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Weighted Inequalities in Fourier Analysis 

H. P. Heinig 

Hamilton, Ontario 

Introduction. Inequalities involving the Fourier transform and its variants have been an 

essential part of Fourier analysis from its early beginnings. This is not surprising because 

the size and estimate of the Fourier transform in various function spaces is significant in the 

development of harmonic analysis and is underscored by the numerous applications they 

yield in science and engineering. The first Lp-estimate of the Fourier transform involving 

power weights are the results of PaJey-Titchmarsh (1934) with extensions by Pitt (1937), 

Stein (1956) and Rooney (1966). Somewhat more general weights were considered by 

Hirschman (1957) and Flett (1973). Only in 1978, Muckenhoupt ([22]) formally posed the 

problem of characterizing for given indices p and q those non-negative weight functions 

u and v for which the inequality 

« * ! , . - . - C M P , T 

holds, for all f e L . This problem has been studied by a number of workers, including 

Muckenhoupt, and, although the complete solution is still illusive, much progress has been 

made. 

This research was supported by the Natural Sciences and Engineering Research Council 
of Canada grant A-4837 
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Many results regarding the weighted Fourier transform inequaUty Mow from inter­

polation arguments and those in turn depend on results about the Hardy operator, its dual 

as weU as variants and generalizations. It is therefore also natural to study in this connec­

tion weighted estimates for the Hardy operator. In 1986 a survey article on these subjects 

appeared in the Proceedings of the Spring School held in Litomysl, Czechoslovakia (Non-

linear Analysis, Function Spaces and Applications v.3; M. Krbec, A. Kufner, J. Rakosnik, 

ed., Teubner Texte zur Math. Bd. 43, Leipzig 1986). The article which foUows, is an 

attempt to describe the progress which has been made in this area since the Litomysl paper 

was written. 

This work is divided into three parts. The first describes recent generalizations and ex­

tensions of Hardy's inequaUty. We describe how weighted gradient inequalities foUow in a 

natural way from Hardy's inequaUty. In a limiting case of the weighted Lp inequaUty for 

the Hardy averaging operator, we obtain weighted characterizations of exponential in­

equalities of this operator. These results have higher dimensional analogues which together 

with their discrete versions seem to be new. Then we describe results on weighted Hardy in-

equaUties for decreasing functions. These characterizations lead to weight characterizations 

of more general operators, such as the Laplace transform and the Riemann-LiouvUle 

operator, on classical Lorentz spaces. Section 2 contains various weighted and measure 

weighted Fourier inequaUties. In particular, we point out that certain weighted Fourier in-

equaUties are equivalent to weighted Hardy inequaUties. The last section describes some 

appUcation of these results to Fourier restriction and extensions theorems as well as un­

certainty inequaUties. 

It is a pleasure to thank the organizers, Professors M. Krbec, A. Kufner and J. Rakosnik 

for the invitation to participate in this conference, for their fine organization and generous 

hospitality which made this visit to Czechoslovakia especially enjoyable. 
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Before we begin our discussion, we collect some notations and definitions used in the 

sequel. 

As usual we write for (-©, m) = R, R"4" = (0, <D), Rn = {x = (x^ . . .^ ) , Xj e R, 

i = l,2,...,n} and dx = dx1dx„...dx . The Fourier transform of f on Rn is defined by 

f(x) = Je-4x-yf(y)dy, x e Rn, 

Rn 

whenever the integral converges. Lp denote the usual Lebesgue spaces of functions with 

||f||P = j | f(x) |Pdx<», 0 < p < » . 

If u is a non-negative weight function, then we write f e _J, if ||f|| = ||fu ' P|| < o. 

Similarly, if fj, is a measure, then f e L°. if ||f|l „ < o. The conjugate index p ' of 
f* Vii* 

p, 0 < p < OD, is defined by - + - - = 1 with p ' = co if p = 1. 

C (R) denotes the space of continuous functions of compact support on R, while CJR) 

is the space of continuous functions f(x) vanishing as |x| —> a>. A measure p on R is a 

linear functional on C (R). fj, is positive if <//-, f> > 0 for all f e C (R), <L/(R), re­

spectively, fi?"(Rn) are the spaces of Schwartz functions on R, respectively Rn 

We write fj if f is decreasing on R and decreasing means non-increasing. 

Br(x0) c Rn is the n-ball centered at xQ with radius r > 0. \^(p) = {x e Rn: |x | = p} 

is the n-sphere of radius /?, while E = SR_i(1)- &° oi dr are the surface measures on 

these spheres, and x E is the characteristic function of the set E. We shall write G » H, 

if there are positive constants CQ, C« such that CQ < G/H < C-. Constants will be de­

noted by C,B and A (at times with subscripts), which may be different from place to 

place. Finally, inequalities ||Tf|| < C||f|| are interpreted to mean that if the right side is 

finite, so is the left, and the inequality holds. 
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1- Recent generalizations and variants of Hardy's inequality. The classical Hardy in­

equality states that if P is the averaging operator 

(Pf)(x) = ì j f ( t )dt , x > 0 , (1.1) 

then P is bounded on Lp(flr ), p > 1. This results and its generalizations and variants 

find numerous applications in many branches of mathematics. For example in the theory of 

differential equations, approximation theory, interpolation theory, the study of function 

spaces, and Fourier analysis to mention a few. During the last twenty years, Hardy's in­

equality was extended to general measures and in particular to measures generated by 

weight functions. The general result in terms of weights may be summarized in Theorem 

IT, which will be the starting point of our discussion. 

Theorem 1.1. Suppose 0 < p, q < oo, p > 1. If f is non-negative and u,v are weights 

on (0, <n), then the inequality 

[J u(x)(J f(t)dtjqđx]1 / Ч < c [ [ v(x) f(x)Pdx]1/P 

0 0 0 

holds, if and only if 

(i) for 1 < p < q < », sup íľ u(x)dx] íf v(x)1 p dx] < »; 
r>o - ð 

(ii) for 0 < q < p < „, p > 1, {J[(Ju(t)dtj ( J v W ^ d t ) ]rv(x)X-P'dx} < 

where i = i - i r q p 



There is of course also an obvious dual result which is obtained easily via changes of 

variables. For a proof of this result together with an excellent historical survey and many 

applications we refer to the forthcoming book by Kufher and Opic [18], 

It may be instructive to illustrate how Theorem I T can be applied to a gradient type 

differential inequality in Rn Note that the averaging operator P of (1.1) and its dual Q 

can be written in the form 

Л. W 

(Pf)(x) = Jf(xt)dt (Qf)(x)=Jf(xt)^ 

n * • 

But in this form the operator is also well defined for x e R . Now if Q is defined by 
(Q*f)(x) =- -x • (vf)(x), x e Rn then for any f e cJ(R n) we get 

CD 00 

Q(Q*f)(x) = - f (tx).(-f)(tx) ^ = - f a f f(tx)dt = f(x). 

