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Weighted Inequalities in Fourier Analysis

H. P. Heinig
Hamilton, Ontario

Introdyction. Inequalities involving the Fourier transform and its variants have been an
essential part of Fourier analysis from its early beginnings. This is not surprising because
the size and estimate of the Fourier transform in various function spaces ip significant in the
development of harmonic analysis and is underscored by the numerous applications they
yield in science and engineering. The first LP-estimate of the Fourier transform involving
power weights are the results of Paley-Titchmarsh (1834) with extensions by Pitt (1937),
Stein (1956) and Rooney (1966). Somewhat more general weights were considered by
Hirschman (1957) and Flett (1973). Only in 1978, Muckenhoupt ([22]) formally posed the
problem of characterizing for given indices p and q those non-negative weight functions
u and v for which the inequality

Mg ¢ Ol

holds, for all f ¢ L!. This problem has been studied by a number of workers, including
Muckenhoupt, and, although the complete solution is still illusive, much progress has been

made.

This research was supported by the Natural Sciences and Engineering Research Council
of Canada grant A-4837
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Many results regarding the weighted Fourier transform inequality follow from. inter—
polation arguments and those in turn depend on results about the Hardy operator, its dual
as well as variants and generalizations. It is therefore also natural to study in this connec~
tion weighted estimates for the Hardy operator. In 1986 a survey article on these subjects
appeared in the Proceedings of the Spring School held in Litomyl, Czechoslovakia (Non-
linear Analysis, Function Spaces and Applications v.3; M. Krbec, A. Kufner, J. Rékosnik,
ed., Teubner Texte zur Math. Bd. 43, Leipzig 1986). The article which follows, is an
attempt to describe the progress which has been made in this area since the Litomysl paper
was written.

This work is divided into three parts. The first describes recent generalizations and ex—
tensions of Hardy’s inequality. We describe how weighted gradient inequalities follow in a
natural way from Hardy’s inequality. In a limiting case of the weighted LP inequality for
the Hardy averaging operator, we obtain weighted characterizations of exponential in-
equalities of this operator. These results have higher dimensional analogues which together
with their discrete versions seem to be new. Then we describe results on weighted Hardy in—
equalities for decreasing functions. These characterizations lead to weight characterizations
of more general operators, such as the Laplace transform and the Riemann-Liouville
operator, on classical Lorentz spaces. Section 2 contains various weighted and measure
weighted Fourier inequalities. In particular, we point out that certain weighted Fourier in-
equalities are equivalent to weighted Hardy inequalities. The last section describes some
application of these results to Fourier restriction and extensions theorems as well as un—

certainty inequalities.
It is a pleasure to thank the organizers, Professors M. Krbec, A. Kufner and J. Rékosnik

for the invitation to participate in this conference, for their fine organization and generous

hospitality which made this visit to Czechoslovakia especially enjoyable.

43



Before we begin our discussion, we collect some notations and definitions used in the
sequel.

As usual we write for (-w, ©) = R, &t = (0, ), B ={x= (xpexp)r x; € R,
i =12,..,n} and dx = dx,dx,...dx . The Fourier transform of fon R" is defined by

f(x) = J e-ix'yf(y)dy, x eRY,
8"

whenever the integral converges. LP denote the usual Lebesgue spaces of functions with

umgsj [#(x)|Pdx < ©, 0<p <.
mn

If u is a non-negative weight function, then we write f ¢ Lﬁ, if ||fllp = Ilful/ T p <@

Similarly, if 4 is a measure, then f ¢ Lp, if ||f|| o. The conjugate index p’ of
P, 0 < p < m, is defined by P+f1>——1 with p’ = o 1f p=1

C (R) denotes the space of continuous functions of compact support on R, wh1le CO(!R)
is the space of continuous functions f(x) vanishing as |x| — o. A measure x on R isa
linear functional on CC(IR). p is positive if <p, £> > 0 for all f ¢ CC(IR), ¢ (R), re-
spectively, es’(!lln) are the spaces of Schwartz funcfions on R, respectively R™.

We write f| if { is decreasing on Rt and decreasing means non-increasing.

B (x,) € R" is the n-ball centered at x, with radius r > 0. %, _,(p) = {x eR™ |x| = p}
is the n-sphere of radius p, while X = En_l(l). do or dr are the surface measures on
these spheres, and XE is the characteristic function of the set E. We shall write G » H,
if there are positive constants CO, C1 such that C0 <G/H ¢ Cl‘ Constants will be de—
noted by C,B and A (at times with subscripts), which may be different from place to
place. Finally, inequalities |[|Tf]] < C||f|| are interpreted to mean that if the right side is
finite, so is the left, and the inequality holds.
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1. Recent generalizations and variants of Hardy’s inequality. The classical Hardy in—
equality states that if P is the averaging operator

e =L [fwa, x>0, (11)
0

then P is bounded on LP(R"'), p > 1. This results and its generalizations and variants
find numerous applications in many branches of mathematics. For example in the theory of
differential equations, approximation theory, interpolation theory, the study of function
spaces, and Fourier analysis to mention a few. During the last twenty years, Hardy’s in—
equality was extended to general measures and in particular to measures generated by
weight functions. The general result in terms of weights may be summarized in Theorem

1.1, which will be the starting point of our discussion.

Theorem 1.1. Suppose 0 < p,q <o, p2 1. If f is non-negative and u,v are weights
on (0, w), then the inequality

LT u(x) (T f(t)dt) qu] Ha < cff v(x) f(x)de] W
o0 0

holds, if and only if

(i) for 1<p<q<m, :gg (I u(x)dx] Ha [;[ v(x)l'p'dx] i <

(i) for0<q<p<ap2l, {T[[Tu(t)dt)l/q(]‘v(t)l—p,dt)llq’]rv(x)l—p,dx}llr <o,
0 x 0

45



There is of course also an obvious dual result which is obtained easily via changes of
variables. For a proof of this result together with an excellent historical survey and many
applications we refer to the forthcoming book by Kufner and Opic [18].

