give here only two easy examples and we refer to [33j for mo­

re general results including boundary 

First we consider the case of (11): 

value problems. 

(11) H(Du) + Xu « f in R ,N 

N m 
where H € C(R ) , X > 0 , f e BUC(R 

PROPOSITION 5. (i) There exists a unique viseosity solution u of 

(11) in BUC(RN) . 

(ii) For all h > 0 the estimate 

sup |u(x) - u(y) | <,
 т 

|x-y|<h
 л 

-iO,a
/fD
N. 

holds. 
In particular if f € Cu'a(R") (0 < a j< 1) then u 6 Cu>u(ttO 

P r o o f . Consider the vanishing viscosity method for the equa­

tion (11): 

(22) - eAu + H (Du ) + Xu » f! in R1 

e e e ^ 

where H € C (R ) , H —*• H uniformly on bounded sets and f e 

e c£(lRN) , fe -* f in LW,(RN) . 

It is quite easy to show that, if e > b , there exists a unique 

sup |f(x) - f(y)| 
|x-yj<h 

-O^/ipN. 

,N 
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00 N 

solution u of (22) and u 6 C, (R ) . Applying the maximum prin­

ciple, we find easily that 
I iu£l L 4 I I l

f
e ~

 H
e
(0)! L i C (independent of e ) . 

1 00 N 

Now, if we assume f e W ' (<R ) , we may take f such that f is 
e e 

1 N bounded in C,(tR ) . Differentiating the equation (22) and applying 
again the maximum principle, this yields: 

i |Due| L i I I l
Df

ei L -i
 c (independent of e ) . 

Therefore u (or a subsequence u p ) converges uniformly to some func­

tion u ( € W 1 , W ( R N ) ) which, by Corollary 2, is a (and thus the) 
1 «> N 

viscosity solution of (11). Therefore for f € W * (IR ) there exists 
1 00 N 

a unique viscosity solution u(f) (e W ' OR ) ) ; in addition, in 

view of Theorem 1 we have: Y f , g € W ,<X>(IRN) 
(23) 'Hu(f) - u(g)|L i f I If ~ gIL • 
By the density and Corollary 1, we deduce the existence (and unique-

N 

ness) of a viscosity solution u(f) for any f 6 BUCflR ) ; in addi­

tion, (23) holds for f, g € BUC(lRN) . Finally, part (ii) of Propos. 

5 follows easily from the fact that the map f .—• u(f) commutes with 
N translations of R . 

In a similar way one obtains the following result concerning the 
problem 
(13) || + H(Du) + Au - f in RN X (0,T) , u| t = 0 = uQ 

where H e C(RN) , X € R , f € BUC(tRN x [0,T]) , uQ £ BUC(RN) . 

PROPOSITION 6, (i) There exists a unique viscosity solution u of 

(13) in BUC(RN x [0,T]) . 

(ii) For all h > 0 , we have: 

Vt e [0,T] sup |u(x,t) - u(y,t)| <. 
Ix-yt <h 

< e~Xt sup |u (x) - u (y)| + 
|x-y|<h ° ° 

"" t 
+ fe"Xs sup |f(x,s) - f(y,s)|ds . 

i |x-y|<h 

In particular, if u Q 6 W
1 , 0°(R N) , f(«,t) is bounded in W1,<>0(RN) 

uniformly for t € Q),T] , then u € W 1 , 0 0(R N x (0,T)) . 
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II.2. Existence results for equation (1) 

Just to give an example, we 

suit: Let F € C(SLN x R
N) and satisfy 

J, 

mention the following existence re-

(2). Then it holds 

PROPOSITION 7. Let f € BUC(R ) and let X > 0 . Then theve exists 

u € BUC(IR ) viscosity solution of 

(17) F(D^u,Du) + Au « f in ł ,N 

tò 

REMARK. This proposition can be easily proved by stochastic conside-

R. Jensen and P. L. Lions 

|very general existence results 

3) - see in particular Sec-

uniqueness result exists, 

rations or by the use of results due 

[23]. By similar methods, one can give! 

for equations (1) (with boundary 

tion III. But as long as. no satisfactory 

this seems to be without great interest. 

conditions 

I I I . O n H a m i l t o n - J a c o b i i B e 1 1 m a n 

e q u a t i o n s 

In this section, we restrict our Attention to equations (1) in 

the case when F is convex in (D u,D^i,u) , that is when (1) reduces 

to the HJB equation 

(4) sup [Aau - fa] - 0 in a 
a 

and we will impose for example Dirichlet boundary conditions 

(24) u « 0 on dQ . 