1 1 

Now using polar coordinates it follows from this, that 

<D 03 (D 

J I W I ^ u W d x = J u(x)|J (Q*f)(xt) ^ | l q d x =- J J uMs*1"4!J(Q*f)(<rst) --f l^dsd* 

R* Rn X *° X 

m CD 

= f J »(sa)s n - 1 | J(Q*f)(<7y) ^l^dsda. 

Since the inner integral corresponds to the one dimensional dual operator one ootains on 

applying the dual of Theorem IT (i) the following gradient inequality of Sinnamon [28]: 

Theorem 1.2. Suppose l < p < c o , 0 < q < OD, then for all f e Cj(Rn) 

(J l ^ l ^ d x j ^ ^ c j j |x.(vf)(x)|Pu(x)dx)1 / P 
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holds, if and only if 

(i) for p - = q , 
xeQť 

--....1/p
 Í L ^ - I І - P ' dtì1/p' < . «mp(j y(tx)tn-Xdt) (Jwtxjt11]1-*' -̂ ) 

(ü) for 0 < q < p, p > 1 

{} [ j | v(tx)t^dt)1/q (j [»(tx)t»]H>' ^ ) 1 / q ' ] r u(x)^'dx}1/r < . 

where i » I - i r q p 

It should be remarked here that in the case 1 < p < q < », not only does the proof of 

this result faij but also the inequality (c.f. [28, Theorem 3.4]). 

If the indices p, q < ( 0 , 1 ) then either the domain spaces of the Hardy operator must be 

replaced by the boundary values of functions in weighted Hardy spaces in order to get 

weighted inequalities ([12]) or the inequalities are in the opposite direction ([3]). For e x ­

ample in case q < p < 0 the following holds; 

Theorem 1.3. ([3, Theorem 1]). Let q < p < 0, u,v and f positive a.e. and suppose 

.1/<l . L . s i - P ' ^ ' 

Then 

K(r) s (U(x)dx) ' (Jv íxr^dx) 

OD fX> 00 

([ vtxJfWPdx)1/? < C ( | tt(x)(j f(t)dt)"dx)l/1 (1.2) 

provided K(r) is non-decreasing and inf K(r) = B > 0. Conversely, (1.2) implies 
r>0 

infK(r)sB>0. 
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1.1. Inequalities related to those of Hardy's. We now discuss weighted inequalities which 

may be considered limiting cases of Hardy's inequality. Indeed we characterize the weights 

for which certain exponential inequalities hold. Unlike Hardy's inequality the higher 

dimensional generalizations of these results follow in a straight-forward manner. We give in 

addition a discrete form which yields a weighted characterization of Carleman's inequality. 

The results of this section have been obtained jointly with R. Kerman and M. Krbec. 

Theorem 1.1 with p = q shows (with explicit constant) that 

CD X 00 

J u(x) (x-1 J f(t)X/P dt)P dx < BP p f e ' ) ^ 1 J v(x)f(x)dx (1.3) 

0 0 0 

holds, if and only if 

OD r 

B^ = sup (J x-Pu(x)dx) (J v(x)1-P /dx)1/P / < CD. 

Now if p —* oo, then an application of Fatou's lemma shows that (1.3) implies 

oo X oo 

J u(x)exp(x""1 J h f(t)dt)dx < C J v(x)f(x)dx, (1.4) 

0 0 0 

provided lim Bpp(p')P~1 = C as p —• oo. In this sense (1.4) might be considered the 

limiting case of Hardy's inequality. Of course there is no reason to assume that 

Bpp (p / )P"' 1 -*C as p—•oo. 

Besides the operator P of (1.1) we define Qa , a > 0, as follows: 

00 

(Qaf)(x) = axaJr»-1f(t)<it. 

Theorem 1.4. Let u, v and f be positive a.e. and 

w(x) = u(x)exp[(P fa I)(x)], x > 0. 
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Then, the following are equivalent: 

00 QD 

(i) f u(x)exp(P A f)(x)dx < Cx J v(x)f(x)dx 

(ii) (Pw)(x) + ^(Q^wXx) SC2I a > u 

(iii) (Pw) c L* 

m m 
(iv) J w(x)(Pf1/p)(x)dx < C3 J f(x)dx, (p > 2) 

where C» is independent of p. 

imL (i) * (ii). Write f . f, where g(x) . C\0t%)(*) + ^^V X - " a t a x ( t ) ( 8 )M» 

t > 0, a > 0. Substituting into (i) the right side becomes 

t 

c г ^Г1 J dx + e*"1""01^ J x ^ d x ] . C-Jl + e 4 ~ û M 

while the left side takes the form 

Ш 00 

f u(x)exp(P Ai |)(x)dx -=f u(x)exp(P łй ì)(x)exp(P łй g)dx 

(D X t QD 

. J wtøexpjx-1 f g(y)dy)dx . (f + J) s lг + I2 

respectively. With the above defined g 

4 Krbec, Anaiysis 4 engl. 49 



I X I 

lx m J w(x)exp [I J fc(£)dy]dx - \ J w(x)dx . (Pw)(t) 

and 
ao t X 

I2 m J w(x)exp (x"4 J Aigdyjexpjx4 J h(^atV^JdyJdx 
t 0 t 

00 X 

-« Jw(x)exp [xS &[£) + ( l - i ) Aije^V) -(<* + ljx"1 J Atydyldx 
t t 

00 

« J w(x)exp[x'*1t &(£) + (l - 1 ) (-l-a) + a(l -1) in t - x ^ a + l)(x hx -x+t-t in t)]dx 

00 

» J w(x)exp[x"*1t in&) + (l - |)Ai t - (a + l)in x + x"4 t(a + 1) in tldx 
t 

00 X 

* J w(x)exp [a Ai t - (a + 1) Ai x]dx = t a J x - * 4 w(x)dx 
t t 

- ^ ( Q ^ ) ( t ) . 

Therefore, (Pw)(t) + cf ̂ Q^wXt) < C^l + e^^/a] s C2 and (ii) holds, 

(ii) -> (iii) is obvious. To prove (iii) => (iv) note that by Holder's inequality with q > 1 

(Ph)(x) < [(PћЧXx)]1!*! <. WЦ^Қ 

so that 

вo 



( w(x)dx < w(x)dx » w(x)dx < 

x:(PҺ)(x)>Л} { x ; ( | | h | | / л ) q > x } 6 

(ll-ILD)* 
C(!|h||q/A)<-. 