It may be instructive to illustrate how Theorem 1.1 can be applied to a gradient type
differential inequality in R™. Note that the averaging operator P of (1.1) and its dual Q

can be written in the form

1 ®
(PE)(x) = ! e (@0 = [ 1) &
1

But in this form the operator is also well defined for x ¢ R®. Now if Q* is defined by
(Q™)(x) = —x - (vf)(x), x ¢ R® then for any fe¢ Cé(ltn) we get

o @®
QM) = - [ (- (oD(tx) % = - [ 7F t(ex)at = 1)
1 1
Now using polar coordinates it follows from this, that

[ 1161 %ax = [ ueo)l J (Q*(xt) % %x = l [ ueos™| j(Q )(ast) 34 asdo
R R: 0

O 8

u(so)s“‘llj(q 1)(0y) | %sdo.
8

|

Since the inner integral corresponds to the one dimensional dual operator one obtains on

applying the dual of Theorem 1.1 (i) the following gradient inequality of Sinnamon [28]:

Theorem 1.2. Suppose 1 < p <w, 0< q<w, then for all fecg(m“)

I R I
R® R®
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holds, if and only if

@) for p=gq, supU v(tx)tn"ldt) U[u(tx)tn]l'p' Qz_)l/
xeR®

(i) for0<q<pp>1

{ [(I weta) (I fu(ex)e" 1P’ galf T il <o
Rn .
where 1= .}q. -flf

It should be remarked here that in the case 1 < p < q < w, not only does the proof of

this result fail but also the inequality (c.f. [28, Theorem 3.4]).
If the indices p, q ¢ (0, 1) then either the domain spaces of the Hardy operator must be

replaced by the boundary values of functions in weighted Hardy spaces in order to get
weighted inequalities ([12]) or the inequalities are in the opposite direction ([3]). For ex—

ample in case q < p < 0 the following holds:

Theorem 1.3. ([3, Theorem 1]). Let q < p < 0, u,v and f positive a.e. and suppose

K(r) = (l o) dx]1/c1 (:[ v(x)l_p,dx)l/p,

[l v(@iPax) /P < ¢ i u(x) [i f(t)dt]qu)l/ q (12)

provided K(r) is non-decreasing and ing K(r) = B > 0. Conversely, (1.2) implies
>

inf K(r) = B > 0.
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1.1. Inequalities related to those of Hardy’s. We now discuss weighted inequalities which
may be considered limiting cases of Hardy’s inequality. Indeed we characterize the weights
for which certain exponential inequalities hold. Unlike Hardy’s inequality the higher
dimensional generalizations of these results follow in a straight-forward manner. We give in
addition a discrete form which yields a weighted characterization of Carleman’s inequality.
The results of this section have been obtained jointly with R. Kerman and M. Krbec.

Theorem 1.1 with p = q shows (with explicit constant) that

T u(x) (x_l Tf(t)l/p dt]p dx ¢ BD p(p)P! T vixdx  (13)
0 0 0

holds, if and only if

Bg = :gg [I, x_pu(x)dx) (l v(x)l;p'dx)llp’ <o

Now if p — w, then an application of Fatou’s lemma shows that (1.3) implies

o X o

j u(x)exp [x'1 j & f(t)dt]dx <c [ v(x)f(x)dx, (14)
0 0 0

provided lim Bll:p(p’)p-1 =C as p— o In this sense (1.4) might be considered the
limiting case of Hardy’s inequality. Of course there is no reason to assume that
ng(p')l’_1 —C as p—u.

Besides the operator P of (1.1) we define Q @ > 0, as follows:

Q) = mcaJ (1) dt.
X

Theorem 1.4. Let u, v and f be positive a.e. and
w(x) = u(expl(P & P(x)}, x> 0.
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Then, the following ate equivalent:

) l[u(x)exp(r' & (x)ix < ) i[ v(x)(x)dx
M) (Pw)(x) + a7 (QuW)(x) Cpy a>

(i) (Pw)el”

() l wix)(Pr/P)(x)ix ¢ G 1[ f()dx, (2 >2)

where Cs is independent of p.

Proof. (1) # (if). Write f =25, where g(x) = t'lx(o,t)(x) + xol1-o

t > 0, a> 0. Substituting into (i) the right side becomes

t w
Gl[t‘1 1[ dx + e 1% J x"c"'ldx] =Gyl + e "% q],
' t

while the left side takes the form

l[-u(x)exp(? tn B)(x)dx =l u(x)exp(P & H)()exp(P tn g)dx

) x t

- l w(expx™! l & gly)dy)dx = (l[ + D =h+l

respectively. With the above defined g

4 Krbec, Analysis 4 engl.

GX(t'w)(x):
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X

t t
1= l w(x)exp [%J tn(%—]dy]dx = %— I w(x)dx = (Pw)(t)
0 0

I

and

I = T w(x)exp [x"l I ln(%—] dy)bexp[x“l T m[e—l—“ta‘y'a'—l) dy)dx
t t

= J w(x)exp [x‘lz’tn[%] + [1 -4 m[e‘l“’t"‘] -(a+)xt T mydy]dx
t ’ t

= T w(x)exp[x_lt tn[-tl—] + [1 - %} (_l—a + a(l - :-E)ln t—x'l(a + 1)(x fnx —x+t-t & t)]dx
t

= ], w(x-)exp[x—lt L‘n[%—) + [1 - :—E)tn t- [a + l)tn x+x0 Ha+1) & t]dx
t

= T w(x)exp [atn t-(a+1) tnx]dx = t"‘]sx"”'1 w(x)dx
t t

= & H(Qw)(t).
Therefore, (Pw)(t) + & (QW)(t) ¢ Cy[1 + € %/a] = C, and (ii) holds.
(ii) # (iii) is obvious. To prove (iii) # (iv) note that by Holder’s inequality with q > 1

(PRGE) < (PRGN i /9,
so that



(bl /%)%
{w(x)dx ¢[wxax = t[ w(x)dx ¢ Olll/)?.
x: (PR)G>AE g () o/ 2)8>x)