N In all what follows, we assume that Q is a regular domain in |R 

and we denote by u(x) the unit outward normal to dQ at x . 

In the following subsections III.1-2, -tye present and show in a parti­

cular case an existence and a regularH:y result for (4). Finally in 

Section III.3 we will consider Monge-Aitop£re equations. 

III.1. An existence and regularity result 

First, we need some notations and assumptions: I will be a se­

parable metric space; for a e I , Aa| is given by 

а
ij

( x ) Ә
ij

 + Ь Ï < X > Ә
І
 + cţ<x> 

where ° i j • b i remain in a 

describes I and are continuous in 

*ІJ 
a
ik

a
jk 

bounded set of W * (fi) as a 

(for x € 8 ) and where 
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(25) X = inf ca(x) > 0 . 
(a,x)€ IxQ 

Let us give a typical example of existence, uniqueness and regu­

larity results: 

THEOREM 4, Let us assume 

(26) 3v > 0 V(x,a) € 30 x I a? . (x)n. (x)n. (x) ^ v . 

(i) Then there exists a unique viscosity solution u of (4) - (24) 

in BUCOO . In addition u e CO,0(G) for some 6 6 (0,l] depending 

only on v , aa , ba . 

(ii) There exists An depending only on ||DP<J>|| for |e| = 
0 L (Q) 

= 1,2 , 0 = aa , ba (AQ = 0 if aa , ba do not depend on x ) 

such that if A > AQ , we have 

(27) U 6 W1,00(fl) , SUP ||Aau|| < co ; 

a e l 

(28) u i s semi-concave on Q : 3 c > 0 , V £ e RN | s | = 1 , 

d^u 4 C i n <%' (Q) ; 

(29) sup [Aau - f a ] = 0 a . e . i n fi . 
a 

(iii) If A > AQ and if for some open set u> C Q there exist v > 

> 0 , p e {1 N} such that for all x 6 to , we can find n >. 1 , 

a1,...,an e I and 01,...,8 € (0,1) such that 

(30) Y,e.± = l , ?0 ±a k^(x)c k^ > vEC? V? € tRN ; 

then Q-j-iU e L°°(Q) for 1 < i,j < p . 

(iv) If for some open set w C Q there exists v > 0 such that 

(31) Vx e a) V<* e I (aa..(x)) > vlN 

2 6 
then u 6 C ,p(u>) (for some 3 € (0,1) depending on u> , v , 
s«P I 1**1L )• 
a 

THEOREM 5. Assume (26). 

(i) If w €• W1,0<,(a) satisfies 

(32) Aaw <. fa in 2>'(fl) , w 4 0 on dft , 

£hew w < u . 
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(ii) If w satisfies (27), (29) with 

(33) 3 C > 0 Aw <, C in D ' 

£hen w =- u . 

w - 0 on Эß and 

(ß) , 

REMARKS. 

2. 

3. 

Since we want u to be 0 on dQ |, some assumption like (26) 
has to be assumed (more general assumptions can be found in P. L. 
Lions [31] , [32] where cases when w^ want u to be 0 only on 
some part of dQ are also considered). 

N If Q =- R , the condition (26) becpmes vacuous. 

It is possible to show on easy examples that the regularity in­

volved in Theorem 4 is optimal. In particular the assumption x > 

> XQ is in general necessary in or^er to have (27) (see Genis 

4 

(34) 

the uniformly elliptic case, and Krylov [22] for an example). In 
however,this condition is not necessary (see below). Part (iv) of 

Theorem 4 is an easy consequence of the regularity results due to 
L. C. Evans [15] , [14] . 

All these results adapt easily to tjie case of Cauchy problems: 

|H + sup [A«u - f«] - 0 ^ ,. . v.,-.y , 

u| t = s 0 -
 u

0
 in| 0 -

(24') u =- 0 on bQ x [0,T] . j 

In this case x may be taken arbitrarily in R . 

