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1.1. Introduction. Set up by Hardy & Littlewood, a theory of rearrange-
ments was popularized by the well-known book [HLP]. Rearrangements of
functions are frequently used in real and harmonic analysis, in investiga-
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NOTATION

dimension
Euclidean n-dimensional space
(2 4+ -+ +22), if x is a vector in R™
and x1, ..., x, are the coordinates of x
77/2[T(n/2 +1)]~", measure of the unit n-dimensional ball
n-dimensional Lebesgue measure
k-dimensional Hausdorff measure
integral with respect to n-dimensional Lebesgue measure
gradient
Laplace operator
characteristic function of a set £
support
essential supremum
Lebesgue space —
the set of measurable functions such that [ |u|Pdz < co
Sobolev space — the set of functions from LP
that are endowed with k-th order weak derivatives in LP

1. REARRANGEMENTS

tions about singular integrals and function spaces — see, e.g., [He], [ON],
[ONW], [SW]. Pélya & Szego and their followers demonstrated a good many

isoperimetric theorems and inequalities by means of rearrangements — see
[PS], a source book on this matter. More recent investigations have shown
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that rearrangements of functions fit well also into the theory of elliptic
second-order partial differential equations — see, e.g., [Bae], [Ta3] and the
bibliography therein.

Several types of rearrangements are known — presentations are in [Ka]
and [Bae]. Here we limit ourselves to rearrangements & la Hardy & Little-
wood.

1.2. Definitions and basic properties. Let G be a measurable subset
of R™, and let u be a real-valued measurable function defined in G. Assume
either m(G) is finite or u decays at infinity, i.e., m{z € G: |u(x)| > t} is
finite for every positive t.

Definition 1.A. The distribution function of u, u, is a map which informs
about the content of level sets of u; specifically,

(1.1) w(t) =miz € G: |u(z)| > t}
for every nonnegative ¢.

The following propositions are straightforward:
(1.i) p is a decreasing function defined in [0, oo].
(14i) p is right-continuous.

(1.iii) w(0) = m(sprtu) and p(+o00) = 0.

(1iv) {t > 0: u(t) = 0} = [esssup |ul, +o0[. In other words, sprt u is an
interval whose end points are 0 and esssup |ul; the latter is either +oo or
the smallest zero of p.

(Iv) pt—) = m{z € G: |u(xz)] > t} for every positive ¢t. Hence
w(t=) — pu(t), the jump of p at t, equals m{z € G: |u(x)| = t} for every
positive t.

A typical situation is sketched in Fig. 1.
Definition 1.B. The decreasing rearrangement of u, u*, is the distribution
function of pu.

The following propositions hold:

(1.vi) u* is a decreasing function defined in [0, cof.

(1.vii) w* is right-continuous.

(L.viii) w*(0) = esssup |u| and u*(+00) =0.
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(1ix) {s > 0: u*(s) = 0} = [m(sprtu), +oo[. Consequently, sprtu* is an
interval whose end points are 0 and m(sprt u).

(Lx) {t >0: u(t) < s} =[u"(s),o0[ for every nonnegative s. Thus,
(1.2) uw(s) =min{t > 0: u(t) < s}

for every nonnegative s — a representation formula.

A uft)

Fig. 1

Proof of Proposition (1.x). By its very definition, the value of u* at any
nonnegative s is the one-dimensional measure of the level set {t > 0: pu(t) >
s}. Distribution function u decreases monotonically and is right-continuous.
Hence {t > 0: u(t) > s} is either empty or the interval [0,u*(s)[. The
conclusion follows. O

(1xi) {s > 0: u*(s) > t} = [0 wu(t)[ for every nonnegative ¢. In other
words, the level set {s > 0: u*(s) > ¢} is, for every nonnegative ¢, an
interval whose left end-point is 0 and whose length is exactly the measure
of {x € G: |u(x)| > t}. The present statement informs that the distribution
function of u* is u, i.e., u and u* are equidistributed.