Here the last inequality is implied by (iii) with C independent of q. Hence the operator
P is bounded from LY to weighted "weak" L1, q > 1 with norm independent of g.
Now let p > 2, then we apply the Marcinkiewicz interpolation theorem with q = p/2
and q; = 3p/2, (¢ = 3/4) to obtain

i[ w(x) (Ph)(x)Pdx ¢ Cy j h(x)Pax
0

where C, is independent of p. With bP = f this implies (iv).
Finally (iv) # (i) follows from Fatou’s lemma and the fact that

lim (PR/P)P(x) = exp(P & f)(x)  ([33; p. 344, 5c]).
p-o

Remark 1.5. If (jii) holds, then (Pw)(x) < C, so that (Q a(Pw))(x) <(Q ac)(x) = C.
Thus

C 2 (Qy(PW))(x) = ax”‘T yo? [I w(t)at)dy

x

x 0 X A .

= 21 (PW)(x) + i (QW()-
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Therefore, Pw ¢ L®, if and only if Q a¥ € L® and we obtain

Corollary 1.6. If u,v and { are positive and

w(x) = u(x) exp(P & 1/v)(x), x>0,

then

o X [ ]
1[ u(x) expx? l flyMy) dx < C 1[ v(x) expl(f(x))dz,
if and only if for any a> 0, 8 ug a"l(Q a W(x) <
x>

A simple calculation shows that u(x) = v(x) = xﬂ, f real, satisfy the weight condition

and so do the functions
u(x) = eﬁx/ 2, v(x) = eﬂ‘, f real.

The characterization of the weights for the exponential inequality for the averaging
operator in higher dimensions carries over in a straight forward way unlike the
corresponding characterizations in Lp-spscea, where the n—dimensional result, n > 2, is
still open. Here we simply state the two dimensional case of the exponential inequality.

Let x = (x;, %)),y = (v, o) snd P2 Q2 be defined by

x; Xy ot
(P%(x) = x5! | l 105y, (Q2D(x) = ayayx, 'xy? v, 7 ty)dy
1}

K%&

[ n
1%

a; >0, ay>0, then the following holds:
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Theorem 1.7, Let u, v and f be positive a.e. on Rf_, then

j u(x) exp(P? fn f)(x)dx ¢ cj v(x) f(x) dx
' »2

ifandonlyif  sup  (Q%W)(x) <=, where w(x) = u(x) exp(P? &n 1/v)(x).
x> ,x2>0

There are further extensions of these results to more general operators with positive
kernels satisfying certain homogeneity conditions. The Laplace transform is a special case of
these. We shall not discuss these generalizations here, instead we consider the discrete case
and give a variant of the arithmetic-geometric mean inequality.

Recall that if 3, 89, .. ; BT€ positive real numbers, then Carleman’s inequality asserts
that

by [oy2g-a, /2 ¢ % a, (15)

n=1 1_1;:1 n
where the constant e is sharp. There are a number of weighted generalizations of this in-
equality, some with sharp constants (c.f. {10}, [13], [19]). The next result characterizes

weights for which a weighted inequality corresponding to (1.5) holds.

Iheorem 1.8, Let {u,}, {v,}, {a;} be sequences of positive numbers and suppose
w, =1 exp[l g &(1/v, )] n=12,..;
n n Dyml k !
Then

L.l 1 ]
nil upa;8,..8,] /n <C nzl Vi (1.6)
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if and only if

5 o
o |
supk? 2 1w _zA <o, a>0. 1.7
Kl =k n ’ )

Moreover
oA/(a+e7% ¢ C ¢ eA.

Proof. Let by =a;v ,n=12,. ; then (1.6) is equivalent to

b,. ‘ (1.8)

I 8

I w e [1 Ebb]gc
n—lnxp =1 k

Let f(t) = by, if k=1 <t <k k=12,. ; and zero otherwise. Since
1
I ln(ya.‘)dy =-a
0

the left side of (1.8) becomes

k n

zlwn exp[t n§1 Llen o n_z_ W exp[%ltn{(t)dt]

I

1
o
= I w, epr tnf(ny)dy] e Z W epr f(y® f(ny))dy]
n=1 0 n=1

1 n
o o

<e® 3 LA l y%*(ny)dy = e® Zl wnn”-l_a l x%(x)dx
n=

=1
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k
=e? % wnnla)} x“i(x)dxuea 2 wnl"a 3 K%,
n=1 -1 k=1

=e® % b[k"' £ n'l"“w]sa\ea 3 b,
k=1 k=1

Here the first inequality follows from Jensen's inequality. Hence (1.8) follows.
To show that (1.8) implies (1.7) let

b 1/k, ifn<k
k e"1°“k“n"1'°’, if n>k;

k ®
b = i— T or+etox® 5 ol g,
n=1 n=k+1

and by (1.8)

ot +e %0 ): w exp[ r, Lnb,]+ P b= L+,

n=k+1 Yo &P [ =1

respectively. But by =1/k if j<k 8o I g 5 w_ and
) =n=§+1 LA exp[ (Jilln 1/k+3 2 [e"l"’k"‘/ja‘i'l])]

® -1 -1 1 n .
= 3w em( kb k) expla”(ackot) age aka)]-exp{—n(a +1) j=f+llog ,].
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But

n
. iJ 1logj_(,---n-l-l:—1+(n+l)l.'nn—(k+1)luk

j=k+

80 that

o
Ly Eow expla(k®) + () + 27! ta(k/n Ot

o
e R v, aol
a=k+1

since o~} tn(k/na+1) 2 —n'l(a + 1) fnn ) ~a-1. It follows then that

k ®
Cl1 + e"l"o‘/a] 2k T ow +e ¥k 5 g nlogord wkl:"1
n=1 * n=k »

o
ze"“'-'lka P W, n—,a"l.
n=k

Hence C 2 —"'g'-"-T:E A, which proves the theorem.
a+e

Extensions of this results to higher dimensions follow as in the continuous case. In
addition characterizations of weights in the directions of the results in [10], [13] and [19] are
possible.