5. These results extend some particular results obtained by N. V. 
Krylov [29], [30], [26]; P. L. Lionjs and J. L. Menaldi [44], The 
case Q - R is treated in P. L. Lions [36] by purely probabi­
listic methods and the general case (announced in [37], [31]) is 
treated in [32] by combinations of p. d. e. and probabilistic ar­
guments . 

In what follows, we will only tre&t the following 

COROLLARY *3. Assume that & is a bounded 

(31') ]v > 0 V(x,a) e Q x I 

Then there exists a unique solution u 

smooth domain* X >. 0 and 

(aij<*>) i vIN • 

REMARKS. 

1. Corollary 3 is proved in P. L. Liont̂  

Lions [17] by p. d. e. techniques 

W
2,0
°(й) of (4) - (24). 

[38], L. C. Evans and P. L. 

sketched below. Previously, very 
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A V + $fu* -
є є є "

 u
є

}
 *

 f l in ß , 
1 

u * 0 
є 

on öß 

A 2u 2 + $ (u2 -
є є

 v
 є 

• uЗ) - ŕ in ß , u 2 = 0 
є 

on Эß 

particular results were obtained by N. V. Krylov ["291 , *J. Brdzis 
and L. C. Evans [5], L. C. Evans and A. Friedman [16], P. L. 
Lions and J. L. Menaldi [44]. 

2. The exact range of X such that (4) - (24) is solvable is inves­
tigated in P. L. Lions [42], This involves a notion of demi-e.igen-
values for the operator associated with the HJB equation. 

III.2. Sketch of the proof of Corollary 3 ; 

The proof consists first in approximating the problem and getting 
uniform a priori estimates in W/,w(8) and next in passing to the 
limit. The passage to the limit is an exercise on the notion of vis­
cosity solutions and thus we will skip it. Various approximations of 
(4) - (24) are possible: see L. C. Evans and A. Friedman j/l$] , R. Sen-
sen and P. L. Lions [23] . We will follow the one introduced in [16J. 
taking I - {!,...,m> to simplify: one considers a system, called 
the penalized system 

(35) 

A V + $ (um - u1) - fm in ft , u m « 0 on dfl e e e e e 

where 3g(t) -» ~ f3(t) and 0(t) 6 C°°(R) , $(t) « 0 if t <, 0 , 

B'(t) > 0 if t > 0 and $"(t) > 0 on R . 

It is easy to show that there exists a unique solution (u ,.., 

...,um) of (35) in (C (fi))m . Of course by an obvious approximation 
e i » 

of the coefficients, one may assume u € c (ft) • Now if we prove 
j | ia x j | 0 <, C (independent of e ) then it is easy to show first 

6 WZ,°°(Q) 
i •* 

that u -->• u (independent of i ) (or subsequences of u*" ), and u 

is a viscosity solution of (4). Obviously u € W**"(fl) and thus (4) 
holds a.e. 

The a priori estimates are obtained in three steps: first, one 
proves a priori estimates in WA,t"(0) by the use of standard barrier 
functions and maximum principle. Then, if we set. M = sup | |D""U (X) | | 

E i,x £ 

by a convenient adaptation of a device due to Kohn and Nirenberg -

for more details see P. L. Lions [38] - one shows by a sophisticated 
argument of barrier functions that 
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yx€ $Q V i € { l , . . - , m } {D^u 

where c i s i n d e p e n d e n t o f x , i and 

1 (x) | < c + cM^ 
Є ' ет Є 

Let us now show how we c o n c l u d e 
i *_i _i 

firstpLy 

when a b , c do not depend on x 

in R" , we differentiate twice (35) 

obtain 

in a simple case namely 

: Let £ be a unit vector 

wifth respect to £ and we 

A Ҷ Ә ^ )
 +

 ŕ'(«í - u i + 1 — ^ 1 - »2 

'Гe' 

+ б"(u* 

. l ) ( a Ç U Є 

u i + 1)(ö ř«-
Є Ç є 

Эtu 
Š є 

i+1 

Ә̂ uf P V - Ә
2
^ 

P ç 
and since 3 is convex we deduce 

(36) A^ҷð^u1) + a ҷ u 1 

ç є є 
u І + 1 ) ( 6 Kl - 8 2U 1 + 1) < ЪІЃ < C . 