Proof of Proposition (1.xi). First, {s > 0: u*(s) > t} C [0, u(t)] for every
nonnegative t. Indeed, Proposition (1.x) tells us that if s is in the left-hand
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side, then ¢ must be such that p(t) > s, thus s is in the right-hand side.
Secondly, {s > 0: u*(s) > t} D [0,u(t)[ for every nonnegative ¢. Indeed,
Proposition (1.x) tells us that if s is in the right-hand side, then ¢ must be
less than u*(s), thus s is in the left-hand side. O

(1.xii)

u*(u(t)) <t for every nonnegatlve t, u(u(t) —) >t for every t
such that 0 <t <

esssup |u|. Thus, u* is an inverse function of p.

Proof of Proposition (1.xii). Proposition (1.x) yields immediately that
u* (,u(t)) < tif t is nonnegative. On the other hand, the very definition of u*
and a property of distribution functions tell us that u*(s—) = 1-dimensional
measure of {t > 0: u(t) > s} for every positive s. Let 0 < t < esssup |ul.
Then the limit of u* at pu(t) from the left is the one-dimensional measure
of {s > 0: u(s) > u(t)} — recall that the value of u at a point ¢ is strictly
positive if and only if ¢ is nonnegative and strictly smaller than esssup |u].
Now, {s > 0: u(s) > pu(t)} 2 [0,t] since u decreases monotonically. There-
fore u* (u(t) —) >¢. O

(L.xiii) pe(u*(s)) < s for every nonnegative s, u(u*(s) —) > s for every s
such that 0 < s < m(sprtu). Thus, p is an inverse function of u*.

Proof of Proposition (1.xiii). By Proposition (1.xi), u is the distribution
function of both u and w*. Hence u(t) = 1-dimensional measure of
{s > 0: u*(s) > t} for every nonnegative t, and p(t—) = one-dimensional
measure of {s > 0: u*(s) > t} for every positive ¢. In particular, pu(u*(s)) =
1-dimensional measure of {t > 0: u*(t) > u*(s)} for every nonnegative s,
and p(u*(s) —) = l-dimensional measure of {t > 0: u*(t) > u*(s)} if
0 < s < m(sprtu) — recall that u* takes a positive value at a point s if and
only if s is nonnegative and strictly smaller than m(sprtu). As u* decreases
monotonically, we have the inclusions {t > 0: u*(¢) > u*(s)} C [0,s] and
{t > 0: u*(t) > u*(s)} 2 [0,s] for every nonnegative s. The conclusion
follows. O

(Laxiv) (), p(t=)[ € {s > 0: w'(s) = t} C [u(t), u(t=)] for every posi-
tive t.

Proof of Proposition (1.xiv). {s > 0: u*(s) =t} = gz, {s > 0: t(1 — 1/k)
< w*(s) <t} if t > 0. By Proposition (1.xii), {s > 0: ¢(1 — 1/k) < u*(s)
<th=[ut),pt(1—-1/k)[ift>0and k=1,2,.... O
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Proposition (1.xi) has basic consequences. For instance: If A is any
continuous increasing map from [0, oo] into [0, oo] such that A(0) = 0, then

(1.3) /A(|u(x)|) dzr = /A(u"(s)) ds
G 0

— this equation follows from

[ Alu@ de = [ A@-auto)
G 0

a form of Cavalieri’s principle.

Relevant geometric aspects are illustrated in Fig. 2. An algorithm for
computing and plotting decreasing rearrangements is offered in [Ta3].

Fig. 2

Definition 1.C. The symmetric rearrangement of u, u*, is defined by
(1.4) (@) = u (k")

for every = in R™.
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Properties of u* imply:

(1.xv) u* is nonnegative, radial — i.e., invariant under rotations about
the origin of R® — and radially decreasing — i.e., u* decreases as the
distance from the origin increases.

(1.xvi) u and u* are equidistributed.

Propositions (1.xv) and (1.xvi) can be summarized this way: for every
nonnegative t, {z € R™: u*(z) > t}, a level set of u* is the ball whose cen-
ter is the origin and whose measure equals the measure of { € G: |u(z)| >
t}, the allied level set of |u|. In other words, u* is a function whose graph
results from a Schwarz symmetrization of the graph of |u|.