We now consider briefly more general operators than the averaging operator and their
boundedness in weighted LP spaces. Specifically, we consider the Riemann-Liouville
fractional integral operator defined by

X

(P N0x) = l‘l’vlil 1[ x-9*1f1)dt, O<a<a (19)
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Recently Martin-Reyes and Sawyer [20] and independently Stepanov [31] proved that
Pyl =Ll 1¢p¢q<am a2l isbounded, if and only if

su (T u(t)(t/r)“(""l)m]1/q [r (x-tyP’(ed) v(t)""'dt]llp' zA<a
ad| l
and

? 1/q (f . MY
sup Uu(t)(t —r)q("'l)dt] ! ( v(t)? df.) / :B<a
™0 T
It should be noted that Stepanoy's (equivalent) conditions are somewhat different, namely

! D renae) /P
o ::8” (4 - x)le-1)(1-7) u(t)dt) [l (r - t)lo-1)w W) <a

Stepanov further characterised the weights u, v for which P : LP — L1 is bounded in
theindexrange 0 < q<p <o, p> 1L
_The corresponding characterizations of the weights for P a when 0 < a <1 has not yet
been solved, however, sufficient conditions, similar to those given above are known in this
case ([1], [14]). We shall return to this question shortly.
For far more general integral operators with positive kernels, weight characterization of a
different kind were given in [16] (see also the literature cited there).

fl<p=q<o and u(t) = v(t)/tp, where v(t) is defined by

o 0 ifl<t<?
v(t ]
2 g 0ct g1 oty
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then clearly (i) of Theorem 1.1. fails. However, if f is a decreasing function, then as
shown in [2]

t[ v(x) (P)(x)Pdx ¢ C i w(x) (x)Pax, €30,

It is therefore natural to consider the analogne of Theorem 1.1 for decreasing functions. The
first characterization of weights in this direction is due to Arifio and Muckenhoupt. Their

result is

Theorem 1.9, ([2; Theorem 1.7]). If 1< p <o and u(x) 2 0 then IlPﬂjp u Cﬂﬂlp u
] )
holds for all non-negative decreasing f, if and only if for all r > 0

o T
J xPu(x)dx ¢ C 1P i u(x)dx. (1.10)
I

- Let Ap(u) denote the classical Lorentz spaces, that is, the set of measurable functions g
on Rn, such that '

| ‘ 1
lelh () ® {2[ Puti) " <o 1¢p <

where g is the rearrangement of |g|, namely

§"(x) = inf{s > 0; ({t: |g(t)] > 5}) < x},
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here u denotes Lebesgue measure. It follows then frbm Theorem 1.9 that the Hardy-
Littlewood maximal operator is bounded on Ap(u) if and only if u satisfies (1.10).
There are several generalizations of Theorem 1.0 due to Braverman ([8]), Neugebauer

([23]), Sawyer ([27]) and Stepanov ([32]). Braverman defined the operator T 0 by
. :
(T ) =x! j f(t) Wt/x)dt x>0
0

where ¢}, ¢:(0, 1) — R and satisfies ¢(xy) < C p(x) p(y). His result may then be
formulated as follows:

‘Theorem 1.10. If1 < p < w, then “T(ﬁf"A () < CllﬂIA (u)’ if and only if for each r > 0
P P

] r/x

j u(x) U qp(t)dt)p dx ¢ A j u(x)dx.
0 0

I

While this result reduces to Theorem 1.9 with ¢ = 1, it also shows with ¢(x) =
- x)%1 0 < a1, aone weight characterization, of the boundedness of the Riemann-—
Liouville fractional integral operator on Ap(u) (et {20], [31] and the previous remarks).

The result of Stepanov yields a two weight characterization for a wide range of indices for
the Hardy operator:

Theorem 1.11. (t32]). Necessary and sufficient conditions for

(T (PH(x) u(x)dx) Ha < C(Z v(x)f(x)pdx)lll P ,
4 |
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0 < p, q <o to be satisfied for all non-negative decreasing fis that
(t)‘ior 1<psq<uw

Ab H : gg (:[ u(t)dt] Ya [-Iv(x)dx]-d/p <m

and

? Ya (f oo me L
Ajs sup ( J; t9 u(t)dt] (l[tp v()™? v(t)dt] <m

g
where V(t) = l v, holds.

(b) For 0<q<p<mlfr=1/qg~1/p,p>1,

m ot

By & [l [[([ afx)ix) o (:[ v(x)dx]'ll p]' 'u(t)dt}ll P

and

B ® {I[(T <3 u(x)dx)llq [I xP’V(x)*P‘v(x)dx)"I/ q']' zP'V(t)"P’v(t)az}w <a
t

holds,

() For 0<p$q<o,0<p<1, that Ag <o and

A# 5 ;;8 rq x4 u(x)dx] Ha (i v(x)dx)ﬁl/p <w.
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It should be noted here that the index ramge in (c) shows that for decreasing f the
mapping properties of the Hardy operator are fundamentally different than those for
arbitrary f In the index range 1 < p, q < w, these results can also be obtained from
Sawyer’s reverse Holder inequality ([17]):

o o
ST o (07 v

x
where as before V(x) = 1 v. This results is very useful in establishing mapping properties

- of more general intégral operators. Thus, if

(TH)(x) = l K(x, y)i(y)dy, k(x,¥) 20,

L]
then (with l v =) the above estimates imply that

[I (me)o wees) c(I e(oP vioys) ”

holds for all g| and non-negative, if and only if T*, the dual of T satisfies
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[‘([( 'f] V)P’ ()dx] /_’gc[I 1(x)¥ u(x)lﬂ'd;]ll q'_ (111)

forall £> 0.

Now if T = P, the Hardy averaging operator, then
X © XX X o
i TH(t)dt E[U i dy)at = j j K.;:;l dydt + m Lyl dy)dt
i1 0t 0 x

x ©
=i[f(y)dy+x'[%ﬂdy
x

so that for 1 < p, ¢ < w, Theorem 1.11 follows from (1.11) and Theorem 1.1.