K є 

oif Next let (i ,x
Q
) be a maximum point 

of generality we may assume that i
0
 = 

9 i u 
d„u (x) <_ c + cM^ V x 6 

g £ £ 

on the other hand if x e Q » then applying 

(36) (for i =- 1 ) at the point xfl 

Therefore in all cases, we proved: 

1 . If xQ € an , we deduce 

,N Vš є tť 

-i i 

¥ x Є| 

Observ ing t h a t : A u 4 c we deduce e a s i l y 

|D
2
u

1
(x) I < c + cM

32 

and thus M is bounded. 

In the general case, the dependency 

creates difficulties (supplementary terins 

solved in [38], [17] in the following wky. Let 

|D
2
u

e
°(x

0
)| = M£ for some iQ If 

if x0 € ӣ we may assume without loss 

ir. 

k is diagonal and we denote a 

w
i
(x) 

а
kk

(
V 

D V U ) !
2
 + 2N

2
M Z o

k є ь
 k
 к 

where n > 0 will be determined later bn and where we normalize the 

(a
1
) such that (a

1
(x)) >, I

N
 for x € 

making similar computations as those 

ferentiating twice the equations (35) apd 

the inequalities satisfied by A'S*1 , 

) + 

Ç e 

ч2..i, sup d*u (x) , without loss 
i,x * 

VІ ; 
maximum principle in 

2 1 
obtain d*u (x

Q
) <. c . 

G Vi dlux(x) <. c + cM*
5
 . 

9 6 e 

of the coefficients on x 

appear in (36)) which are 

be such that 

€ dQ , we conclude easily; 

of generality that D^u (x ) 

. Finally we introduce 

әjVҷx) + y|DuJ|
2 

П i Є U,. • łiи} Fhen 

performed >2± above with dtu.. , dif-

using maximum principle on 

obtains the following ine--
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quality: if y is large enough, then 

(37) max wi(x> < ~ M2 + C . 
i,x Z e 

Thus in particular 

M2 < wl0(x0) - 2N
2M£ £ « ka^°<x 0) + C < 

< 2N2M {A ° U °(xn)} + | M
2 + CM + C < 8=5 el e 0 J 2 e e — 

< 4 M2 + CM + C 
*=* 2 E e 

and we conclude. 

Ill-3. Applications to the Monge-Ampere equations 

We now turn to the solution of the classical Monge-Amp^re equa­

tions : 

2 — 
(38) det(D u) = H(x,u,Du) in fl , u is convex in fl , 

u = 0 on dfl , 

where fl i s a bounded, convex domain i n R and H € C°°(fl x R x R ) . 
We s h a l l assume t h a t 

(39) V R < » ] aR > 0 Y ( x , t , p ) € iTR x [-R,+R] x B R 

H ( x , t , p ) > aR > 0 , 

where flR = {x 6 fl : d i s t ( x , 8 f l ) > ~ } and 

u € C(fl) , convex i n fl , s a t i s f y i n g 
( 4 0 ) de t (D 2 u ) £ H(x,u ,Du ) i n fl . 

The precise meaning of the inequality (40) is to be understood in the 

sense of A. D. Alexandrov [2] (see also A. V. Pogorelov [47] , S. Y. 

Cheng and S. T. Yau [7]). Then we have 

THEOREM 6, Under assumptions (39) and (40) there exists a solution 

u of (38) in C°°(fl) 0 C(fl) , u .> u in fl . 

REMARKS. 

1. If g^(x,t,p) >, 0 for (x,t,p) e fl x IR x (RN , then u is unique. 

2. This result is proved in P. L. Lions [39j, [40] (and some version 

of it was announced in P. L. Lions [41]), where more general re­

sults are proved (requiring less regularity on H ) ; in particu­

lar the case of non-homogeneous boundary conditions is treated 

in [39], [40]. 
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3. It is easy to show that if 

(41) lim sup H(x,t,p)|p 
1 p I-*->» 

H satisfies the condition 

< « hniformiy in (x,t) e 8 x R 

4. 