Fig. 3 shows an example in closed form.

u(z) =84 227 — z*
{ 1+9—t if <8

u(t) = )
2 2/f—8 if 8<t<9

*(x)_{Q—x2+x4/4 if || <V?2
u(z) if |z| >V2
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The definitions of u* and u* can be recast in a more compact form. Re-
call the layer-cake formula: if G is any measurable subset of R™ and f is

any nonnegative function in L!(G), then f can be recovered as the super-
imposition of the characteristic functions of its level sets: more precisely,

(15) f: /X{IEG: flz)>t} dt
0

— the integral is & la Bochner. i.e.,

— 0
LY(G)

Hf - Z:]:lX{zeG: Fa)>tiy(te — tk—l)‘

as 0 =tg < t; < --- < ty, max(ty —tg—1) — 0 and ty — +o0o0. Conse-
quently, we have the following proposition:

(1.xvii) If u is in L'(G), then

(1.6) u = / X[o.u(t)] At
0
(1.7) u* = /X{zeR": snle|m <p()} dt.
0

1.3. Key theorems. Basic properties of rearrangements a la Hardy & Lit-
tlewood are summarized in Theorems 1.A, 1.B, 1.C, 1.D bellow. Roughly
speaking, these theorems inform that a rearrangement, though sharing a dis-
tribution function, may play a better game than the original does.

Theorem 1.A. Suppose u and v are measurable and nonnegative. Then

(1.8.2) / w(@)o(z) do < /oou*(s)v*(s) ds,

R

or

(1.8.b) /u(x)v(m) dzr < /u*(x)v*(x) dz



184 G. TALENTI

Theorem 1.B. Suppose f, g, h are measurable and nonnegative. Then

(1.9) / du / F(@)gw)h(z - y)dy < / dz / F*(0)g* (9)h* (o — ) dy.

R™ R R~ Rn

Theorem 1.C. Suppose ® is a Young function — i.e., & maps [0, co[ into
[0,00[, ®(0) = 0, ® is increasing and convex. Suppose u is sufficiently
smooth — e.g., Lipschitz continuous — and decays at infinity — i.e., the
measure of {x € R™: |u(z)| > t} is finite for every positive ¢t. Then

(1.10a) /<I>(|Vu(x)|) dx > /<I>( —n;@%/”sl—l/n%(so ds,
R» 0
(1.10.b) /¢I>(|Vu(x)|)dx > /<I>(|Vu*(x)|)dx.
R™ R™

Theorem 1.D. Suppose u and v are real-valued and measurable, suppose
® is a Young function. Then

(1.11.a) /<I>(|u(x) —v(z)|) dz > /<I>(|u*(s) —v*(s)]) ds
0

R™

or

(1.11.b) /'I)(|u(x) —v(x)|) dv > /'I)(|u*(x) —v*(z)|) da.

R R

Theorem 1.A is by Hardy & Littlewood. A proof is in [HLP], Section
10.13; an alternative proof is offered in Subsection 1.4 below. Theorem 1.A
is simple, but decisive: most theorems, that are demonstrated via rearrange-
ments of functions, involve it.

Theorem 1.B is due to F. Riesz. Proofs appear in [Rie] and [HLP], Sec-
tions 10.14 and 10.15. Generalizations are in [BLL].

Let us sketch a simple application of Theorem 1.B. Suppose E is
a three-dimensional material body, whose density is 1 and whose volume
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is fixed. Consider the energy of E, i.e., the energy of the gravitational field
generated by E. Question: which E renders such an energy a mazimum?
We have

energy of £ = /|Vu|2 dzx,
R3

where u — a potential — is given by

1

u(z) = /XE(y)m dy

R3

and satisfies
—Au = xg.

Integrations by parts show

1

energy of E' = / dI/XE(x)XE(y)m dy.
R3

R3

Note that (xg)*, the symmetric rearrangement of y g, is exactly the charac-
teristic function of E*, a ball having the same volume as E. Thus Theorem
1.B tells us that

energy of E < energy of E*.

i.e., the answer to our question: among all homogeneous 3-dimensional bod-
ies, whose volume and density are fized, the ball generates the gravitational
field having the largest energy.