It should be noted that Sawyer’s result also permits one to characterize weights for which
the Hilbert transform and Riesz potential is bounded from Ap(v) to A‘i(u), 1<p,q¢m
(See e.g. [17]).

Let L deénote the Laplace transform

(L)(x) = je‘x‘ f(t)ds x>0,
. 0

then there is a simple characterization of weights for which this operator defined on de-
creasing functions is bounded from Lg to Lg. Since this result does not seem to.follow

from Sawyer’s work we give the simple argument next.



Theorem 1.12. Let f be a non-negative decreasing function and 1 < p  q < w, then

P g w 1/p
U u(x)[x—l(Lf)(x“l)lqu] < c(l! v(x)f(x)l’dx) (112)
0 S

and if and only if AD and A, of Theorem 1.11 are finite.

Proof, By the second mean value theotem and the fact that f is decreasing

1/x

1/x
(L)) =l e f(y)dy +

e i(y)dy ¢ i f(y)dy + ¢ M(1/x)/x -

L e— -]

[x

1/x
<1+ e“)l[ f(y)dy .

But then by Theorem 1.11 the sufficiency part follows.

x
For the converse, assume first that V(o) = o (recall V(x) = J{; v) and define

£(s) = U P vy Pl v(x)dx)llp X(o,r)(’)’ r>0 fixed.
/ ,

Then f| and substituting into (1.12) we obtain

C(I v(x) ﬁ P VTP v dx)” e c([:[ L (Ot Tt) (T v(x)d) dy)” ’
x ) 0 ’



- c(:[ P Vi) v(y)ay]l’ %y (I u(x)e |I eI [in ®v P vty 1’de|“dx]1’ !

2et [T u(x)x'ql:[(j P’ V(z)‘l"“lv(t)dg] Ve dqudx] Ha
r y

But the inner integral is not smaller than

T oo (f =) 1/p  prmt [ [fvmpimt. ] MP oy
lyv o ([ vy v dy=pl[yp [[vevad ™ v vioyasay
y y 8

r 8 I -1/p’
=p l V(s) P L v(s) [l yp"'ldy] U V(o) P! v(a)da) ds

[\

t ' E /=1 ’I/P' Y §
(p-1) ! oP U V(a)? v(a)da] V(s)P"" v(s)ds
8

r 1 - ’ R
=(p-1) l o V) () P = -6 ! o V()P v(s)as.
Substituting, we obtain
t ’ ’ 1/ P -1 1/ ’ r l/ q H ’ ’
c(i VO Py 2 e - 1) ([ utox ) [l[ P’ v(s) V) P i)
T

from which A1 < w follows.
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On the other hand, if f= X(0,r) is substituted into (1.12) then

C(I v(x)dx) W > [T u(x)x”q[l e—Y/ x dy]qu]I/q
0 0

- (s -t s - (I wow

and this implies A0 < w, which completes the proof.

We noted before that for p, q <1 and £> 0 the inequality

[T ()P v(t)dt)l/p < C[T u(x) [T f(t)dt]qu]I/ a (113)
0 0o 0 ,

is possible ([3]). However for most other values of the indices the following lemma, which I

owe to Eric Sawyer, shows that (1.13) cannot hold.

Lemma 1.13. If (1.13) holdsfor 0 < q <w,p>1 andall £3 0, then v =0 ae. in
any interval (r, o) such that

1 u(t)dt < w.

Conversely, for such trivial weights, (1.13) clearly holds.
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Proof. Let F = min(1, v—l/p) and f (t) = Xz s)(1;)1"(t;), where 0 <1< s <o Let
f= fr,s in (1.13), then

G F(Pv(1)t) v c(T u(;)dx]ll e (T R(1)) ¢ C(s—r)[T ux)ix) e
T T T T

Therefore

[s 1 rj [min (v(t), l)ldt]l‘/p <C(s - r)l/ P [T u(x)dx]I/q
I T

and as s ~r — 0 and (r,s) shrinks to a Lebesgue point x of min(v, 1) we obtain

min(v(x), 1) <0 if

[

I u(x)dx <o, €>0.
x-€ -

This proves the lemma.

In light of this lemma it is perhaps surprising that for decreasing f a weighted in-

equality of the form (1.13) can hold.

Theorem 1.14. Let f| and non-negative. If 1< q < p < m, then (1.13) holds if and only
if for each r > 0 ,

(j v(x)dx)ll P CG u(x)dx + T (/)% u(x)dx]l/ 4
0 0 T

Proof. For p = q this result is due to Neugebauer [23] and the case q < p follows

from it easily.



2. Weighted Fourier inequalities. The first LP-estimates involving power weights
appeared in the early and mid 1930’s with the work of Hardy-Littlewood—Paley-Titchmarsh
and Pitt. Although many others extended and generalized these early results, it was in 1978
when Muckenhoupt ([22]) formally posed the problem of characterizing weight functions u
and v for which the inequality

f < .
Ilfllq’u < Cllfllp,v (21)

holds for all f e L. This problem has been studied by various authors, including
Muckenhoupt, and the general result may be formulated in the following theorem ([4]):

Theorem 2.1. Suppose 0 < p,q < o, p 21 and u, v are non-negative even functions,

such that u] and 1/v] on (0, w). Then

(i) for 1<p<q<uwm (2.1)is equivalent to the condition

’

r 1/q 1/r 1/p
sup [ u(t)dt] U v(t)l—p dt] <o ' (22)
l'>0 0 - . '
(i) for 0 < q<p<uw,p2l, the two conditions .

T o)™ (e T v <.
00 d
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and

O——8

[ o2 i) "™ (] 5 /vy ) 1) ug P ax <
1/x x

where 1/r = 1/q - 1/p, are sufficient for (2.1).

Remark 2.2.