Here the last inequality is implied by (iii) with C independent of q. Hence the operator 

P is bounded from L*1 to weighted "weak" L.JL q > 1 with norm independent of q. 

Now let p > 2, then we apply the Marcinkiewicz interpolation theorem with q* =- p/2 

and q^ « 3p/2, ($ » 3/4) to obtain 

00 Ш 

ľ w(x) (PҺ)(x)pdx < C 3 ľ h(x)pdx 

where C* is independent of p. With n p = f this implies (iv). 

Finally (iv) -> (i) follows from Fatou's lemma and the fact that 

lim (Pf^P^x) « exp(P & f)(x) ([33; p. 344, 5c]). 
P->0D 

Remark 1.5. If (iii) holds, then (Pw)(x) < C, so that (Qa(Pw))(x) <, (QflC)(x) m C. 

Thus 

™ y 

C > (Qa(Pw))(x) * ax t t J y - ^ j j w(t)dt)dy 

00 X y 03 00. 

- axa J y"0"-jj ' w(t)dt + J w(t)dt]dy = ^ - 2 ^ . (Pw)(x) + axa J w(t) J y ' ^ d y d t 
x 0 x x t 
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Therefore, Pw e L™, if and only if Q^w e L® and we obtain 

Corollary 1,6. If u, v and f are positive and 

w(x) -a u(x) exp(P fa l/v)(x), x > 0, 

then 
CD X 00 

j u(x) expfx*"1 J f(y)dy] dx £ C [ v(x) exp(f(x))dx, 

if and only if for any a > 0, sup 6T (Q _, w)(x) < ®. 
x>0 a 

A simple calculation shows that u(x) = v(x) *. x^, p real, satisfy the weight condition 

and so do the functions 

u(x) * e * ^ , v(x) » e * p real. 

The characterisation of the weights for the exponential inequality for the averaging 

operator in higher dimensions carries over in a straight forward way unlike the 

corresponding characterizations in Lp-spaces, where the n-dimensional result, n > 2, is 

still open. Here we simply state the two dimensional case of the exponential inequality. 

Let x * (x^ xg), y * (yv y2), and P , Q | be defined by 

x l x 2 a> oo ^ ^ * 

(p^W-^1/ J toto.M&W-w?1?} J v7l*7rtoto 
0 0 x ^ 

a. > 0, 0.2 > 0, then the following holds; 
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Theorem 1-7, JM % v and f be positive a,e. on R | , then 

f u(x) e*p(P2 h f)(x)dx $ C J v(x)f(x)dx 

•J «J 

if and only if sup (Q w)(x) < *, where w(x) ** U(X) exp(P2 la l/v)(x), 
x^>Q,X2>0 

There are further extensions of these results to more general operators with positive 

kernels satisfying certain homogeneity conditions. The Laplace transform is a special ease of 

these. We shall not discuss these generalizations here, instead we consider the discrete case 

and give a variant of the arithmetic-geometric mean inequality. 

Recall that if a^ a ,̂ ... ; are positive real numbers, then Carlemaa's inequality asserts 

that 

» > i V * n ] l / a i • S \ , (1.5) 
awl * * n-*l 

where the constant e is sharp. There are a number of weighted generalizations of this in­

equality, some with sharp constants (c.f. [10], [13], [19]). The next result characterizes 

weights for which a weighted inequality corresponding to (1.5) holds. 

Thfifliem 1,8, l*et { u j , {vn}t {%n} be sequences of positive numbers and suppose 

wa * uR exp[ | S HH\)] n * 1,2 ; 

Then 

j/M-^^j^A M) 
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if and only if 

sup ka 1 a"*"1*. 5 A < CD, a > 0. (1.7) 
k>l n«k n 

Moreover 

aA/(<* + e""1""0) < C < eaA. 

Proof. Let bR » a_va, a » 1,2,...; then (1.6) is equivalent to 

s w„ e xpf£ S & b J < C D b . (1.8) 
iu.i a L*k-l kJ a-1 n 

Let f(t) ss b*, if k - 1 < t < k, k « 1,2,.,.; and zero otherwise. Since 

1 
&(ya)dy » -a 

6 

the left side of (1.8) becomes 

k n 

1 n 

= ! wnexp[[&f(ny)dy]=ea ! wn expff _ ( y a £(ny))dyl 
n=-l HI J n = l NL J 

( • 

1 
< e a E w_ f y^nyjdy = e a S w n - 1 - 0 f x°{(x)áx 

n-1 n £ n=l J 
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- e a S w„ n"4""* 1 f x**f(x)dx«ea S wX 1 "* I k*b, 
9ml n k-l^j 9ml * k-1 k 

« e a S bJk* S n^-^VjjAe0 S b. . 

Here tke first inequality follows from Jensen's inequality. Heaoe (1.8) follows. 

To show that (1.8) implies (1.7) let 

l/k, if-n<k 

a^-Л V 1 - " , if n > k ; 

n m 1,2,...; k fixed. Then 

S ъ - i Sî l + e - Ь a k 0 S E ^ < H Є 4 > 
n«-l n=l n»k+l 

and by (1.8) 

C(i + e-^/a) > I wn fflcpfl l & b j + | wB « p [ i S & bj = I._ * Ij, 
a»! tt i"j3=l *i n-=k+l L jwl J j * 

1 k 

respectively. Bat b| m 1/k if j < k, so L » £ S w and 

^-JLi^ii^+X^1**1))] 
S w_ expfr^k & 1/k) expfn"l(n-k-A) ^(e^V)].expf~n(*x +1) 1 log j]. 

=k+l -» j~k+l J 
n«k+l 
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But 
a 

- S log j < HB + k - 1 + (a + 1)& a - (k + 1)& k 
j**k+l 

so that 

I2 > ! wnexp[&(ka) + M*****1) + *~l Ai(k/aa+1)] 
a»k+l 

l k V 1 _ ° ! w. n"*-1 

a*k+l д 

siace a""1 h{k/n°^X) > ~*Tl(a + 1) & a > ~<*~1. It Mows thea that 

lr 

CЦ + Г1"*/^ ìГl S w + e ^ k * S w n ^ - e ^ w - J Г 1 

a»l a«k 

> e • kw S w a . 
д»k 

Heace C > %»,T^ A, which proves the theorem. 
a + e""*""0 

Exteasioas of this results to higher dimeasioas foUow as ia the coatiauous case. la 

additioa characterizatioas of weights ia the directioas of the results ia [10], [13] aad [19] are 

possible. 

