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WEIGHTS, ONE-SIDED OPERATORS,SINGULAR INTEGRALS AND ERGODIC THEOREMSFrancisco Javier Mart��n-Reyes1. IntroductionThe aim of these lectures is to study weighted inequalities for one-sidedoperators. By a one-sided operator in the real line we mean an operatorT acting on measurable functions such that for all measurable functions fthe value of Tf(x) depends only on the values of f in [x;1) or in (�1; x].Examples of these operators are the following:(1) The Hardy operatorTf(x) = xZ�1 f and its adjoint T �f(x) = 1Zx f:(2) The Riemann-Liouville and the Weyl integral operators de�ned, for0 < � < 1, byI�� f(x) = xZ�1 f(s)(x� s)1�� ds; and I+� f(x) = 1Zx f(s)(s� x)1�� ds:(For these operators, one usually assumes that the support of f iscontained in [0;1).)(3) The one-sided Hardy-Littlewood maximal operatorsM�f(x) = supc<x 1x� c xZc jf j and M+f(x) = supc>x 1c� x cZx jf j:This research has been partially supported by D.G.I.C.Y.T. grant (PB91-0413) andJunta de Andaluc��a. 103



104 F.J. MART�IN REYES(4) The one-sided fractional maximal operators de�ned, for 0 < � � 1,byM�� f(x) = supc<x 1(x� c)� xZc jf j and M+� f(x) = supc>x 1(c� x)� cZx jf j:We are interested in obtaining characterizations of the pairs of nonneg-ative measurable functions (u; v) such that the one-sided operators applyLp(v) into Lq(u) or in weak-Lq(u). In order to study these questions, it isinteresting to begin with studying the operator M+.Which are the good weights forM+? First, we remember the correspond-ing results for the two-sided Hardy-Littlewood maximal operator de�ned byMf(x) = suph;k>0 1h+ k x+hZx�k jf j :B. Muckenhoupt proved [Mu] that the following theorems hold:Theorem A [Mu]. Let u and v be nonnegative measurable functions andlet 1 � p <1. The following statements are equivalent:(a) There exists a constant C > 0 such that for all � > 0 and everyf 2 Lp(v) Zfx:Mf(x)>�g u � C�p 1Z�1 jf jpv:(b) (u,v) satis�es Ap, i.e.,there exists a nonnegative real number A suchthat supa<b0@ 1b� a bZa u1A0@ 1b� a bZa v�1=(p�1)1Ap�1 = A if p > 1;Mu(x) � Av(x) a.e. if p = 1:



WEIGHTS, ONE{SIDED OPERATORS 105Theorem B [Mu]. Let w be a nonnegative measurable function and let1 < p <1. The following statements are equivalent:(a) There exists a constant C > 0 such that for every f 2 Lp(w)1Z�1 (Mf)pw � C 1Z�1 jf jpw:(b) w, i.e. the pair (w;w), satis�es Ap.Therefore, if we restrict ourselves to the single weight case, u = v = w,and keep in mind that M+f �Mf , it is clear that if w 2 Ap then we have(1.1) Zfx:M+f(x)>�g w � C�p 1Z�1 jf jpw if p � 1;and(1.2) 1Z�1 (M+f)pw � C 1Z�1 jf jpw if p > 1:The question is: are there more weights w such that the above inequalitieshold? If we connect this problem with ergodic theory we see easily that theanswer is a�rmative and that it has been known since long time ago.Observe thatM+ is the ergodic maximal operator associated to the semi-group of operators fTt : t � 0g given by Ttf(x) = f(x+ t), i.e.,M+f(x) = suph>0 1h hZ0 jTtf(x)j dt:Let us consider the real line with the measure w(x) dx. The Dunford-Schwartz theorem states (see [Kr] and Section 5 in this paper), roughlyspeaking, that ifkTtfkL1(w) � kfkL1(w) and kTtfkL1(w) � kfkL1(w)for all f , then(1.3) Zfx:M+f(x)>�g w � C1� 1Z�1 jf jw for all f 2 L1(w)



106 F.J. MART�IN REYESand(1.4) 1Z�1 (M+f)pw � Cp 1Z�1 jf jpw if p > 1 and f 2 Lp(w)hold with constants C1 = 1 and Cp = p=(p � 1). But what do kTtfkL1(w)� kfkL1(w) and kTtfkL1(w) � kfkL1(w) mean? First, observe that if w ispositive then the inequality for the L1-norm is always veri�ed. Second, theinequality for the L1-norm is equivalent toZ jf(x)jw(x� t) dx � Z jf(x)jw(x) dx for all t > 0 and all f 2 L1(w),which holds if w is increasing. Therefore we see that if w is positive andincreasing then the Dunford-Schwartz theorem implies that w is a goodweight for M+, more precisely, inequalities (1.3) and (1.4) hold. Sincew(x) = ex is increasing but it is not a weight in the Ap classes we see thatcertainly the classes of functions w for which inequalities (1.3) and (1.4)hold are wider than the Ap-classes.Now the problem is to �nd a characterization of the weights for whichthe inequalities (1.3) and (1.4) hold. The same problems can be studiedfor the one-sided Hardy-Littlewood maximal function associated to a Borelmeasure � which is �nite on bounded intervals. For such a measure, wede�neM�� f(x) = supc<x 1�(c; x] Z(c;x] jf j d�; M+� f(x) = supc>x 1�[x; c) Z[x;c) jf j d�;where the quotients are understood as zero if �(c; x] = 0 or �[x; c) = 0. If� is the Lebesgue measure then M+� = M+; the weights for this operatorwere studied by E. Sawyer [Sa]. If � is a measure equivalent to the Lebesguemeasure, the weights forM+� were studied in [MOT]. The results of [Sa] and[MOT] were generalized in [An] where the following theorems were obtained:Theorem C [An,Sa,MOT]. Let � be a Borel measure on R which is �niteon bounded intervals. Let u and v be nonnegative measurable functions. If1 � p <1 then the following statements are equivalent:(a) There exists a constant C > 0 such that for all � > 0 and everyf 2 Lp(vd�) Zfx:M+� f(x)>�g ud� � C�p 1Z�1 jf jpv d�:



WEIGHTS, ONE{SIDED OPERATORS 107(b) (u,v) satis�es A+p (�), i.e., there exists a nonnegative real number Asuch thatsupa<b<c 0B@ 1�(a; c) Z(a;b] ud�1CA0B@ 1�(a; c) Z[b;c) v�1=p�1 d�1CAp�1 = A if p > 1;M�� u(x) � Av(x) �-a.e. if p = 1:The constants C and A depend only on each one.Theorem D [An,Sa,MOT]. Let � be a Borel measure on R which is �niteon bounded intervals. Let w be a nonnegative measurable function and let1 < p <1. Then the following statements are equivalent:(a) There exists a constant C > 0 such that for every f 2 Lp(wd�)1Z�1 (M+� f)pwd� � C 1Z�1 jf jpwd�:(b) w, i.e. the pair (w;w), satis�es A+p (�).Remarks.(1) Analogous results are obtained for M�� changing A+p (�) by the ob-vious A�p (�).(2) If � is the Lebesgue measure then we shall simply write A+p and A�p ,instead of A+p (�) and A�p (�).(3) Weighted inequalities forM+ in the setting of Lp;q and Orlicz spaceshave been studied in [O4], [O5] and [OP].The purpose of the next section is to present recent results [MT5] aboutweighted norm inequalities for general one-sided maximal operators whichinclude the operators mentioned at the beginning of this introduction andothers as the maximal operator associated to Ces�aro averages of order �,0 < � � 1, which is de�ned byM+�;�f(x) = supc>x 1(c� x)� cZx jf(s)j(c� s)1�� ds:In order to study these general one-sided maximal operators we shall needsome important properties of the weights belonging to the A+p (�) classes;