5. 

and if tt is strictly convex then (&0) holds, i.e. a subsolution 

u exists. It is of course the case When H depends only on x 

and thus we see that we recover as a very special case the result 

of S. Y. Cheng and S. T. Yau [7] whi£h is proved in [7j by comple­

ting the method of A. V. Pogorelov [47] based on geometrical ar­

guments involving first the solution of the Minkowski problem. 

On the other hand, our proof is a direct p.d.e. proof and applies 

to general non-linearities H(x,t,p)| while the method of Pogore-

lov-Cheng-Yau does not seem to cover!this case. 

A major open question is the regularity of u up to the boundary. 

Let us consider, as an example, a particular case: H(x,t,p) = 

= H(x) (l + |p| ) a where a >, 0 . W e will also assume, to simplify, 

that ft is strictly convex and H > 

above): 

N 

in Q . Then (see Remark 3 

if a <_ x , there exists a unique solution of (38) in C (Q)O (i) 

O C(Q) . This obviously contains the ca&e a 

solution of the Minkowski problem. 

N (ii) On the other hand, if - -

cessarily 

0 which gives the 

a > ~ and if u solves (38), then ne-

|H(x)dx = [ det(D2u)(l + |Dji|2)"ađx 

I __£_ 
(1 + ІPГ) 

äif JÍE_ 

^N Du(fl) 

Therefore the condition 

(42) JH(x)dx ̂  c 
Q 

is a necessary condition for the existence of 

On the other hand, it has been proved by 

exists if 

N + 1 + X 

i + І P Ґ ) 
2 l < j 

(or u ) . 

I . Bakelman [3] t h a t u 

( 4 3 ) З u o , H(x)dx < c 

H(x) 4 C d i s t ( x , 3 f t ) . J 

Therefore if (43) holds, there exists a solution 
I N + 1 

of (38). In particular we see that if «!<. — 7 5 — 

^ u € C (ň) O C(fi) 

we may také X = 0 
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and (42) is necessary and "almost" sufficient for the existence of u . 

N + 2 A case of interest for differential geometry is the case a = — - 5 — 

- in this case solving (38) amounts to build a convex hypersurface 

with prescribed Gauss curvature H(x) . In this case we see that (42) 

is a necessary condition and that if : H(x)dx < C , H(x) 4 

4 C dist(x,d&) then there exists a unique solution u 6 C°°(ft)n 

D C(Q) . 

Let us mention the main lines of the proof of Theorem 6: The 

main difficulty of (38) lies with dQ since us a priori estimates 

for u up to dQ are known. This is why we approximate (38) by prob-
N lems in R of the following form: 

det(D2u - - pu I.,) = H(x,u ,Du ) in RN , 
e e * e N' e e 

( 3 8" e ) 9 1 N . N 
(Dzu£ - i pu£IN) > 0 in «RW , ue € Cb(R

N) 

where p e c£(IRN) , p = 0 in fl , p > 0 o n l R - f i . 

The idea of the proof is to solve firstly (38-e), to let e —• 0 and 
N — to make sure that u —»• 0 on B. - Q by the use of appropriate 

barrier functions and finally to apply the general a priori estimates 

due to A. V. Pogorelov [47] , E. Calabi [6] . 

To conclude, let us explain the relations between Monge-Ampere 

equations and HJB equations: This is explained by the following alge­

braic lemma observed by B. Gareau [21] and N. V. Krylov [30]. 

LEMMA 2, Let A be a symmetric NxN-watria?. 

(i) If A > 0 then (det A ) 1 / N = inf{Tr(AB) : B € SLN , B > 0 , 

det B = 1/NN} . 

1 -1/N —1 (ii) If A > 0 , B = ^(det A) ' A is a minimum in the above 

infimum. 

(iii) If inf{Tr(AB) : B € SLN , B > 0 , det B = 1/N
N} > - » , then 

A >, 0 . 

This shows that (38-e) is equivalent to: 

1 1 / N N 
sup {- b..9..ue + - pueTr(B)} + (H(x,u ,DU )) = Q in R 
B € V x3 --3 <- t e 

where V = {B € SLN : B > 0 , det B = 1/N
N} . 
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In particular, if H depends only on 
is then an immediate consequence of 

[ 3 ] 

[ 4 ] 

[ 5 ] 

[ 6 ] 

[ 7 ] 

[ 8 ] 

[ 9 ] 

[10] 

[11] 

[12] 

[13] 

[14] 

[15] 

[.6] 

the resolution of (38-e) 
Theorem 4. 