We aow consider briefly more general operators thaa the averaging operator aad their 

bouadedaess ia weighted Lp spaces. Specifically, we coasider the Riemaaa-LiouviUe 

fractional iategral operator defined by 

x 

(Pa*)M - rrsj f (* -1)^ 1 *W*, 0 < a < .. (1.9) 
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Recently Martin-Reyes and Sawyer [20] and independently Stepanov [31] proved that 

F^: L^ —• LjJ, 1 < p < q < «, a 11 is bounded, if and only if 

8»g (J »(t)(t/t)Ч(^)đt)1/<l (j (i - t ) * ' ^ 1 ) v(t)И>'dt)1/P' I A < . 

and 

su 
г> 

| ( | »(*)(* - . ) * < * - % ) / ч (f v(t)И>'<it)v* . в < . . 

It should be noted that Stepanov's (equivalent) conditions are somewhat different, namely 

« sup (J (t - -)(«"-Xl-7) »(t)dt)1/<l (j (t - tj í^JWv^Jdt)1 

Stepanov farther characterized the weights u, v for which F0: L.J *-* L!j is bounded in 

the index range 0 < q < p < a>, p > l . 

The corresponding characterizations of the weights for P when 0 < a < I has not yet 

been solved, however, sufficient conditions, similar to those given above are known in this 

case ([1], [14]), We shall return to this question shortly. 

For far more general integral operators with positive kernels, weight characterization of a 

different kind were given in [16] (see also the literature cited there). 

1-2- WgighM inequaM^ 

If 1 < p « q < » and u(t) m v(t)/tp, where v(t) is defined by 

V ( t ) : 
if 1 < t < 2 

[f1/2 if 0 < t i 1 or t > 2 ' 
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then clearly (i) of Theorem 1.1. fails, However, if f is a decreasing function, thea as 

showaia[2] 

v(x) (ff&xfůx < € i v(x) ffrpdx. f > 0. : < € | v(x; 

It is therefore natural to consider the analogue of Theorem 1.1 for decreasing functions. The 

first characterization of weights in this direction is due to Ariio aad Muckenhoupt. Their 

result is 

Theorem 1.9. ([2; Theorem U]). If 1 < p < m aad u{x) > 0 thea ||Pf|i „ < Cjjf]L „ 
p,u p,u 

holds for all aoa-aegative decreasiag f, if aad oaly if for all r > 0 

« i 
í x"Pu{x)dx < C i"* í u(x)dx. (140) 

Let A (u) denote the classical Lorentz spaces, that is, the set of measurable functions g 

oa 811, such that 

ll/P 
< (50, 1 < P < « , ll6llAp(a)s{Jg*WP»WdxJ 

where g* is the rearrangement of |g|, namely 

g*(x) = inf{8>0;M{t: |g( .) |>8})<x}1 
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here fi denotes Lebesgue measure. It follows then from Theorem 1.9 that the Hardy-

Littlewood maximal operator is bombed on A (u) if and only if u satisfies (1.10). 

There are several generalizations of Theorem 1.9 due to Braverman ([8]), Neugebauer 

({23]), Sawyer ([27]) and Stepanov ([32]). Braverman defined the operator T by 

(T y Дx) = x- í(tЫt/x)dt x > 0 

where î> ^:(0» *) """* * *°& satisfies $xy) < C $x) #(y). His result may then be 

formulated as follows: 

Theorem UP- If 1,< P < », then ||T^f]|A ^ < C||f||A ^ f if and only if for each r > 0 

r/x t 
J u(x) [[ (p(t)đtj dx < A J u(x)dx. 

While this result reduces to Theorem 1.9 with tp s 1, it dteo shows with ^(x) » 

(1 - x) , 0 < a < 1, a one weight characterization, of the boundedness of the Riemann-

Liouville fractional integral operator on A (u) (c.f. [20], [31] and the previous remarks). 

The result of Stepanov yields a two weight characterization for a wide range of indices for 

the Hardy operator: 

Theorem 1.11. ({32]). Necessary and sufficient conditions for 

\lfa /? , _.„.a/p (J (PÍ)(x)Ч u(x)dx) < C(í v(x)f(x)Pdx) 
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0 < p, q < m to be satisfied for all non-negative decreasing f is that 

(a) for I < p < q < » 

Â vl/q Â \-l/p 
AQ isuplj u(t)4tj II v(x)dxj < m 

»Ð (J t-Ч u(t)đt) ([ tP'V(t)-*'v(t)đt) 

t 
mhme V(t) •» f v, holdi. I" 

(b) Fot 0 < q < p < »t l/f •» 1/q - 1/p, p > 1, 

B0 i (J [(f u(x)djc) (j v(x)dx) * ] * u(t)dt}l/r < oo 

and 

B. s (j[(J x̂ > u(x)dx)lM ( | .cP'vfx^'vWto)"1^']1 tP'vttrP'vttMt}1^ < -

holds, 

(c) For 0 < p i q < », 0 < p < 1, that AQ < » wid 

A^ i sup r(f x**1 u(x)dx) ff v(x)dx) < « . 
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It should be noted here that the index range in (c) shows that fat decreasing f the 

mapping properties of the Hardy operator are fundamentally different than those for 

arbitrary f. In the index range 1 < p, q < m, these results can also be obtained from 

Sawyer's reverse idlder inequality ([17]): 

&7i7fr'W™r"^r+a 

щ 
t 

8*° , 8 i (J g"v)1/P ™ (Jv) 1 / P 

where as before V(x) -= j v. This results is very useful in establishing mapping properties 

of more general integral operators. Thus, if 

(Tf)(x) - f k(x, y^yjdy, k ( x , y ) H , . j * 
03 

then (with I v == oo) the above estimate! imply that 

(Í (Tg)(x)« u(x)dx)1/<l i C(í g(x)P v(x)dx)1 / P 

holds for all gi and non-negative, if and only if T*f the dual of T satisfies 
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[J (I T*f)P' V(x)-P'v(x)dx]1/P' < C(j i{xf ^ ^ ' d x ) 1 ^ ' (Lil) 
0 0 0 

for all f > 0. 

Now if T a P, the Hardy averaging operator, then 

jт*f(t)d. (j.Mđ-)Л.jj.^d-d» + |g-Ш4-)dt 

f(y)dy + x jM d y 

so that for 1 < p, q < oo, Theorem 1.11 follows from (1.11) and Theorem 1.1. 

It should be noted that Sawyer's result also permits one to characterize weights for which 

the Hilbert transform and Riesz potential is bounded from A (v) to A (u), 1 < p, q < oo 

(See e.g. [17]). 