108 F.J. MART�IN REYEStheir proofs will be given in Section 3. The following Section 4 is devoted tothe content of [AFM], i.e., to the study of weighted inequalities for singularintegrals associated to Calder�on{Zygmund kernels with support in (�1; 0).Finally, in Section 5 we go back to ergodic theory and obtain a generaldominated ergodic theorem [MT1] using the theory of one-sided weights.Throughout the paper, C will denote a constant which may change fromone line to another. If p is a number between 1 and 1, then p0 will denoteits conjugate exponent. For any measurable function g and any measurableset E, g(E) and jEj will stand for the integral of g over E and the Lebesguemeasure of E, respectively. The weights u; v and w will be assumed positiveand �nite to avoid technical di�culties.2. General One-Sided Maximal OperatorsI. De�nitions and examples.De�nition 2.1. Let f be a locally integrable function de�ned on R, and let�; � be two real numbers such that 0 � � � � � 1. We de�ne the maximaloperators M+�;�f(x) = supc>x 1(c� x)� cZx jf(s)j(c� s)1�� ds;and N+�;�f(x) = supc>x 1(c� x)� cZx jf(s)j(s� x)1�� ds:Our aim is to study the good weights for these operators.Examples.(1) If � = � = 1 the operator M+�;� is the one-sided Hardy-Littlewoodmaximal operator. The pairs of weights for which this operator isof weak or strong type are well known [Sa, MOT].(2) If � = 1 and 0 < � < 1 then M+�;� is the fractional one-sided maxi-mal operator. The pairs of weights (u; v) for which this operator isbounded from Lp(vdx) to Lq(udx), 1 < p � q < 1, were charac-terized by Andersen and Sawyer in [AS] and by Mart��n-Reyes andde la Torre in [MT3].(3) If � = � 6= 1, then the operator M+�;� is the maximal operatorassociated to the Ces�aro averages C� and the weights have not been



WEIGHTS, ONE{SIDED OPERATORS 109studied. For Lebesgue measure it is known [JT] that it maps Lp intoitself if p > 1=�. In the limit case p = 1=� it maps Lp;1 into Lp;1.In other words, it is of restricted weak type (1=�; 1=�).(4) For the operator N+�;� we have that when � = 0 < � < 1 ,N+�;� = 1Rx f(s)(s � x)��1 ds. This is the Weyl fractional integralstudied in [AS] (see also [KG] and [LT]), while if � is positive theoperator is equivalent to the fractional one-sided maximal operatorM+0;1��+� studied in [AS] and [MT3].(5) If � = 1, � = 0 then M+�;�f(x) = 1Rx f(s) ds which is the adjoint ofthe Hardy operator. The weights for the Hardy operator have beenstudied in many papers. For example, we can cite here [Br], [AM]and the book by B. Opic and A. Kufner [OK].Of course one could consider also the operators M��;� and N��;� de�nedby M��;�f(x) = supc<x 1(x� c)� xZc jf(s)j(s� c)1�� ds;and N��;�f(x) = supc<x 1(x� c)� xZc jf(s)j(x� s)1�� ds:Therefore, if f is positive and has support in R+, M�1;0f(x) = xR0 f(s) ds forx > 0.We are going to study the pairs of weights for which the operators M+�;�and N+�;� are of weak type or restricted weak type. We shall also obtain thestrong type characterization in the case of \equal" weights. In this way weobtain uni�ed results for the examples considered above. A generalizationof these results in the setting of Lp;q spaces will appear in a forthcomingpaper by Mar��a Dolores Sarri�on.II. Weak type inequalities. In this subsection we give the characteriza-tion of the pairs of weights for which the above operators M+�;� and N+�;�are of weak type.



110 F.J. MART�IN REYESTheorem 2.2 [MT5]. Let 0 � � � � � 1, � > 0 and 1 � p � q. If p < qor �� � = 1=p� 1=q then the following statements are equivalent:(1) There exists a constant C such thatu(fx :M+�;�f(x) > �g) � C��q �Z jf jpv�q=pfor all � > 0 and all f 2 Lp(v).(2) The pair (u; v) satis�es A+p;q;�;� , i.e., there exists a constant C suchthat0@ bZa u1A1=q0@ cZb v1�p0(s)(c� s)(1��)p0 ds1A1=p0 � C(c� a)� ;for all numbers a < b < c, where, from now on, if p = 1 then� cRb v1�p0(s)(c� s)(��1)p0 ds�1=p0 is understood as the essentialsupremum of fv�1(s)(c� s)��1 : s 2 (b; c)g .Theorem 2.3 [MT5]. Let 0 � � � � � 1, 0 < � and 1 � p � q. If p < qor 1=p� 1=q = �� � then the following statements are equivalent:(1) There exists a constant C such thatu(fx : N+�;�f(x) > �g) � C��q �Z jf jpv�q=pfor all � > 0 and all f 2 Lp(v):(2) The pair (u; v) satis�es B+p;q;�;� , i.e., there exists a constant C suchthat0@ bZa u1A1=q0@ cZb v1�p0(s)(s� a)(1��)p0 ds1A1=p0 � C(c� a)�for all numbers a < b < c.We shall only prove Theorem 2.2 in the case p = q > 1 and 0 < � = �� 1.Proof of Theorem 2.2 for p = q > 1 and � = �. The proof of (1) =) (2) isstandard. For a < b < c �xed, we consider the functiong(s) = v1�p0(s)(c� s)(��1)(p0�1)�(b;c)(s)



WEIGHTS, ONE{SIDED OPERATORS 111and the number � = 1(c� a)� cZb v1�p0(s)(c� s)(1��)p0 ds:It is easy to see that (a; b) � fx :M+�;�g(x) > �g:Then, applying (1), A+p;p;�;� follows .The implication (2) =) (1) follows from the following proposition:Proposition 2.4 [MT5]. Let 0 < � � 1 and 1 < p. If the pair (u; v)satis�es A+p;p;�;� then there exists C > 0 such that for every measurablefunction f and all real numbers a the following inequality holds:M+�;�f(a) � C �M+u (jf jpvu�1)�1=p (a);where M+u stands for the one-sided Hardy-Littlewood maximal functionassociated to the Borel measure u(x)dx.Proof of Proposition 2.4. We may assume that f is nonnegative. Let b > a.We de�ne a sequence x0 = b > x1 > x2 > � � � > a by the identityxi+1Za u = xiZxi+1 u = 12 xiZa u:On each interval (xi+1; xi) we have:xiZxi+1 f(s)(b� s)1�� ds = xiZxi+1 f(s)(xi � s)1�� �xi � sb� s �1�� ds� �xi � xi+2b� xi+2 �1�� xiZxi+1 f(s)(xi � s)1�� v1=p(s)v�1=p(s) ds