(i) The condition that u and v are even, nor the monotonicity conditions imposed
on u and v are required in the sufficiency part of Theorem 21 One requires
only that in (2.2) and in the integral conditions of (ii) that u and 1/v are re-

placed by u* respectively (1/v)*, their decreasing rearrangements.

(ii) ¥ 0<gq¢<p<1 weighted Fourier transform inequalities are still possible —
however then the domain space of the operator must be replaced by the boundary
values of functions in weighted (atomic) Hardy spaces (c.f. [11], [12]).

In the study of weighted norm inequalities for singular integral operators, the Ap-
weights are the most effective weights and have been studied intensely during the last
twenty years ([11], [34]). Recall that a non-negative locally integrable function w on R"
belongs to the Ap—weight class, 1 < p < m, if thereis a constant C > 0, such that for
all n-balls B ¢ R" with volume |B|

[Té—rl w(x)dx) Y (Té-]— £ w(x)l_p'dx)llp' <C<a
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*
Similarly we say weAp, 1<p<a, if

sty [ v ([ w0t o) <o

where J denotes the collection of intervals I = [a;, by] x ... x [a;, b] in R" aad 1|
its Lebesgue measure. ‘

It is obvious that A = ;, if n =1, but in general A; C A, Infact if w(x) = |x] %,
then w e Ap, if and only if -n < @ < n(p ~ 1), and if

v = (£ 1x1)”

then w ¢ A; implies -1 < a < p — 1. As mentioned, these weight classes are typical
Hilbert transform - singular integral criteria, so it may be somewhat surprising that they
are also important in establishing weighted Fourier transforms norm inequalities.

The next part of this section. describes Fourier inequalities with Ap-weights, while in the

second, Fourier inequalities of functions in certain moment subspaces are discussed.

ZL_Fﬂm:umﬂmemnﬂ_mm_Apmm In the sequel we require the

following lemma;

Lemma 2.3.
(a) IfweAp,1<p<m, then

j x| w(x)dx < C r P J w(x)dx (23)

[x[2r [x|2r
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(b) I w is radial and as radial function increasing, then w ¢ Ap if and only if

€
W€ A1+e(p—1)’ e>0.

The first part of the lemma is well known and may be found in [11] or [34]. Indeed for

_ .. . . . € _ .
n =1 this is essentially (1.10) of Theorem 1.9. That w ¢ Ap implies w- = A1+s(p—1) is
Holders inequality for 0 < € < 1. The details for € > 1 and the converse may be found in
[15].

The lemma permits us now to prove the following weighted Paley-Titchmarsh theorem:

Theorem 2.4. Suppose w is radial and as radial function increasing. Let
1<p<q<p’, then
Fx)19] x| 2(a/p"-1) a/p P /p
[ 12e1%x w(1/|x]) dx] ‘CU 1(x) | Pw(x)ax]
mn

if and only if we A

For n = 1 the proof of this result may be found in [5] and the general case (w1th different
proof) in [15]. Note that for q = p’ this is a weighted Hansdorff—Young inequa.lity.

We sketch the sufficiency part of the proof. If p = 2, then by Lemma 2.3 (a) it follows
that (the n—dimensional analogue of) (2.2) holds withp =q =2 and v=w and u(x) =
w(1/|x|). Therefore by Theorem 2.1 v

[ 18612 waixhex < ¢ | 181 Pwixex. )
R R" '

Now for any u > 0 define
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x| '
a(x) = } u(1 /t)tn_ldt and WE) = £ a(x)_?‘u(ll |x|)dx, E ¢ R*\{0}.
0

then

p{x e R |a(x)I(x)] > A}) < pl{x e R |a(x)|lifll; > A})

J a(x)2u(1/|x|)dx = )[ do J "o ey 2u(1/t)dt
{x:a(x)>M/[|fll;} {t>0:a(t)>/[Ill;}

=C J a(t)d a(t) = Cllfl;/A,

a2/l

where a._l(y) = inf{x > 0: a(x) > y} so that a(a_l(h)) =y. Nowlet u= wP'! and re-
place f by f/u in this estimate, then

Wfx € B |a()(E/0) (9] > XD) € Cllly g /A

which is a weighted "weak" (1,1) estimate. But Lemma 2.3(b) shows that w ¢ Ap, if and

. - p’-1 - .
onlyif u=w eAl +(p’-1)(p-1) A2, so that by (2.4) with f replaced by f/u

[ 1600870 (1 2autx) < I 1y
Rll

This inequality together with the "weak" type (1,1) above yields (via the Marcinkiewicz

interpolation theorem)

[ 1860w () 1Pautx) < OB, 1< p <2
IRII
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and with f/u replaced by f

[ H@IP a@P2ar/ixDax ¢ © [ 1P P tax . (23)
R! R

But since Lemma 2.3(a) implies that
[}

w=] Phwae =c [ ey o™ [ ey
1/1x| lyI>1/]x| Iyl<1/|x|

< Clx|™u(1/[x]),
substitution into the left side of (2.5) (note p — 2 < 0) yields

[ 1Py x)Plax < © [ 1809 PuGoP e,
B B

But u=wP ™} so that Theorem 2.4 holds with q = p. The general case follows similarly.

The monotonicity conditions imposed on the weights both in Theorem 2.1 and Theorem
2.4 are highly undesirable. In [15] the condition of radial monotonicity was replaced by in—
sisting on appropriate monotonicity condition in each variable separately. In this way one

obtains the fc!lowing weighted Hausdorff~Young inequality:

f(x plulxdxl/p'gc 1(x pu(xp—ldx l/p’ 1<p<2,
(] 17e1P"wa/xjax (] 1£91PucoPax)
mn Rn .

holds if and only if u € A;.
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A detailed study of weighted Fourier estimates with weights of this type was made by
Bloom, Jurkat and Sampson [7]. One of their results is the following:

Theorem 2.5. Suppose 1< p<q<o and w and 1/v are even and decreasing in (0, m)
in each of their variables separately. If

u(x) = |x;x, ... x| 2w(1/x)

is increasing in each X, then

(] 101w " < o] e Prceres) "
W W

if and only if

1 1
(] 1cea0001%0ce1as) ™ < o] 18001Pwceras) »
¥ R

where
(P 0(x) = TEF;T,I J’ j f(t)dt
Ity l<hxg | Itglgixy|

is the n~dimensijonal averaging operator.