Let L denote the Laplace transform 

(Lf)(x) « J e" x t f(t)dt x > 0, 

then there is a simple characterization of weights for which this operator defined on de­

creasing functions is bounded from L*J to LJj[. Since this result does not seem to follow 

from Sawyer's work we give the simple argument next. 
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Let f be a non-negative decreasing function and 1 < p i q < oo, then 

to 1/q oo 1/p 

(JufxJIx-^L^x- 1 ) !^ ) <c([v(x)f(x)Pdx) (1.12) 

and if and only if AQ and A, of Theorem l.H are finite, 

Proof. By the second mean value theorem and the fact that f is decreasing 

1/x OD . ' - 7 * 
x) - . [ e - x y f(y)dy + J e ^ l Ы d y < J f(y)dy + e-Ҷl/xJ/x 

Ф 
< (1 4- e-1) J f(y)dy. 

But then by Theorem 1.11 the sufficiency part follows. 
x 

For the converse, assume first that V(») -a OD (recall V(x) -* v) and define 

oo 1 1 

fr(s) . (J xP'VfxrP'-1 v(x)dx) X ( 0 r ) ( S ) , r > 0 fixed, 
s 

Then f f | and substituting into (1.12) we obtain 

C(J v(x) [J j*' ViyfV'-1 v(y)dy]dx)1 / P « c ( [ t y-3' V ( y ) - * M v(y)(J v(x)dx)dy)1 / P 
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Г 1/*. » í ï 

' 0 ( ì УP' V(y)"»' v(y)dy)1/P

 ř (J -«-.-«] f e-У/* (j tP'V(t)-*'-1v(t)dt)1/Pdy|ądx)1/<1 

ř î 

l e"1 [J «M--«|J(J t p ' V(t)-P'-1v(t)dt)1/Pdy|<1<k]1/<1. 
t o y 

But the inner integral is not smaller than 

j y P ' / p (J VttfP'- 1 v(t)dt)1/Pdy - p J yP'-1 J [J V P ' ^ v d x ] ' 1 / P ' V(.)"* - 1 v(.)d,dy 
0 y 0 y s 

r s r 1> 
« P J V(i)-*'-*- v(s) (f yp/-1dy) (J V ( a ) - * M v(<*)d<*)~ ds 

> ( P - 1 ) J « P ' (J V(a)"*'-1 v(a)da) V(,r p ' - 1 v(s)d, 

- (p - 1) j ,P' VW-P'-1 v(,)(Ylil"P')"1 / P'd, - (p - 1)( P ' ) 1 / P ' ] sP' V(,)-P' v(,)d,. 

Substituting, we obtain 

1 / p , .-!/. ,v_,sl!P' .f _/_x..-QJ_. 1 / q rf -P' C (fyp'v(y)-*'v(y)dy) > e ^ p - lXp') 1 / p ' (Ju(x)x^dx) (J P v(s) V(i)-*'di) 

from which A* < t» follows. 
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On the other hand, if f = X($ r\ -S substituted into (1.12) then 

C(jv(x)dx)1 / P > ( j u ( x ) x ^ ( j e - y l x d y ) q d x ) 1 / q 

0 0 0 

- ( J u f x i l l - e - ^ - J d x ) ^ ^ ( l - e - ^ j ^ x j d x ) 1 .-/Ч I _iWГ . .. .1/4 

and this implies AQ < ©, which completes the proof. 

We noted before that for p, q < 1 and f > 0 the inequality 

(J f(t)P v(t)dt) 1 / P < C(J u(x)(J f(t)dt)qdx) 1 / q (1.13) 

is possible ([3]). However for most other values of the indices the following lemma, which I 

owe to Eric Sawyer, shows that (1.13) cannot hold. 

Lemma 1.13. If (113) holds for 0 < q < OD, p > 1 and all f > 0, then v = 0 a.e. in 

any interval (r, OD) such that 

[ u(t)dt < OD. 
r 

Conversely, for such trivial weights, (1.13) clearly holds. 
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Proof. Let F = min(l, v 1!p) and fr g(t) = *, s\(t)F(t), where 0 < r < s < a>. Let 

f = f in (1A3), then r,s 

r 
Therefore 

( | F(t)iV(t)dt)1/P < c ( j u(x)dx)1/q (j F(t)dt) < C(s-r)(j u(x)dx)1/q 

r r r 

- L - J [nun (v(t), l)]dt]1/P < C(s - r)1!?' (J u(x)dx)^ 
r r 

and as s - r —» 0 and (r, s) shrinks to a Lebesgue point x of min(v, 1) we obtain 

min(v(x), 1) < 0 if 

CD 

u(x)dx < OD, e > 0. 
X-€ 

This proves the lemma. 

In light of this lemma it is perhaps surprising that for decreasing f a weighted in­

equality of the form (1.13) can hold. 

Theorem 1A4. Let f| and non-negative. If 1 < q < p < GO, then (1.13) holds if and only 

if for each r > 0 

(fv(x)dxj P<cfju(x)dx + J (r/x)q u(x)dxj **. 
0 O r 

Proof. For p = q this result is due to Neugebauer [23] and the case q < p follows 

from it easily. 
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2. Weighted Fourier inequalities. The first L^-estimates involving power weights 

appeared in the early and mid 1930's with the work of Hardy-Littlewood-Paley-Titchmarsh 

and Pitt. Although many others extended and generalized these early results, it was in 1978 

when Muckenhoupt ([22]) formally posed the problem of characterizing weight functions u 

and v for which the inequality 

holds for all f c L . This problem has been studied by various authors, including 

Muckenhoupt, and the general result may be formulated in the following theorem ([4]): 

Theorem 2.L Suppose 0 < p , q<oo, p > l and u, v are non-negative even functions, 

such that uj and 1/vl on (0, <D). Then 

(i) for 1 .< $ < q < a, (2.1) is equivalent to the condition 

1/q 1/r 1/p' 
upífu(t)dt) í j v W ^ P ^ t ) "' ' < » (2.2) s 

r>Ò 

(ii) for 0 < q < p < oo,.p > 1, the two conditions 

J [ (}^( t )d t )
1 / q ( fv ( t ) l -P 'd t )

1 / q ' ] r v(x) l -P 'dx 
0 0 0 

< I 
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and 

09 09 

' / l l f . ^ / 2 ,.Л-в'...-/Ч'l»-., J[(| f l 2 uWdf"1 (J t-P'/^tJ^'dt) V q ] x-»'/V-)1"»'fc < % 
0 1/x x 

where 1/r == 1/q - 1/p, are sufficient for (2.1). 

Remark 2.2. 

(i) The condition that u and v are even, nor the monotonicity conditions imposed 

on u and v are required in the sufficiency part of Theorem 2. L One requires 

only that in (2.2) and in the integral conditions of (ii) that u and 1/v are re­

placed by u* respectively (1/v)*, their decreasing rearrangements. 