112 F.J. MART�IN REYES(we have used that the function s 7! ((xi � s)=(b� s))1�� is decreasing)� �xi � xi+2b� xi+2 �1��0@ xiZxi+1 fpv1A1=p0@ xiZxi+1 v�p0=p(s)(xi � s)(1��)p0 ds1A1=p0
� C �xi � xi+2b� xi+2 �1�� (xi � xi+2)�0@ xiZxi+1 fpv1A1=p0@ xiZa u1A�1=p� C xi � xi+2(b� xi+2)1�� �M+u (fpvu�1)�1=p (a):Summing up in i, we getbZa f(s)(b� s)1�� ds � C �M+u (fpvu�1)�1=p (a)Xi xi � xi+2(b� xi+2)1��� C �M+u (fpvu�1)�1=p (a)Xi 1(b� xi+2)1�� xiZxi+2 ds� C �M+u (fpvu�1)�1=p (a)Xi xiZxi+2 1(b� s)1�� ds� C �M+u (fpvu�1)�1=p (a) bZa 1(b� s)1�� ds= C �M+u (fpvu�1)�1=p (a)(b� a)�:Proof of (2) =) (1). Assume again that f is a nonnegative function. ByProposition 2.4 we have that the set fx : M+�;�f(x) > �g is contained infx : M+u (fpvu�1)(x) > C�pg. Therefore, since M+u is of weak type (1,1)with respect to the measure u(x) dx,Zfx:M+�;�f(x)>�g u � Zfx:M+u (fpvu�1)(x)>C�pg u � C�p 1Z�1 fpv:



WEIGHTS, ONE{SIDED OPERATORS 113III. Restricted weak type inequalities. It is known that if 0 < �< 1 then the operator M+�;� is not of weak type (p; p) with respect tothe Lebesgue measure when p = 1=�, but it is of restricted weak type. Inthe following theorem we will characterize restricted weak type.Theorem 2.5 [MT5]. Let 0 � � � � � 1, � > 0 and 1 � p � q. If p < qor 1=p� 1=q = �� � then the following statements are equivalent:(1) M+�;� is of restricted weak type, i.e., there exists C such thatZfx:M+�;��E(x)>�g u � � C�p Z �Ev�q=pfor all � > 0 and all measurable sets E.(2) There exists C such thatRE (c� s)��1 ds(c� a)� � C (v(E))1=p( bRa u)1=qfor all numbers a < b < c and all measurable sets E � (b; c).Proof of Theorem 2.5 in the case p = q and � = �. We shall begin proving(1) =) (2). If a < b < c; E � (b; c) and � = (c�a)�� cRb �E(s)(c� s)��1 ds,then it is easy to see that(a; b) � fx :M+�;��E(x) > �g;and then, by (1), bZa u � C�p Z �Ev = (c� a)�p RE v�RE (c� s)��1 ds�p :For the converse, we take any given interval (a; b) and de�ne a sequencefxkg as in the proof of Proposition 2.4. It follows that if E is a measurable



114 F.J. MART�IN REYESset and Ei = E \ (xi+1; xi), thenxiZxi+1 �E(s)(b� s)1�� ds � �xi � xi+2b� xi+2 �1�� ZEi 1(xi � s)1�� ds� C xi � xi+2(b� xi+2)1��  REi v!1=p xi+1Rxi+2 u!1=p
� C xi � xi+2(b� xi+2)1�� 0BB@ xiRa v�EixiRa u 1CCA1=p
� C xi � xi+2(b� xi+2)1�� �M+u (v�Eu�1)�1=q (a):If we sum up in i as in Proposition 2.4, we getM+�;��E(a) � C �M+u (�Evu�1)�1=p (a);and restricted weak type follows as in Theorem (2.2).IV. Strong type inequalities: the case of equal weights. If theweights u and v satisfy that vq = up then the condition A+p;q;�;� is su�-cient for the strong type inequality.Theorem 2.6 [MT5]. Let 0 � � � � � 1, � > 0 and 1 < p � q. If1=p�1=q = ��� and v = up=q then the following statements are equivalent:(1) There exists a constant C such that�Z �M+�;�f�q u�1=q � C �Z jf jpv�1=pfor all f 2 Lp(v).(2) The pair (u; v) satis�es A+p;q;�;�.Proof of the case p = q and � = �. In this proof we shall write w = u = v.In order to prove the theorem, we need to consider the maximal operators



WEIGHTS, ONE{SIDED OPERATORS 115M+�d associated to the measure �d = (d�s)��1�(�1;d)(s) ds given by a realnumber d. Observe that we have(2.7) M+�df(x) �M+�;�f(x):In order to see this, we consider c � d with x < c. ThencZx jf(s)j(d� s)1�� ds = cZx jf(s)j(c� s)1�� (c� s)1��(d� s)1�� ds� (c� x)(d� x)1��M+�;�f(x) �M+�;�f(x) cZx 1(d� s)1�� ds;which implies inequality (2.7). Therefore, ifM+�;� is of weak type (p; p) withrespect to the measure w(x) dx, or equivalently, if w satis�es A+p;p;�;� thenthe maximal operators M+�d are of weak type (p; p) with the same constant,i.e., there exists C such thatw(fx :M+�df(x) > �g) � C�p 1Z�1 jf jpw;for all d, all positive � and all measurable functions f . Now, by Theorem C,we have that w(s)(d � s)1�� satis�es A+p (�d) with the sameA+p (�d)-constant, i.e., there exists C > 0 such thatsupa<b<c�d0@ bZa w(s) ds1A1=p0@ cZb w1�p0(s)(d� s)(1��)p0 ds1A1=p0� C cZa 1(d� s)1�� ds(2.8)for all real numbers d. Thus, we have seen that if w satis�es A+p;p;�;�then (2.8) holds. But the converse is also true, since if we put c = d in(2.8) then we obtain A+p;p;�;�, and, therefore, we have that w 2 A+p;p;�;�if and only if w(s)(d � s)1�� 2 A+p (�d) with the same A+p (�d)-constant.Now, since A+p (�d) =) A+p�"(�d) for some " > 0 depending only on theA+p (�d)-constant (see [MOT] and Section 3 in this paper), we get that ifw 2 A+p;p;�;� then w 2 A+p�";p�";�;�, and by Theorem 2.2 the operatorM+�;� maps Lp�"(w) into weak-Lp�"(w). Now, by interpolation, we obtainthat M+�;� applies Lp(w) into Lp(w). This proves (2) =) (1). The converseimplication follows from Theorem 2.2.