We point out here, however, that weight characterizations for P : L? — Lg are only

known for n =1 and n = 2. The problem for n > 2 is still open.
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Although it is possible to weaken-the monotonicity conditions on weights in theée last
theorems somewhat ([4]) its total deletion — and hemnce a complete cha.racterizatio‘n of
weights — have not been proved. There are also several abstractions of Theorem 2.1 in the
case 1 < p.{ q < m to locally compact connected Abelian groups and certain locally
compact totally disconnected groups. However, either the weight conditions given are only
sufficient, or additional restrictions on the weights — corresponding to monotonicity — must
be obtained to. prove characterizations/. (c.f. [17], [24)], [25]).

If instead of imposing monotonicity conditions on the weight functions one restricts the
functions f, then much more may be said. In féct in that case we have the following

characterization:

Theorem 2.6. Let f be a non—negative even function in Lg, v>0,1<p <o suchthat

f is decreasing in (0, ») and f(o) = 0. Then

[ 1t IPrmx < © [ 111Prinax,

~—m

if and only if (2.3) holds with n=1 and w=v.

It is easy to see that v(x) = |x]™%, 0 < € < 1 satisfies (2.3) with n =p =1 and

W=V

2.2. Fourier transform inequalities of functions withvanishing moments. The last
theorem suggests that if restrictions are imposed on the functions { rather than the
weights, then one might expect also that a larger class of weights can be generated for

which weighted Fourier norm inequalities hold. - For example, if - £(0) = 0, then
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e = 1] @ oa =i+

|xt]<1  |xt|>1

Ccafimiliia+ 2 [ e@a=2{[ 1 miay + | 1y esm)la).
lt1<1/]x] [>11x] [yl2lx lylelxl

But these integrals are essentially the Hardy operator and its dual of |y7§f(1/y)| and
|y'2f(1/y)| respectively. Therefore, applying the weighted form of the Hardy operator and
its dual one is led to the following result of Sadosky and Wheeden [26]:

Theorem 2.7. If 1<p<o and w e Ap, then

J lf(x)lpw(llx)ﬁgs C‘J. 11x)1P x| Pw(x)dx @)

for all f satisfying £(0) = 0.
Compare this with Theorem 2.4 taking q=p and n= 1.

H w(x) = 1/|x|, then wg¢ A, p>1 and one might ask if (2.6) with this weight and

£(0) = 0 is satisfied? The answer is no, and in fact, no norm inequality of the form
T o ¢ p
(] 11%ea " <o ([ 100 P1xiPtad
- o

1<p<m0<q<m us0, canholdfor f satisfying £(0) = 0 ([26]):

The idea to consider Schwartz functions f satisfyihg
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J fxpddx = 0, j=0,1,2,..;

and whose Fourier transforms have compact support away from the origin has been ex—
ploited in [6] and [26] to prove Fourier norm inequalities for substantially larger weight
classes. These subspaces are known to be dense in weighted LP spaces ([6], [21]) and the
Fourier transform has a natural extension in these spaces. It is also clear that corresponding
results carry over to mixed indices.

To apply Fourier inequalities to obtain uncertainty relations of the ‘Heisenberg-Weyl
type, or Fourier restriction theorems it is desirable to replace the weights in the range space
by general measures. This in turn requires corresponding measure estimates for the Hardy
operator and its dual. Such results — indeed characterizations — were proved by Sinnamon
[29], and the corresponding measure weighted Fourier inequalities on moment subspaces

were studied in [6]. We state here only the one dimensional case:

Theorem 2.8. Suppose
@) ve L}OC(R), v> 0 ae and p a positive measure.

(i) 1<p<q<auo, VP e L{m(ﬂ\[—y,y]_) for each y > 0.

(1) B = ;:g {J |t |qdﬂ(t)}1/q {J [t |p'v(‘)1—p,dt}l/p'

Jtl<y Itl<1/y
and
_ 1/q (¢ 1-p* 1/p’
B2=;§g {J du(t)} {Jv(t) P dt}
[t]>y |t1>1/y
are both finite.
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@v) feIP®) nL'(R) and #(0) =0 with supp f compact.
Then there is a constant C > 0 (depending on B1 and Bz) such that

il , < Cltl,

For example if v(t) = |t|1+e, 0<e<2,p=% Inl"l-e 5n, where § is the Dirac distri—

bution and p = q = 2, then all conditions of this theorem are satisfied and one obtains
|t 5 2 2.1
3 leli%}els 2%(rB, + B,) l 156)1 211 et

(For the details see [6, Ex. 2.5(c)].)

Some progress has been made to characterize the Fourier transform in weighted Lorentz
spaces although a complete solution seems not to be available. We conclude this section
with a characterization of a special Fourier transform in a very special setting due to
Braverman.

Let (0, % P) be a probability space and X(w) a random variable. In this context,
the Calderon LP'd spaces are then defined by X ¢ LP*9, if and only if

®

XI5 = [l(P[|X| > )P

dxq] 1/(1 <wm,

where 0 < p,q <o. Let F(y) = P[X > y] and the characteristic function (Fourier trans—
form) be defined by
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B(y) = [ ¢Yar()

-

The result alluded to is then the following:

Theorem 2.9. If 1<p<2,1<{q<w, then

o 1/t ,
‘ {j[l—ne[tj i‘(y)dy)]q/ pdtq}ll 1 XI5 -
0 0

3. Some applications. In 1974, Zygmund ([35]) considered the two dimensional Fourier

transform

f(x) =J e X0y fiy)dy xe R
IRZ

and estimated the restriction of the Fourier transform on circles |x| = p, in terms of the
LP-norm of f. His result states that if fe Lp(lkz), 1.4 p < 4/3, then I(x) exists a.e. on
|x| =p and

1 ,
( { 1)1 %s) fa AP e, (31)
x|=p

for q = p’/3. Moreover, the result is sharp in the sense that if p = 4/3 then inequality
(3.1) fails.
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At almost the same time SjSlin [30] provided an extension theorem - that is, a dual
Fourier estimate of measures carried by. smooth curves in IRZ, which, when restricted to
curves of constant curvature (circles) implies Zygmund’s results. Since then, a vast
literature on the subject evolved with many significant applications. .