(ii) If 0 < q < p < 1, weighted Fourier transform inequalities are still possible -

however then the domain space of the operator must be replaced by the boundary 

values of functions in weighted (atomic) Hardy spaces (c.f. [11], [12]). 

In the study of weighted norm inequalities for singular integral operators, the A -

weights are the most effective weights and have been studied intensely during the last 

twenty years ([11], [34]). Recall that a non-negative locally integrable function w on R11 

belongs to the A -weight class, 1 < p < oo, if there is a constant C > 0, such that for 

all n-balls B c Be* with volume | B | 

W P / I f , a - ^ . ^ / P ' 

U|wH Mф«и,'H < C < i 
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* 
Similarly we say w e A , 1 < p < n, if 

,up( T L . jw(x)dx) 1 / P ( T l r | w ( x ) 1 - P ' d x ) 1 / P ' < „ 

where J denotes the collection of intervals I = [a«, bJ * ... * [a , b 1 in R11 and | I | 

its Lebesgue measure. 

It is obvious that A = A*, if n = 1, but in general A* c A . In fact if w(x) = | x | a , 

then w c A , if and only if -n < a < n(p - 1), and if 

"«-(Í.'*»')' 
then w t A * implies -1 < a < p - 1. As mentioned, these weight classes are typical 

Hilbert transform •<- singular integral criteria, so it may be somewhat surprising that they 

are also important in establishing weighted Fourier transforms norm inequalities. 

The next part of this section describes Fourier inequalities with A -weights, while in the 

second, Fourier inequalities of functions in certain moment subspaces are discussed. 

24- Fourier t r i f o r m inequalities With Ap-Wflghtg. In the sequel we require the 

following lemma; 

jLgmmfr 2.3. 

(a) If w c A , 1 < p < oo, then 

J I x n ^ w t o d x K C r - ^ P í w(x)dx (2.3) 

|x|>r |x|>r 
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(b) If w is radial and as radial function increasing, then w e A if and only if 

w£ « A 1 + e ( ? H ) , - > 0. 

The first part of the lemma is well known and may be found in [11] or [34]. Indeed for 

n = 1 this is essentially (1.10) of Theorem 1.9. That w e A implies we = A , , / -x is 

Holders inequality for 0 < e < 1. The details for e > 1 and the converse may be found in 

[15]. 

The lemma permits us now to prove the following weighted Paley-Titchmarsh theorem: 

Theorem 2.4. Suppose w is radial and as radial function increasing. Let 

1 < P < Q < P7, then 

[[ ^ | t ( x ) | ^ | x | ^ ^ p ' - X ) w ( l / | x | ) ^ P d x ] 1 / q < C[f |f(x)|PW(x)dx]1 / P 

if and only if w c A . 

For n = 1 the proof of this result may be found in [5] and the general case (with different 

proof) in [15]. Note that for q = p ' this is a weighted Hansdorff-Young inequality. 

We sketch the sufficiency part of the proof. If p = 2, then by Lemma 2.3 (a) it follows 

that (the n-dimensional analogue of) (2.2) holds with p = q = 2 and v = w and u(x) = 

w ( l / | x | ) . Therefore by Theorem 2.1 

J | f ( x ) | 2 w ( l / | x | ) d x < c j |f(x)|2w(x)dx. (2.4) 

(Rn Rn 

Now for any u > 0 define 
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L-l 
a(x) = u(l/t)tn-1dt and /<E)= f a(xГ2u(l/|x|)dx, E c «Л{0}-

then 

^{x e *:Mx)t(x)\ > A}) < M({X e Kn: 1 a(X)|HfJIx > A}) 

| a(x) _ 2 u(l/ |x |)dx= [do- | tn _ 1a(t)"2u(l/.)dt 

{x:a(x)>A/||f||1} " {t>0:a(t)>A/||f||1} 

00 

= C [ a"2(t)d a(t) = CUfllj/A, 

a-^A/llfll.) 

where a~" (y) = inf{x > 0: a(x) > y} so that a(a~" (h)) = y, Now let u = wp ~" and re­

place f by f/u in this estimate, then 

/<{x e Rn:|a(x)(f/u)^(x)| > A}) < 0"%" 1/u/A 

which is a weighted "weak" (1,1) estimate. But Lemma 2.3(b) shows that w e A , if and 

only if u = wp " c ^ 1 + ( D ' - I V D - ; 0 = ^2' s o t n a t ^ y (2 '^ w i t n * r e P l a c e d by f/u 

J |a(x)(f/u)^(x)|2dM(x) < C||f|||>1/u. 

Rn 

This inequality together with the "weak" type (1,1) above yields (via the Marcinkiewicz 

interpolation theorem) 

j |a(x)(f/u)*(x)|Pd^(x) < C| | f | |P 1 / u 1 < p < 2 
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and with f/u replaced by f 

J | f(x) |P a (x) p ~ 2 u ( l / |x | )dx < C J |f(x)|P u ^ P ^ d x . (2.5) 

Rn ^ 

But since Lemma 2.3(a) implies that 

00 

a(x) = J r ^ n M d t = C J | y f 2 n « ( y ) d y < C | x | 2 n J u(y)dy 
1 / | X | |y |>l / |x | |y|<l / |x| 

< C|x|nu(l/|x|), 

substitution into the left side of (2.5) (note p - 2 < 0) yields 

J | ̂ i P l x l ^ P ^ l / l x D ^ d x < C J |f(x)|pu(x)p""Xdx. 

Rn ^ 

But u = w p "" so that Theorem 2.4 holds with q = p. The general case follows similarly. 

The monotonicity conditions imposed on the weights both in Theorem 2 1 and Theorem 

2.4 are highly undesirable. In [15] the condition of radial monotonicity was replaced by in­

sisting on appropriate monotonicity condition in each variable separately. In this way one 

obtains the fcllowing weighted HausdorfX-Young inequality: 

(J |I(x)|P/u(l/x)dx)1/P, < CJJ I f W l P ^ ^ d x ) 1 ^ , 1 < p < 2, 

Rn Rn 

holds if and only if u e A«. 
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A detailed study of weighted Fourier estimates with weights of this type was made by 

Bloom, Jurkat and Sampson [7]. One of their results is the following: 

Theorem 2.5. Suppose 1 < p < q < » and w and 1/v are even and decreasing in (0, m) 

in each of their variables separately. If 

u(x) m IXJXJ ... x J ^ V - / * ) 

is increasing in each x., then 

(J |l(x)|«w(x)d-,)1/ , l.;c([ |f(x)|Pv(x)dx)1/P 

if and only if 

(} |(Pn í)(x)|Уx)dx) 1 / q<c[[ |f(x)|Py(x)dx)1/P 

Ѓ1 Ѓ 

where 

(^W^ix^bjJ -J *>«" 
I^UIxjl | t 1 | < | x n | 

is the n-dimensional averaging operator. 