R E F E R E N C E S 

[ 1] A. D. ALEXANDROV: Investigations OT\ the maximum principle. 

[2] 

(Russian) Izv. Vyšš. Učebn. Zaved. 
126-157; II, 3 (1959), 3-12; III, 
3-15; V, 5 (1960), 16-26; VI, 1 (1^61), 3-20 
A. D. ALEXANDROV: Dirichlet* s probtem for the equation 

Matematika. I, 5 (1958), 
(1959), 16-32; IV, 3 (1960), 

••V I. (Russian) Vestnik Det||zi.|| -= *(z1,...,zn,z,x1, 
Leningrad. Univ. Ser. Mat. Meh. Astr., 13 (1958), 5-24. 

I. BAKELMAN: Generalized solutions \of the Dirichlet problem for 
the N-dimensional elliptic Monge-Arkpere equations. Preprint 
(Lectures Math. Inst. Univ. Bonn), j 
J. M. BONY: Principe du maximum dans les espaces de Sobolev. 
C. R. Acad. Sc. Paris, 265 (1967), 333-336. 
H. BRifiZIS, L. C. EVANS: A variational approach to the Bellman-
Dirichlet equation for two elliptic] operators. Arch. Rat. Mech. 
Anal., 71 (1979), 1-14. 
E. CALABI: Improper affine hyperspiures of convex type and a 
generalization of a theorem by K. ^b'rgens. Michigan Math. J., 
5 (1958), 105-126. j 
S. Y. CHENG, S. T. YAN: On the regularity of the Monge-Ampere 

equation 
30 (1977), 41-68. 

det(ð u/ðx^ðx.) F(x,u) 

M. G. CRANDALL, L. C. EVANS, P. L. 
viscosity solutions of Hamilton-Jacobi equations. To appear. 
M. G. CRANDALL, P. L. LIONS: Condition d* unicité pour les so-
lutions généralisées des équations 
mier ordre. C. R. Acad. Se. Paris, 
M. G. CRANDALL, P. L. LIONS: Viscos 

Hamilton-Jacobi du pre-
292 (1981), 183-186. 
ity solutions of Hamilton-

Jacobi equations. To appear in Trarjs. Amer. Math.-Soc. 
M. G. CRANDALL, P. L. LIONS: Approximation of solutions of Ha-
milton-Jacobi equations. To appear. 

A. DOUGLIS: The continuous dependence of generalized solutions 
of nonlinear partial differential equations upon initial data. 
Comm. Pure Appl. Math., 14 (1961), 267-284. 

L. C. EVANS: On solving certain nonlinear partial differential 
equations by accretive operator methods. Israel J. Math., 36 
(1981), 225-247. 

L. C. EVANS: Classical solutions of fully nonlinear, convex* 
second-order elliptic equations. To| appear in Comm. Pure Appl. 
Math. 

L. C. EVANS: Classical solutions of the Hamilton-Jacobi-Bellman 
equation for uniformly elliptic operators. Preprint. 

L. C. EVANS, A. FRIEDMAN: Optimal s\toehastic switching and the 

Comm. Pure Appl. Math. 

LIONS: Some properties of 

147 



Dirichlet problem for the Bellman equation. Trans. Amer. Math. 
Soc, 253 (1979), 365-389. 

[17] L. C. EVANS, P. L. LIONS: Resolution des Equations de Hamilton-
Jaeobi-Bellman pour des op4rateurs uniformiment elliptiques. 
C. R. Acad. Sc. Paris, 290 (1980), 1049-1052. 

[18] W. H. FLEMING: The Cauehy problem for degenerate parabolic 
equations. J. Math. Mech., 13 (1964), 987-1008. 

[19] W. H. FLEMING: The Cauehy problem for a nonlinear first order 
partial differential equation. J. Diff. Eg., 5 (1969), 515-530. 

[20] A. FRIEDMAN: The Cauehy problem for first order partial diffe­
rential equations. Ind. Univ. Math. J., 23 (1973), 27-40. 

[21] B. GAREAU: Mithodes de eontrole optimal en analyse eomplexe, I. 
Resolution d' Equations de Monge-Ampere. J. Funct. Anal., 25 
(1977), 391-411. 