116 F.J. MART�IN REYES3. Some properties of the one-sided weightsLet � be a continuous Borel measure �nite on compact sets and1 < p < 1. The implication w 2 A+p (�) =) w 2 A+p�"(�) for some" > 0 has been a key fact in the proof of the last theorem of Section 2.This section is aimed to provide a proof of this property based on the cor-responding proof in [M] and on ideas of A. de la Torre. It is worth notingthat the result does not hold for all noncontinuous measures; an examplewill be given at the end of this section.Before stating and proving the results, it is convenient to consider the casein which � is the Lebesgue measure and recall how the above implicationis normally proved in the case of Ap classes. First, it is seen that v 2 Apimplies that v satis�es the following Reverse H�older Inequality:0@ 1b� a bZa v1+�1A1=(1+�) � Cb� a bZa vfor some positive constants C and � independent of the numbers a and b.Then, as a corollary, v 2 Ap and the Reverse H�older Inequality give easilythat v 2 Ap�". But now, the Reverse H�older Inequality does not hold forA+p classes (consider, for instance, v(x) = expx). However, a substitute hasbeen found in [M]: if v 2 A+p then there exist positive constants C and �such that for all a and bbZa v1+� � C(M�(v�(a;b))(b))� bZa v;which implies M�(v1+��(a;b))(b) � C(M�(v�(a;b))(b))1+�:This is what we have called Weak Reverse H�older Inequality. This conditiontogether with v 2 A+p gives v 2 A+p�" in [M] but not so easily as in theclassical case of Muckenhoupt's classes. After proving A+p ) A+p�" thefollowing questions remained open: It is known that the Reverse H�olderInequality is equivalent to the fact that the weight is in some Ap class. Isthis true for the Weak Reverse H�older Inequality and A+p classes? Moreover,is there a concept of A+1 weights, equivalent to the Weak Reverse H�olderInequality, analogous to the concept of A1 weights? The answers to these



WEIGHTS, ONE{SIDED OPERATORS 117questions are a�rmative. This has been obtained by L. Pick, A. de la Torreand the author [MPT].Our �rst result in this section establishes that, for continuous measures�, w satis�es the Weak Reverse H�older Inequality if and only if w belongsto A+p (�) for some p; the third one is the required implication, while thefourth one introduces the A+1(�) condition which will be useful in the nextsection. At the end of the section we give an example which proves that theimplication A+p (�) =) A+p�"(�) does not hold for all Borel measures �.Lemma 3.1 [MPT]. Let � be a continuous Borel measure on the realline, �nite on bounded intervals. Let w be a positive measurable functionwhich is locally integrable with respect to �. The following statements areequivalent:(a) The weight w satis�es A+p (�) for some p � 1.(b) There exist positive constants C and � such that1�(a; b) bZa w1+� d� � C�(a; b) bZa w d� �M�� (w�(a;b))(b)��for all numbers a < b such that �(a; b) > 0.(c) There exist positive constants C and � such thatM�w d�(w��(a;b))(b) � C �M�� (w�(a;b))(b)��for all numbers a < b.(d) There exists p � 1 such that w�1 satis�es A�p (w d�).Proof. We begin with proving (a))(b). We may assume that 1 < p and wis bounded above. We �rst claim that for all s with 0 < s < 1 there existsC such that 1�(a; b) bZa w d� � C0@ 1�(b; c) cZb ws d�1A1=sfor all numbers a < b < c such that �(a; b) = �(b; c) > 0.



118 F.J. MART�IN REYESProof of the claim. Let r > 1. Applying H�older's inequality with expo-nents r and r0 = r=(r � 1) we obtain1 = 0@ 1�(b; c) cZb ws=rw�s=r d�1Ar=s
� 0@ 1�(b; c) cZb ws d�1A1=s0@ 1�(b; c) cZb w�sr0=r d�1Ar=sr0 :For �xed s, 0 < s < 1, we choose r such that r=(sr0) = p � 1, i.e.,r = 1 + s(p� 1). Then, since w satis�es A+p (�), we have1 � C0@ 1�(b; c) cZb ws d�1A1=s0@ bZa w1A�1 �(a; c);which, taking into account that �(a; c) = 2�(a; b), is the claim that wewished to prove.Now we shall use this inequality to prove that (b) holds. Let us �x theinterval I = (a; b), and let A =M�� (w�I )(b). For � > A we consider the setO� = fx 2 I : M�� (w�I)(x) > 2�g. Then, since the measure is continuous,we have that there exists a countable disjoint family of intervals Ii = (ai; bi)contained in I such that O� = [iIi and1�(Ii) ZIi w d� = 2�:Observe that2��(Ii) = ZIi w d� � bZai w d� � A�(ai; b) < ��(ai; b):Thus 2�(Ii) < �(ai; b) and therefore for each Ii there exists I+i = (bi; ci)contained in I such that �(Ii) = �(I+i ) (here we are also using the continuityof the measure). ThenZfx2I:w(x)>2�g w d� �Xi ZIi w d� = 2�Xi �(Ii) � 2��(O�):



WEIGHTS, ONE{SIDED OPERATORS 119Now, observe that by the claim we have that O� � fx : M+� (ws�I)(x)> C�sg. Continuing our computation, we get, by the weak type (1,1)inequality of M+� with respect to �, thatZfx2I:w(x)>2�g w d� � C�1�s Zfx2I:ws(x)>C�sg ws d�:Multiplying by ���1 and integrating from A to 1 we obtain(�) 1ZA ���1 Zfx2I:w(x)>2�g w d�d� � C 1ZA ���s Zfx2I:ws(x)>C�sg ws d�d�:The left hand-side is equal to1� Zfx2I:w(x)>2Ag w��w2 �� �A�� d�;which is greater than or equal to(��) 12�� ZI w1+� d�� A�� ZI w d�:The right hand-side of (�) is less than or equal toC ZI ws CwZ0 ���s d� d� � CC��s+1(� � s+ 1) ZI w�+1 d�:If we insert this inequality and (��) into (�), we get the desired inequality for� small enough. In the last step we have used that RI w1+� d� < 1 (sincew is bounded above).Now, observe that (b))(c) is immediate. In order to �nish the proofof the lemma, it will su�ce to establish (c))(d), since (d))(a) is provedas (a))(d) changing the orientation of the real line and the roles of themeasures � and w d�.Let a < b < c and x 2 (b; c). If � = � cRa w d���1 bRa w1+� d� then for everyx 2 (b; c) we have� � C �M�w d�(w��(a;x))� (x)� C �M�� (w�(a;x))�� (x) � C �M�� (w�(a;c))�� (x):