We point out here, however, that weight characterizations for Pn: "L̂  —» Lj are only 

known for n = 1 and n = 2. The problem for n > 2 is still open, 
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Although it is possible to weaken the monotonicity conditions on weights in these last 

theorems somewhat ([4]) its total deletion - and hence a complete characterization of 

weights - have not been proved. There are also several abstractions of Theorem 2.1 in the 

case 1 < p.< Q < «>. to locally compact connected Abelian groups and certain locally 

compact totally disconnected groups. However, either the weight conditions given are only 

sufficient, or additional restrictions on the weights - corresponding to monotonicity - must 

be obtained to prove characterizations, (c.f. [17]t [24], [25]). 

If instead of imposing monotonicity conditions on the weight functions one restricts the 

functions f, then much more may be said. In fact in that case we have the following 

characterization: 

Theorem 2.6. Let f be a non-negative even function in Lp v > 0, 1 < p < oo, such that 

f is decreasing in (0, oo) and f(a>) = 0. Then 

Ш W 

[ |f(l/x)/x|pv(x)dx<C [ |f(x)|pv(x)dx, 

if and only if (2.3) holds with n = 1 and w = v. 

It is easy to see that v(x) = |x|~e, 0 < e < 1 satisfies (2.3) with n = p = 1 and 

w = v. 

2.2. Fourier transform inequalities of functions with vanishing moments. The last 

theorem suggests that if restrictions are imposed on the functions f rather than the 

weights, then one might expect also that a larger class of weights can be generated for 

which weighted Fourier norm inequalities hold. For example, if f(0) = 0, then 
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I*MI = | J ( e " i x t - l ) f ( t ) d t | = . | J + J | 

~" |xt|<l |xt |>l 

<2j |xt||f(t)|dt + 2 j |f(t)|dt = 2 jj |y-3f(l/y)|dy +J Jy^2f(l/y)|dy}. 

| t |<l/ |x | |* |>l/ |x | |y|>|x| |y |<|x| 

_ Q 

But these integrals are essentially the Hardy operator and.its dual of |y. f(l/y)| and 
—2 

|y f(l/y)| respectively. Therefore, applying the weighted form of the Hardy operator and 

its dual one is led to the following result of Sadosky and Wheeden [26]: 

Theorem 17 . If 1 < p < <n and w c A , then, 

UU DO 

[ |f(x)|Pw(l/x) -**< c j | f ( x ) | P | x | P w ( x ) d x ( 2 . 6 ) 
J X J 

—00 —00 • " 

for all f satisfying f(0) = 0. 

Compare this with Theorem 2.4 taking q = p and n = 1. 

If w(x) = l / | x | , then w g A , p > 1 and one might ask if (2.6) with this weight 

f(0) = 0 is satisfied? The answer is no, and in fact, no norm inequality of the form 

(J | f ( x ) i V x ) d x ) 1 / q < c ( j lадiPixiP-^dx) 1 7 1 ' , 

1 < p < GO, 0 < q < oo, u = 0, can hold for f satisfying f(0) = 0 ([26]). 

The idea to consider Schwartz functions f satisfying 



J f(x).Jdx = 0, j = 0,1,2,...; 

and whose Fourier transforms have compact support away from the origin has been ex­

ploited in [6] and [26] to prove Fourier norm inequalities for substantially larger weight 

classes. These subspaces are known to be dense in weighted Lp spaces ([6], [21]) and the 

Fourier transform has a natural extension in these spaces. It is also clear that corresponding 

results carry over to mixed indices. 

To apply Fourier inequalities to obtain uncertainty relations of the Heisenberg-Weyl 

type, or Fourier restriction theorems it is desirable to replace the weights in the range space 

by general measures. This in turn requires corresponding measure estimates for the Hardy 

operator and its dual. Such results - indeed characterizations - were proved by Sinnamon 

[29], and the corresponding measure weighted Fourier inequalities on moment subspaces 

were studied in [6]. We state here only the one dimensional case: 

Theorem ?,g. Suppose 

(i) v c L} (8), v > 0 a.e. and /* a positive measure. 

(ii) 1 < p < q < », v1""-3' € I-ioc(»\[~y,y]) for each y > 0. 

(iii) Bx E sup (J 11 | ^ t ) } 1 / < l {J 11 |P\(t)H>'dt}
1/P' 

y > ° |t|<y |t|<l/y 
and 

B2=.s„p{Jd,(t)}1/<,(Jv(t)1-I>'dt}1/P' 
|t|>y |t|>l/y 

are both finite. 
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(iv) f c L (̂R) H L1(K) and f(0) = 0 with supp f compact. 

Then there is a constant C > 0 (depending on B-̂  and B2) such that 

-*.,*-C«V 

For example if v(t) « | t | 1 + e , 0 < e < 2, /* * £ |n | 6 , where 6 is the Dirac distri­

bution and p = q = 2, then all conditions of this theorem are satisfied and one obtains 

-' j % i - 2 V i + B2)2 f |f(t)i2|t|1+edt. 

(For the details see [6, Ex. 2.5(c)].) 

Some progress has been made to characterize the Fourier transform in weighted Lorentz 

spaces although a complete solution seems not to be available. We conclude this section 

with a characterization of a special Fourier transform in a very special setting due to 

Braverman. 

Let (ft, 3, P) be a probability space and X(w) a random variable. In this context, 

the Calderon L-3'̂  spaces are then defined by X c lP&t if and only if 

l | X | l P , q в ( Î ( P [ | X | > X І ) q / P đ x Ч ) 1 / q < в ' 

where 0 < p, q < «. Let F(y) = P[X > y] and the characteristic function (Fourier trans­

form) be defined by 
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OD 

F(y) = J eUydF(y). 

The result alluded to is then the following: 

Theorem 2.9. If 1 < p < 2, 1 < q < o, then 

-t* Ч W P n ì i /q { f [ i -4 f *C-)^]vV}1/q-|x|*q 

3. Some applications. In 1974, Zygmund ([35]) considered the two dimensional Fourier 

transform 

f(x) = J e* * ' y f(y)dy x e R2 

K2 

and estimated the restriction of the Fourier transform on circles |x| = py in terms of the 

Lp--norm of f. His result states that if i c L?(K ), IX p < 4/3, then f(x) exists â e, on 

|x| = p and 

(f | f (x ) [V) 1 / q <A p / /P , | | f | | p (3.1) 
jx|=/> 

for q = p ' /3. Moreover, the result is sharp in the sense that if p = 4/3 then inequality 

(3.1) fails. 