The proof of the result of Zygmund (and also Sj6lin’s) utilizes among other things, a
duality argument, the Hausdotff—Yoﬁng inequality and an LP-estimate of the Riemann-
i,ioqvine fractional integral operator. But all these components permit generalizations and
weighted extensions. It is not surprising therefore, that these restriction-extension theorems
have weighted extensions in R?. These generalizations, proved in [9) have the form

WK1, <Al (3:2)

(nds)  IR@%)

where v is a smooth plane curve in Ill2 of curvature K and arclength measure ds.
A very specific case of the generalizations of Zygmund’s estimate (3.1) is given here ([9,

Corollary 2, with A = 0]).

Proposition 3.1. If 4/3 < q <o, 1< p < 6q/(3q+2) and

max{0, 2(1/p’ - 1/(3Q))] € @ < 2/p,

then for 1<r<q,

| ({ iwita) <ol
x|=p ’

In particular, if q = p’/3, then 1 < p < 4/3 and then taking & = 0. in Proposition 3.1,

we obtain Zygmund’s result.
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A special case of the generalization of Sjolin’s theorem has the same form. In fact under
the hypotheses Proposition 3.1.0ne obtains (3.2) with v(x) = |x|% §> 1/(3q) and (t)
= (7;(t), 7(t)), t € [ab]. Moreover (3.2) holds also if § = 1/(3q), provided K(t) > 0. (c{
[, Cor. 1]).

It should be noted that these results are strictly two dimensional since the weights in the
appropriate Fourier inequalities which lead to these results are especially adapted to the
geometry of the curve. Higher dimensional weighted spherical restriction theorems can be
obtained directly from the n—dimensional measure weighted Fourier inequalities. That is the
n-dimensional version of Theorem 2.8.

Theorem 3.2. ([6, Theorem 5.3]) Let v ¢ L}oc(Rn), v > 0, ae, radial and
1<p<q< o Assume that VP L%oc (R™\B(0,y)) for eachy > 0 and

C(p,q,n,p) = A(n,p,q)pn_-‘;l {p(‘l[/(f;')'up'v(r)l"l"dr)llp’ + (T rn_lv(r)l_'p'dr)I/ p'}’ p>0
0 1/(pm)

Then for all f ¢ M(n) n LE(R")

. 1/q
[£ |11 %0, ) < Coaml,
n—l(p)
We conclude with an example of the uncertainty inequality. Given (xo, yo) R , then
the classical uncertainty inequality states that for all f ¢ o/(R)

. 1/2 X 1/2
t[lf(x)lzdxs4r[£l(x—x0)f(x)l2dx] ! [Ll(y—yo)f(y)lzdy] /

—s(x—-xo)2e21|'ixy0

with equality if f(x)=ce , 8 > 0, ¢ a complex constant.
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There are numerous variants and generalizations of this inequality with applications in

—27ixy
science and engineering. It is not difficult to see that the change f(x) — f(x + xj)e 0

shows that one may take without loss of generality x)=yy=0 in this inequality.
Recall from Section 1, if

(@) = [ fat) x e8®
1

and (Q*)(x) = —=x-vi(x), x ¢ R, then QQ*(x) = f(x). Instead of applying Theorem .

1.2(i) with p replaced by p’ and q = p’, v(x) = u(x) = |x|™ " we prove the result

directly in the following lemma:

Lemma 3.3. If feC(IJ(Rn), 1<p’ <n, then

[ ™ st ( o™

Proof.

™ - [ [ - [ v o]
& R® &R 1

= {£Itn—pf_1ﬁ (Qtf)(tas)g_zlp'dtda}llp' _ {)[I tn—p'-—IIT (Qtf)(y”)g%lpv,dtdﬂ}llpl
' t

S'n—j_Lp, {LI |Q*(to')lpltn_P’—ldtda}I/p' _ E_g_,_ﬁ? Unlﬁgf[‘(ﬁP'dX]l/p’
R

6 Krbec, Analysis 4 engl. ) 81



where the last inequality is the classical conjugate Hardy inequality.

Theorem 3.4. If fe Cé(lkn), 1<p<2and n > p’, then

[ 10r%ax < o] 1atiPad) " ([ 1ot 1Par)
R" K" K"

where

Proof. Holder’s inequality and Lemma 3.3 yield
1/p £ . 1/
[itwrex < (] 1xterPex) ™ ([ HEP @)
R B2 Re

¢ 2 ([ moorves) ([ R e
3 3

By Minkowski’s inequality, and writing O = , i = 1,2,..,n; it follows that the right in—
1

tegral product is

13 ol s ™ s 3] Intie] o™
!Rn 1= mn
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=Cn1/P’U _§ |[§%]'(x)|1’dx]l/p=cn1/!"” Bly; f(y)ll’dy]llp
IRn1=1 i o

< cnl/z“ If(y)YIpdy]l/p,
R" '

where we applied the Hausdorff~Young inequility, the LP-boundedness of the Riesz trans—
form R and Holder’s inequality twice. Substituting we get the result.

‘It is clear that on using Theorem 1.2(i) and the well known weighted LP-boundedness of
the Riesz transform ([11][34]) a corresponding weighted inequality can be obtained . This

unweighted form is however curious since the classical n = 1 — case does not follow from it.

For additional recent application of weighted Fourier: inequalities we refer to [4] [15] were
generalizations of the Paley—Wiener theorems were given and Laplace representations in

weighted Bergman spaces were established.
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