120 F.J. MART�IN REYESTherefore, since M�� is of weak type (1,1) with respect to the measure �,�(b; c) � �(fx :M�� (w�(a;c))(x) � C�1=�g) � C�1=� cZa w d�which means that w�1 satis�es A�p (w d�) with p = (1 + �)=�.The following corollary is an immediate consequence of the implication(a))(b) of Lemma 3.1.Corollary 3.2 [M]. Let � be a continuous Borel measure on the real line,�nite on bounded intervals. If w satis�es A+p (�) then there exist � > 0 andC > 0 such that for every bounded interval (a; b)M�� �w1+��(a;b)� (b) � C �M�� (w�(a;b))(b)�1+� :Theorem 3.3 [M]. Let � be a continuous Borel measure on the real line,�nite on bounded intervals. If 1 < p <1 and w satis�es A+p (�) then thereexists " > 0 such that w satis�es A+p�"(�).Proof of Theorem 3.3. First, we observe that the A+p (�)-condition impliesthat � = w�1=(p�1) is locally integrable (we are assuming that w is positive).Second, we note that w satis�es A+p (�) if and only if � satis�es A�p0(�). Then,by the analogue of the above corollary for A�p0(�)-classes, we have that thereexist � > 0 and C > 0 such that for every bounded interval (b; c)M+� ��1+��(b;c)� (b) � C �M+� (��(b;c))(b)�1+� :Now we will show that w satis�es A+p�"(�) where p�" = s = (p+ �)=(1 + �).Fix a < b < c. Since � is locally integrable it follows from the aboveinequality that the same holds for �1+�. Therefore, there exists a �nitedecreasing sequence x0 = b > x1 > � � � > xN � a = xN+1 such thatcZxk �1+� d� = 2k cZb �1+� d� if k = 0; : : : ; Nand xNZa �1+� d� < 2N cZb �1+� d�:



WEIGHTS, ONE{SIDED OPERATORS 121From this it follows easily that for every k = 0; : : : ; N;cZxk+1 �1+� d� � 2k+1 cZb �1+� d�;which will be useful later on. On the other hand,bZa w d�0@ 1�(a; c) cZb �1+� d�1As = NXk=0 12ks xkZxk+1 w d�0@ 1�(a; c) cZxk �1+� d�1As
� NXk=0 12ks xkZxk+1 w(y) �M+� (�1+��(y;c))(y)�s d�(y)� NXk=0 C2ks xkZxk+1 w(y) �M+� (��(xk+1;c))(y)�p+� d�(y):Since w satis�es A+p (�) we know by Theorem C that M+� applies Lp(w d�)into weak-Lp(w d�). Then, by Marcinkiewicz's interpolation theorem, M+�applies Lp+�(w d�) into Lp+�(w d�). ThusbZa w d�0@ 1�(a; c) cZb �1+� d�1As � C NXk=0 12ks cZxk+1 �1+� d�� C NXk=0 2k+12ks cZb �1+� d� � C cZb �1+� d� <1;and therefore the proof of the theorem is �nished.Theorem 3.4 [MPT]. Let 1 � p < 1. If w 2 A+p (�) then w satis�esA+1(�), i.e., there exist positive real numbers C and � such thatRE w d�cRa w d� � C � �(E)�(b; c)��for all numbers a < b < c and all subsets E � (a; b).



122 F.J. MART�IN REYESProof. It follows from Lemma 3.1 that there exists r > 1 such that w�1satis�es A�r (w d�). Then, for �xed a < b < c and E � (a; b),ZE w d� � 0@ZE wr=(r�1) d�1A(r�1)=r (�(E))1=r � C cZa w d�� �(E)�(b; c)�1=r ;where we have used in the last inequality that w�1 satis�es A�r (w d�).Remark. It can be proved that the fact that w satis�es A+1(�) is equivalentto each one of the statements of Lemma 3.1 (see [MPT]). From this it turnsout that w 2 A+1(d�) if and only if w�1 2 A�1(w d�) which means thatthere exist positive real numbers C and � such that�(E)�(a; c) � C0BBB@RE w d�bRa w d�1CCCA�
for all numbers a < b < c and all subsets E � (b; c) (the notations in thispaper are di�erent that the ones in [MPT]).Theorem 3.4 is important in the study of one-sided sharp functions andone-sided BMO spaces [MT4]. It is established in [MT4] the relation be-tween A+p weights and one-sided BMO spaces and it is also obtained aninequality of John-Nirenberg type for one-sided sharp functions.The proofs of the above theorems rely heavily on the fact that � is a con-tinuous measure. In fact, as we noticed in the introduction of this section,the theorems do not hold for all Borel measures. The following exampleshows that Theorem 3.3 does not hold for general Borel measures (this ex-ample was obtained jointly with A. de la Torre and Mar��a Dolores Sarri�onand it is part of a joint work with P. Gurka and L. Pick).Example. Let � = P1n=1 nn�n where �n is the Dirac measure at thepoint n. Let w de�ned �-a.e. by w(n) = 2n=nn, n 2 N . We claim thatw 2 A+1 (�). In order to see this, we have to prove that there exists C suchthat M�� w(n) � Cw(n) for all natural numbers n.In order to prove this inequality, it su�ces to establish that if m and n arenatural numbers with m � n thenPnj=m 2jPnj=m jj � Cw(n);



WEIGHTS, ONE{SIDED OPERATORS 123which follows easily sincePnj=m 2jPnj=m jj � Pnj=m 2jnn = 2n+1 � 2mnn � 2 2nnn :Once we have seen that w 2 A+1 (�), it is very easy to obtain thatw�1 2 A�2 (�). However, w�1 62 A�p (�) for all p < 2. In order to proveit, let us consider 1 < p < 2 and let p0 be its conjugate exponent. If n � 2is a natural number then we have1�(n� 1; n+ 2) 0B@ Z[n+1;n+2) w�1d�1CA1=p0B@ Z(n�1;n+1] wp0�1d�1CA1=p0
� 12(n+ 1)n+1 � (n+ 1)2(n+1)2n+1 �1=p� 2nnn�1=p nn=p0= 2�1�1=p�n+ 1n �n=p� nn+ 1�n=p0 (n+ 1)1=p�1=p0 :These inequalities show that w�1 62 A�p (�), for p < 2, since the last termtends to 1 as n!1.The weights belonging to A+p (�) classes for a continuous measure � haveother properties that, however, do not hold for the weights in A+p (�) fora general Borel measure �nite on bounded intervals. For instance, for gen-eral Borel measures, we have:(1) w 2 A+1 (�); there exists � > 0 such that w1+� 2 A+1 (�).(2) w 2 A+1 (�) ; there exist � > 0, and functions f and k withM�� f <1 and k; k�1 2 L1(d�) such that w = k(M�� f)�.However the result analogous to Peter Jones' factorization theorem holdsfor all Borel measures which are �nite on bounded intervals.Theorem 3.5 [An, Sa, MOT]. Let � be a Borel measure on the real line,�nite on bounded intervals and let 1 � p < 1. A weight w is in A+p (�) ifand only if there exist w1 2 A+1 (�) and w2 2 A�1 (�) such that w = w1w1�p2 .4. One-Sided Weights And SingularIntegrals On The Real LineWe shall say that a function k in L1loc(R � f0g) is a Calder�on{Zygmundkernel if the following properties are satis�ed:



124 F.J. MART�IN REYES(4.1) there exists a �nite constant B1 such that������� Z"<jxj<N k(x) dx������� � B1 for all " and all N , with 0 < " < N ,and furthermore lim"!0+ R"<jxj<1 k(x) dx exists,(4.2) there exists a �nite constant B2 such thatjk(x)j � B2jxj ; for all x 6= 0,(4.3) there exists a �nite constant B3 such thatjk(x� y)� k(x)j � B3jyjjxj�2 for all x and y with jxj > 2jyj > 0.Associated to k we consider the maximal operatorT �f(x) = sup">0 jT"f(x)j;with T"f(x) = Zjx�yj>" k(x� y)f(y) dy:and the singular integralTf(x) = P:V: Z k(x� y)f(y) dy = lim"!0+ T"f(x):It is a well known result (see [CF] and[GR]) that if w satis�es Ap then1Z�1 jTf(x)jpw(x) dx � 1Z�1 jT �f(x)jpw(x) dx� C 1Z�1 jf(x)jpw(x) dx; if 1 < p <1;



WEIGHTS, ONE{SIDED OPERATORS 125andw(fjTf(x)j > �g) � w(fT �f(x) > �g) � C� 1Z�1 jf(x)jw(x) dx; if p = 1;where the constant C is independent of f and �. If we consider the Hilberttransform Hf(x) = P:V: Z f(y)x� y dy;i.e., the singular integral associated to the kernel k(x) = 1=x, then theconditions Ap are necessary for the above inequalities to hold [HMW].Our aim in this section is to determine singular integrals in the real line(one-sided singular integrals) which map Lp(w) into Lp(w) (or weak Lp(w))for A+p weights. This leads us to consider one-sided truncation of Calder�on-Zygmund singular kernels.Observe that the symmetry properties of the Hilbert kernel k(x) = 1=xproduce the necessary cancellation properties of a singular integral, so that,no one-sided truncation of 1=x is expected to produce a (one-sided) singu-lar integral. Nevertheless, the class of general singular Calder�on-Zygmundkernels supported in a half-line is non trivial. For instancek(x) = 1x � sin(log jxj)log jxj � �(�1;0)(x)is a Calder�on-Zygmund kernel. It turns out that A+p weights are goodweights for the singular integral associated to a Calder�on-Zygmund kernelwith support in (�1; 0). The results that we shall present in this sectionhave been obtained jointly with H. Aimar and L. Forzani [AFM].Theorem 4.4 [AFM]. Let k be a singular integral kernel satisfying (4:1),(4:2) and (4:3) with support in R� = (�1; 0). Then(a) given a weight w in A+1 = A+1(�) (� =Lebesgue measure) there ex-ists a constant Cp depending only on B1, B2, B3, p and the constantin the condition A+1, such that1Z�1 jT �f(x)jpw(x) dx � Cp 1Z�1 jM+f(x)jpw(x) dx; 1 < p <1;andsup�>0 �pw(fT �f(x) > �g) � Cp sup�>0 �pw(fM+f(x) > �g); 1 � p <1;



126 F.J. MART�IN REYESfor all f 2 Lp(w),(b) given a weight w 2 A+p with 1 < p < 1 there exists a constant Cdepending only on B1, B2, B3, p and the constant in the conditionA+p , such that1Z�1 jT �f(x)jpw(x) dx � C 1Z�1 jf(x)jpw(x) dx;for all f 2 Lp(w),(c) given a weight w 2 A+1 there exists a constant C depending only onB1, B2, B3 and the constant in the condition A+1 such thatw(fT �f(x) > �g) � C� 1Z�1 jf(x)jw(x) dxfor all f 2 L1(w) and all � > 0.Remarks.(1) An analoguous result holds for A�p weights, 1 � p � 1, and singularintegrals associated to Calder�on-Zygmund kernels with support in(0;1).(2) Consider for all � > 0 the dilation of the kernel k given byk�(x) = �k(�x):It is clear that if k is a Calder�on-Zygmund kernel then k� is alsoa Calder�on-Zygmund kernel with the same constants B1, B2 andB3 as k. If T �� are the maximal singular integrals associated to thedilations k� then T �� are uniformly bounded from Lp(w) into Lp(w)if w satis�es A+p , 1 < p <1, and from L1(w) into weak-L1(w) if wsatis�es A+1 . The next theorem is a kind of converse of this remarkand includes a two-sided version.Theorem 4.5 [AFM]. Let k be a singular integral kernel satisfying (4:1),(4:2) and (4:3). For each � > 0 let T �� denote the maximal operator withkernel k� and let 1 � p < 1. Let w be a positive measurable functionand assume that the operators T �� are uniformly bounded from Lp(w) intoweak-Lp(w).(a) If there exists x0 < 0 such that k(x0) 6= 0 then w 2 A+p .(b) If there exists x1 > 0 such that k(x1) 6= 0 then w 2 A�p .(c) If there exist x0 < 0 < x1 such that k(x0) 6= 0 6= k(x1) then w 2 Ap.



WEIGHTS, ONE{SIDED OPERATORS 127Remarks.(1) Theorems 4.4 and 4.9 hold also for the singular integralTf(x) = lim"!0+ T"f(x):The proofs for T are similar to the corresponding one for T � orfollow easily from the theorem for T �.(2) Since the Hilbert kernel k(x) = 1=x coincides with its dilations,statement (c) of Theorem 4.5 gives the necessary part of the theoremby Hunt, Muckenhoupt and Wheeden [HMW] which characterizesthe good weights for the Hilbert transform.Theorem 4.4 is an easy consequence of Sawyer's results for M+ [Sa] andof the next lemma which is itself an extension, to the one-sided setting, ofthe good-� inequality of Coifman and Fe�erman [CF]. The proof of thislemma shows the way in which one uses A+1 weights to prove weighteddistribution function inequalities and, in particular, how to overcome theessential obstacles which appear when one uses the techniques of the Apweights theory in the one-sided setting.Lemma 4.6 [AFM]. Let k be a singular integral kernel satisfying (4:1),(4:2) and (4:3) with support in R� = (�1; 0). Let w be a weight in A+1.Then there exist constants C and 0 such that for every 0 <  � 0 theinequality w(fx 2 R : T �f(x) > 2�;M+f(x) < �g)(4.7) � C�w(fx 2 R : T �f(x) > �g);holds for all f 2 L1 and for every positive �, with � the exponent in thecondition A+1.Sketch of the proof of Lemma 4.6. Since the set fT �f > �g is open and has�nite measure for f in L1, it can be written as a disjoint countable unionof open intervals. Let Ij = (a; b) be such an interval. It is enough to provethat there exist C and 0 such that(4:8) w(fx 2 Ij : T �f(x) > 2�;M+f(x) < �g) � C�w(Ij);for every 0 <  � 0 and every � > 0.If we follow the proof of the classical case (see [CF]), we would prove atthis point that if Ej = fx 2 Ij : T �f(x) > 2�;M+f(x) < �g thenjEj j � CjIj j:



128 F.J. MART�IN REYESThis inequality and the A+1 condition imply thatw(Ej) � C�w(a; c);where c � b = b � a. However, now we are in trouble because the in-tervals (a; c) generated from the intervals (a; b) are not necessarily pair-wise disjoint, and therefore we are not able of summing in j and obtainingw(fx 2 R : T �f(x) > �g):In order to avoid the di�culty explained in the above paragraph, weproceed as follows: �rst, let us take the sequence de�ned by x0 = a andxk � xk�1 = b� xk for every k � 1. Second, we establish (see [AFM]) thatjEkj � C(xk+2 � xk+1);where Ek = fx 2 (xk; xk+1) : T �f(x) > 2�;M+f(x) < �g. Then we applythe A+1-condition and we getw(Ek) � C�w(xk+2 � xk):Adding up in k, and keeping in mind that the intervals (xk+2 � xk) arealmost disjoint we get inequality 4.8.5. Ergodic TheoremsWe shall begin by introducing one of the problems studied in the ergodictheory. Let (X;M; �) be a measure space and let � : X ! X be a measurepreserving transformation, i.e.,(1) ��1(E) 2M for all E 2M.(2) � ���1(E)� = �(E) for all E 2 M.Let us consider for a measurable function f the operatorTf(x) = f(�x);and the averages associated to T de�ned byAnf(x) = 1n+ 1 nXi=0 T if(x) for all n 2 N :The ergodic theory studies the convergence in some sense of the sequence ofthe averages fAnfg. More precisely, we are interested in the a.e. convergenceof the sequence of the averages associated to a function which belongs to



WEIGHTS, ONE{SIDED OPERATORS 129some Lp(�), 1 � p <1. In order to study this problem we can proceed, asusual, by considering the maximal operatorMT f(x) = supn2N jAnf(x)jand proving that(1) MT is of weak type (1,1) and of strong type (p; p), 1 < p <1,(2) the sequence Anf converges a.e. for all f in a class which is densein Lp(�).In this way, one obtains the following theorem:Theorem [B,W]. Let (X;M; �) be a measure space and let � : X ! X bea measure preserving transformation. Then(i) �(fx :MT f(x) > �g) � 1� RX jf jd� for all f 2 L1(�) and all � > 0.(ii) RX jMT f jpd� � pp� 1 RX jf jpd�; 1 < p <1, for all f 2 Lp(�).(iii) Anf converges a.e. for all f 2 Lp(�), 1 � p <1.Once this theorem has been established, one can think of generalizationsof it. Taking into account that if � is a measure preserving transformationthen T is a contraction (in fact an isometry) in L1(�) and in L1(�) we seethat the following theorem is a generalization of the previous one:Theorem [DS]. Let T be a linear operator in L1(�) which is anL1(�)� L1(�)-contraction, i.e.,kTk1 = supfkTfk1 : f 2 L1(�); kfk1 � 1g � 1and kTk1;1 = supfkTfk1 : f 2 L1(�) \ L1(�); kfk1 � 1g � 1:Then (i), (ii) and (iii) hold.We observe that until now the operator T is de�ned on Lp(�) for all p,1 � p < 1. In the next generalization we consider linear operators whichare contractions on some �xed Lp(�) space, but the operator has to bepositive in the sense that f � 0 a.e. implies Tf � 0 a.e. The followingresult is due to A. Ionescu-Tulcea [I] for isometries and to M. Akcoglu [A]in the general case (the proof in [A] uses the result for isometries).



130 F.J. MART�IN REYESTheorem [A]. Let 1 < p < 1 and let T be a linear positive contractionin Lp(�), i.e., kTkp = supfkTfkp : f 2 Lp(�); kfkp � 1g � 1:Then(a) RX jMT f jpd� � pp� 1 RX jf jpd� for all f 2 Lp(�),(b) Anf converges a.e. for all f 2 Lp(�).The next natural generalization is to consider positive linear operatorsde�ned on some Lp(�) such thatsupn�0 kTnkp = supfkTnfkp : f 2 Lp(�); kfkp � 1; n 2 Ng <1:These operators will be called power bounded operators. Therefore, thequestion is: Does Akcoglu's Theorem hold for positive power bounded op-erators?The next step is to consider positive mean bounded linear operators, i.e.,positive linear operators such thatsupn�0 kAnkp = supfkAnfkp : f 2 Lp(�); kfkp � 1; n 2 Ng <1:Of course, that T is a positive mean bounded linear operator, is the lesswe can ask for the operator. However, what is really interesting is that,as A. Brunel and R. Emilion [BE] proved, if Ackoglu's Theorem can beextended to positive power bounded linear operators then it can also beextended to positive mean bounded linear operators. A. Brunel used thisreduction to prove the following theorem:Theorem [Bru]. Let 1 < p < 1 and let T : Lp(�) ! Lp(�) be a positivemean bounded linear operator. Then(a) there exists C > 0 such that RX jMT f jpd� � C RX jf jpd� for allf 2 Lp(�),(b) Anf converges a.e. for all f 2 Lp(�).Several years before, A. de la Torre and the author proved this theorem,but assuming that the operator T is invertible and its inverse is a positiveoperator. The precise result is the following:



WEIGHTS, ONE{SIDED OPERATORS 131Theorem 5.1 [MT1]. Let 1 < p < 1 and let T : Lp(�) ! Lp(�) bea positive invertible mean bounded linear operator with positive inverse.Then the following statements hold:(a) There exists C > 0, depending only on p and supn�0 kAnkp, suchthat ZX jMT f jpd� � C ZX jf jpd� for all f 2 Lp(�);(b) Anf converges a.e. for all f 2 Lp(�).Of course this theorem is included in Brunel's result with the only dif-ference that in Brunel's theorem the constant C is not only a function of pand supn�0 kAnkp.In what follows we shall sketch the proof of Theorem 5.1.Sketch of the proof of Theorem 5.1. First we must say that the key ideasfor proving this theorem are the following:(1) The theory of one-sided weights (although there are no weights inthe statement of the theorem).(2) Arguments of transference.(3) The method of J.L. Rubio de Francia (see [R] and [CJR]) in orderto factorize weights.(4) The fact that T is a positive linear operator with positive inverse im-plies that the operator T and its powers separate supports(fg = 0 =) TfTg = 0) and then [K] there exist positive functionshi such that ZX jf jpd� = ZX jT if jphid�for all i 2 Z and all f 2 Lp0(d�). Moreover, for all positivef 2 Lp0(d�), hi = (T�i)�f(T ifp0�1)1�p;where (T i)� denotes the adjoint of T i. These functions hi will bethe weights in the proof of the theorem.In order to give the idea of the proof we need to introduce some notations:Let � be the measure on the real line de�ned by P1n=0 �n where �n is the