At almost the same time Sjolin [30] provided an extension theorem - that is, a dual 
2 

Fourier estimate of measures carried by smooth curves in R , which, when restricted to 

curves of constant curvature (circles) implies Zygmund's results. Since then, a vast 

literature on the subject evolved with many significant applications. 

The proof of the result of Zygmund (and also Sjolin's) utilizes. among other things, a 

duality argument, the Hausdorff-Ypung inequality and an Lp--estimate of the Riemann-

Liouville fractional integral operator. But all these components permit generalizations and 

weighted extensions. It is not surprising therefore, that these restriction-extension theorems 
2 

have weighted extensions in IR . These generalizations, proved in [9] have the form 

" |K |W, !A | IV> (3-2) 

where 7 is a smooth plane curve in IR of curvature K and arclength measure ds. 

A very specific case of the generalizations of Zygmund's estimate (3.1) is given here ([9, 

Corollary 2, with A = 0]). 

Proposition 3.1. If 4/3 < q < a>, 1 < p < 6q/(3q+2) and 

then for 1 < r < q, 

max[0, 2 ( l / p ' - l/(3q))] < a < 2/p', 

(j l f(x)|rds)
1/r< c//r+^/P'|]£Hpťř. 

\x\=p 

In particular, if q = p '/3, then 1 < p < 4/3 and then taking a = 0 in Proposition 3,1,. 

we obtain Zygmund's result. 
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A special case of the generalization of Sjdlin's theorem has the same form. In fact under 

the hypotheses Proposition 3.1-one obtains (3.2) with v(x) = | x | a , 6 > l/(3q) and 7(t) 

= (71(t), 72(t)), t c [ab]. Moreover (3.2) holds also if 6 = l/(3q), provided K(t) > 0. (c.f 

[9,Cot.l]). 

It should be noted that these results are strictly two dimensional since the weights in the 

appropriate Fourier inequalities which lead to these results are especially adapted to the 

geometry of the curv6. Higher dimensional Weighted spherical restriction theorems can be 

obtained directly from the n-dimensional measure weighted Fourier inequalities. That is the 

n-dimensional version of Theorem 2.8. 

Theorem 3.2. ([6, Theorem 5.3]) Let v c -^(IR11), v > 0, a.e., radial and 

1 < p < q < OD. Assume that v1"*' c LjQC (Rn\B(0,y)) for each y > 0 and 

n-1 l/(/w) ifo, » 
C ( p l W ) • A(n,p,q)p « {,([ r^+P'v^-P'dr) + (J r-"1t(r)1'P'«')I/p'}, P > 0 

0 l/(pir) 

Then for all f ( Mfl(n) n L^R11) 

([ I fWI^-i) 1 7* 1 ^ C(p,q,nf/,)||f||p v. 

V-lW 
o 

We conclude with an example of the uncertainty inequality. Given (XQ, yQ) c R , then 

the classical uncertainty inequality states that for all f c <a/(R) 

1/2 1/2 
f|f(x)|2dx < 4T(f |(x-x0)f(x) |2dx) ( f | (y -y 0 ) f (y ) | 2 dy ) 

-s(x-x0) 2*ixyQ 
with equality if f(x) = c e e , s > 0, c a complex constant. 
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There are numerous variants and generalizations of this inequality with applications in 

-2*ixy0 

science and engineering. It is not difficult to see that the change f(x) —» f(x + xQ)e 

shows that one may take without loss of generality xQ = VQ = 0 in this inequality. 

Recall from Section 1, if 

Ш 

(QtXx) = JЦx.J-f x e ť 

and (Q*f)(x) = -x-vf(x), x c Rn, then QQ*f(x) = f(x). Instead of applying Theorem 

1.2(i) with p replaced by p ' and q = p ' , v(x) = u(x) = |x |~^ we prove the result 

directly in the following lemma: 

Lemma 3.3. If f c cJfR11), 1 < p ' < n, then 

f? Rn 

Proof. 

[f | ^ | P ' H 1 / P ' - [f | s a ¥ s i | p 'H 1 / P ' = [f w-p'|J(QWf|p'dx]1/p' 
R11 R° Rn l 

= ({I ^ ' " l l (Q^^|P'<»«-)1/P' - {{ J t ^ l J (Q*f)(y^|p'dtd.)1/P' 

*V{{ J IQV)lP'tn-p'-1dtd,}1/P' = 5 ^ ( 1 |*4M|P'dx)1/P' 
-.0 ron 

-» 

6 Krbec, Ana lys i s 4 e n g l . 



where the last inequality is the classical conjugate Hardy inequality. 

Theorem 3.4. If f e c l(R n ) , 1 < p < 2 and n > p', then 

J | f ( x ) | 2 d x < c ( J | x f ( x ) | P d x ) 1 / P (J | y f ( y ) | p d y ) 1 / P , 

Rn Rn Rn 

where 

Proof. Holder's inequality and Lemma 3.3 yield 

J|í(x)|2dx <(J|xf(x)|Pdx)1 / P(J|Şl|P'dx) 
R п»n ron 

< ^ F ( J | x f ( x ) | P d x ) 1 / P ( J | ^ | P ' d x ) 1 / P ' 

0J11 R " 

By Minkowski's inequality, and writing -n— = h, i = 1,2,...,n ; it follows that the right in­

tegral product is 

,P ' x l / p ' n (r , X- ,p' 1/p 

(í liT-t^H H *i(f IwH dx) 

-- /r ~, \l/p' n /r « \l/p 
= IVy |(Bjh)»|P dx) S S (J |(BjhKx)|P<lx) 

CІ (J I Һ M l P d x j ^ ín^cJs J |h(x)|Pdx]1/P 
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= c*1/p'Lf i " l ^ wipdx]1/P = c»1/p'[f *\yito\v«fh 

ilp 
<cn1l2Ц|f( y)У |PđУ]1 / P, 

where we applied the Hausdorff-Young inequality, the L^-boundedness of the Riesz trans­

form R and Holder's inequality twice. Substituting we get the result. 

It is clear that on using Theorem 1.2(i) and the well known weighted L^-boundedness of 

the Riesz transform ([11][34]) a corresponding weighted inequality can be obtained . This 

unweighted form is however curious since the classical n = 1 - case does not follow from it. 

For additional recent application of weighted Fourier inequalities we refer to [4] [15] were 

generalizations of the Paley-Wiener theorems were given and Laplace representations in 

weighted Bergman spaces were established. 
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