[22] I. L. GENIS- N. V. KRYLOV: An example of a one dimensional eon-
trolled process. Th. Proba. Appl., 21 (1976), 148-152. 

[23] R. JENSEN, P. L. LIONS: Some asymptotic problems in fully non­
linear elliptic equations and stochastic control. To appear. 

[24] S. N. KRU2K0V: Generalized solutions of the Hamilton-Jaeobi 
equations of Eikonal type. I. Math. USSR Sbornik, 27 (1975), 
406-446. 

[25] S. N. KRU2K0V: Generalized solutions of nonlinear first order 
nonlinear equations in several independent variables. (Russian) 
I, Mat. Sb. 70 (1966), 394-415; II, Mat. Sb. 72 (1967), 93-116. 

[26] N. V. KRYLOV: Control of diffusion type processes. (Russian) 
Moscow 1979. 

[27] N. V. KRYLOV: On passing to the limit in Bakelman equation.I. 
Math. USSR Sbornik. 

[28] N. V. KRYLOV: On passing to the limit in Bakelman equation II. 
Math. USSR Sbornik. 

[29] N. V. KRYLOV: On control of the solution of a stochastic inte­
gral equation. Th. Proba. Appl., 17 (1972), 114-131. 

[30] N. N. KRYLOV: On control of the solution of a stochastic inte­
gral equation with degeneration. Math. USSR Izv., 6 (1972), 
249-262. 

[31] P. L. LIONS: Optimal stochastic control of diffusion type pro­
cesses and Hamilton-Jaeobi-Bellman equations. In Proceedings . 
IFIP Conf. on Optimal Stochastic Control and Filtering in Co-
coyoc, Ed. W. H. Fleming and L. Gorostiza. Springer, Berlin 
1982 . 

[32] P. L. LIONS: Optimal control of diffusion processes and Hamil­
ton- J ac obi-Bellman equations. To appear. 

[33] P. L. LIONS: Generalized solution of Hamilton-Jaeobi-equations. 
Pitman, London 1982. 

[34] P. L. LIONS: To appear. 

[35] P. L. LIONS: A remark on Bony maximum principle. To appear. 
p6J P. L. LIONS: Control of diffusion processes in R . Comm. 

Pure Appl. Math., 34 (1981), 121-147. 
[37] P. L. LIONS: Equations de Hamilton-Jaeobi-Bellman ddgenirees. 

C. R. Acad. Sc. Paris, 289 (1979), 329-332. 



[38] 

[39] 

[40] 

[«1J 

[42] 

[43] 

[44] 

[45] 

[«] 
[47] 

P. L. LIONS: Resolution analytique 
Diriehlet. Acta Mathematica, 146 (1 
P. L. LIONS: Sur les équations de 
in Manuscripta Math. 

P. L. LIONS: Sur les équations de Monge-Ampère. II. To appear 
in Arch. Rat. Mech. Anal. 

des problèmes de Bellman-
981), 151-166. 

Monge-Ampère. I. To appear 

P. L. LIONS: Une méthode nouvelle 
régulières de l'équation de Monge-
293 (1987), 589-592. 

P. L. LIONS: Bifurcation and optim 
appear in Nonlinear Anal. T. M. A. 

P. L. LIONS: Existence results for 
equations. To appear in Ricerche M^t. 

pour l* exiвtenee de solutionв 
Ampbre. C. R. Acađ. Sc. Paris, 

l stoehastie eontrol. To 

firвt order Hamilton-Jaeobi 

P. L. LIONS; J. L. MENALDI: Optima 
grals and Hamilton.-Jacobi-Bellman 
J. Control Optim., 20 (1982), 58-95 

P. L. LIONS, M. NISIO: A uniquenes 
associated with the Hamilton-Jacob 

P. L. LIONS, G. PAPANICOLAOU, S. Rj 

A. V. POGORELOV: The Minkowski mul 
ley, New York 1978. 

I control of stochastic inte-
equations. I and II, SIAM 

ls result for the semigroup 
\C-Bellman operator. To appear. 

S. VARADHAN: To appear. 

pidimensional problem. J. Wi-

149 


		webmaster@dml.cz
	2012-08-03T16:31:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