132 F.J. MART�IN REYESDirac delta at the point n. For a measurable function f and for all x 2 Xthe function fx on the real line is de�ned �-a.e. as fx(n) = Tnf(x) fornonnegative integers n.For �xed L, let us consider the truncated ergodic maximal operator de-�ned by MT;Lf(x) = supn�L jAnf(x)j:In order to prove (a) it su�ces to obtainZX jMT;Lf jpd� � C ZX jf jpd� for all nonnegative f 2 Lp(�)with a constant independent of L.Let f be a nonnegative measurable function and let N be a positiveinteger. Then, by the properties of the functions hi we haveZX jMT;Lf jpd� = 1N + 1 ZX NXi=0 jT i(MT;Lf)jp(x)hi(x)d�(x):Now, the fact that the operators T i separate supports givesT i(MT;Lf)(x) �MT;L(T if)(x) �M+� (fx�[0;N+L])(i):ThereforeNXi=0 jT i(MT;Lf)jp(x)hi(x) � 1Xi=0 jM+� (fx�[0;N+L])(i)jphi(x)= 1Z�1 jM+� (fx�[0;N+L])(i)jphi(x)d�(i);where we notice that the functions i 7! hi(x) are de�ned �-a.e. in R. Thus,if (�) the functions i 7! hi(x) satisfy A+p (�) for almost all x 2 X and withthe same A+p (�)-constant



WEIGHTS, ONE{SIDED OPERATORS 133then we obtain for almost all x 2 XNXi=0 jT i(MT;Lf)jp(x)hi(x) � C 1Z�1 (fx�[0;N+L](i))phi(x) d�(i)= C N+LXi=0 (T if(x))phi(x):Finally, under the assumption (�), we getZX jMT;Lf jpd� � CN + 1 N+LXi=0 ZX (T if(x))phi(x) d�(x)= CN + L+ 1N + 1 ZX (f(x))p d�(x):If we letN tend to1 we obtain the inequality we wished to prove. Therefore(a) follows if we prove that (�) is implied by the assumptions on T (we haveused until here the key ideas (1), (2) and (4)).We may notice at this point that in the harmonic analysis it is easy toprove that the weights must satisfy the corresponding necessary condition.However, in the ergodic theory we need to work harder, since we have toobtain (�) which is a condition on the orbits (on the integers) from thefact that T is a mean bounded linear operator which is a condition on themeasure space.In order to prove (�), we remind that hi = (T�i)�f(T ifp0�1)1�p for allpositive f 2 Lp0(�). Therefore, keeping in mind the factorization theorem(see Section 3), we have that if there exists f 2 Lp0(�), f > 0, such that thefunctions i! (T�i)�f(x) and i! T ifp0�1(x), de�ned �-a.e., satisfy A+1 (�)and A�1 (�) respectively, for almost all x 2 X, with a uniform constant, thenthe statement (�) holds (in fact, it is not necessary that they satisfy A+1 (�)and A�1 (�) but weaker conditions). Now the problem is: How to choosesuch a function f? Here is where the Rubio de Francia's idea comes.For �xed n, let us consider the sublinear operatorSnf = (Anjf jp0)1=p0 + (A�njf jp)1=p;



134 F.J. MART�IN REYESwhere A�n stands for the adjoint of An. It is clear that the operators Snapply Lp;p0(�) into Lp;p0(�) and their norms are uniformly bounded. Let Kbe a positive number such thatkSnkp;p0 � Kfor all n. Let us choose a positive function g 2 Lpp0(�) and de�newn = 1Xi=0 1(2K)iSing:It is not di�cult to see that wn 2 Lp;p0(�) and Snwn � 2Kwn a.e. Fromthe last property we obtainAnwp0n � (2K)p0wp0n a.e. and A�nwpn � (2K)pwpn a.e.Now, these inequalities and the positivity of T and T�1 give1n+ 1 nXi=0 T i+jwp0n � (2K)p0T jwp0n a.e.and 1n+ 1 nXi=0(T�i�j)�wpn � (2K)p(T�n�j)�wpn a.e.These two properties almost mean that, for f = wpn, i 7! (T�i)�f(x) andi 7! T ifp0�1(x), de�ned �-a.e., satisfy A+1 (�) and A�1 (�). The only problemis that the function f depends on n. However, these two properties and therelation hi = (T�i)�f(T ifp0�1)1�p are enough to obtain that (�) holds.With this we have �nished the sketch of the proof of (a) (details can befound in [MT1]).The statement (b) of the theorem follows from (a) and the fact that thefunctions of the type h+ f �Tf with h invariant and f simple are dense inLp(�) (see [MT1]). The a.e. convergence is clear for the invariant functionsand it follows for the functions f � Tf with f simple from the fact thatn�1Tnf converges a.e. to 0 for all characteristic functions of sets of �nitemeasure.Final remarks.(1) Similar results to Theorem 5.1 for the ergodic Hilbert transform andthe ergodic power function have been obtained in [S1] and [MO].



WEIGHTS, ONE{SIDED OPERATORS 135(2) The ergodic maximal operator and the convergence of the ergodicaverages in weighted Lp;q and Orlicz spaces have been studied byusing the one-sided weights in [O1], [O3], [O4] and [O5] (see also[G]).(3) The theory of weights has been useful to conjecture the answer tosome problems in the ergodic theory (see [MT2], [S2], [S3], [GM],[FMT] and [O2]) although the results of the theory of weights arenot strictly necessary in the proofs of the theorems of these papers.References[A] M.A. Akcoglu, A pointwise ergodic theorem in Lp-spaces, Canad. J. Math. 27(1975), 1075-1082.[AFM] H. Aimar, L. Forzani and F.J. Mart��n -Reyes, On weighted inequalities for one-sided singular integrals, preprint.[An] K.F. Andersen,Weighted inequalities for maximal functions associated with gen-eral measures, Trans. Amer. Math. Soc. 326 (1991), 907{920.[AM] K. F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalitieswith applications to Hilbert transforms and maximal functions, Studia Math.72 (1982), 9{26.[AS] K.F. Andersen and E.T. Sawyer, Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308(1988), 547{557.[B] G. D. Birkho�, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 17(1931), 656{660.[Br] S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. (1978),405{408.[Bru] A. Brunel, Th�eor�eme ergodique pour les op�erateurs positifs �a moyennes born�eessur les espaces Lp (1 < p <1), Ergodic Theory Dynamical Systems 12 (1993),195-207.[BE] A. Brunel and R. Emilion, Sur les op�erateurs positifs �a moyennes born�ees, C.R. Acad. Sci. Paris I 298 (1984), 103{106.[CF] R. Coifman and C. Fe�erman,Weighted norm inequalities for maximal functionsand singular integrals, Studia Math. 51 (1974), 241{250.[CJR] R. Coifman, P. Jones and J. L. Rubio de Francia, Constructive decompositionof B:M:O: functions and factorization of Ap weights, Proc. Amer. Math. Soc.87 (1983), 675{676.[DS] N. Dunford and J. T. Schwartz, Convergence almost everywhere of operatoraverages, J. Rat. Mech. Anal. 5 (1956), 129{178.[FMT] L.M. Fern�andez Cabrera, F.J. Mart��n-Reyes and J. L. Torrea, On the ergodicaverages and the ergodic Hilbert transform, preprint.
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