A proof of Theorem 1.C is detailed in Subsection 1.5 below. Theorem
1.C implies that the total variation and Dirichlet type integrals of suffi-
ciently smooth functions decaying at infinity decrease under the symmetric
rearrangements. Theorem 1.C is a key to proofs of isoperimetric inequali-
ties of mathematical physics, e.g., Faber & Krahn theorem on the principal
frequency of a membrane, Poincaré inequality for capacity, Saint-Venant
principle for torsional rigidity — see [PS]. Theorem 1.C is also a key to
a sharp proof of certain Sobolev inequalities — see, e.g., [Mos], [Tal], [Lb]
and Section 2. Exhaustive proofs of Theorem 1.C are presented in [BZ],
[GR], [Hil], [Lb], [S1], [S2], [Spi], [Tal]. An interesting derivation of Theo-
rem 1.C is outlined in [Bae]. A variant of Theorem 1.C — where Lebesgue
measure is replaced by Gauss measure — is offered in [Ehr].

Theorem 1.C implies that the symmetric rearrangement of a sufficiently
smooth function, which decays fast enough at infinity, is Lipschitz continu-
ous. Note that lots of functions exist which really differ from their symmetric
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rearrangements and render (1.10.b) an equality; as shown in [Ka] and [BZ],
equality in (1.10.b) implies v = u* if and only if an extra hypothesis is in
force, i.e., the set of critical points of « is thin enough.

Theorem 1.D is instrumental when approximation arguments are in-
volved. It implies that the symmetric rearrangement is a contraction,
or a non-erpansive map, in any Orlicz space. In the special case where
®(t) = t? Theorem 1.D is an immediate corollary of Theorem 1.A and the
equimeasurability of rearrangements. Proofs of Theorem 1.D are in [Chi],
[CZ), [Ka), [Bac].

Readers interested in further results are referred to [Bae] and [Kal.
1.4. Proof of Theorem 1.A. First step. Let E be a measurable subset

of R”, and let v be a nonnegative measurable function defined in R™. We
claim that

m(E)
(1.12) /vdx < / v*(s) ds.
E 0

There is no loss of generality in assuming that the measure of E is finite
and v is integrable. Proposition (1.xvii) gives

oo

v= /X{yeRn: v(y)>t} At
0

vt = /X[O,m{yER": v(y)>t}[dt~
0

Hence

/vdx:/m(Eﬂ{ye]R”: v(y) > t}) dt,
E 0

/ v*(s)ds = /min {m(E),m{y € R": v(y) > t}} dt.
0 0

Inequality (1.12) follows. Note that (1.12) coincides with inequality (1.8.a)
in the case where u is the characteristic function of £ — indeed, (xg)*
= X[o,m(E)[ Py the very definition of decreasing rearrangement.
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Second step. Let v and v be nonnegative and measurable. There is no loss
of generality in assuming that v and v are integrable. Proposition (1.xvii)
gives

oo

u = /X{yeR": u(y)>t} dt,
0

ut = /X[Om’b{mER"‘: u(m)>t}[dt~
Hence

/u(x)v(x) dx = /oodt / v(x) dx,

Rn 0 {zeR": u(z)>t}

00 0o m{zER" : u(z)>t}
/u*(s)v*(s)ds = / dt / v*(s) ds.
0 0 0

On the other hand, the previous step — inequality (1.12) — tells us that

m{z€R" : u(z)>t}
v(z)dr < / v*(s)ds

{ZER" : u(z)>t} 0

for every nonnegative ¢. Inequality (1.8.a) follows. Inequality (1.8.b) follows
too, since

7ux(s)vx(s) ds = /u*(x)v*(x) dx
0 R7

by the very definition of symmetric rearrangement. [

1.5. Proof of Theorem 1.C. We have

/<I>(|Vu(sc)|) iz > /oodsdils / &(|Vu(2))) de,

R~ {zeR™: |u(z)|>u*(s)}
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since
®(|Vu(z)|) dv
{zeR™: |u(z)|>u*(s)}

increases monotonically from 0 to the integral of ®(|Vu|) over R™ as s
increases from 0 to oco. On the other hand,

/tb( - nm}/"sl*l/"%(s)) ds = /<I>(|Vu*(x)|) dx
0

R~

by the very definition of u*. Thus Theorem 1.C follows immediately from
the next lemma. O

Lemma 1.E. Suppose u is sufficiently smooth — e.g., Lipschitz continuous
— and decays at infinity — i.e., the measure of {x € R™: |u(z)| > t} is finite
for every positive t. Then (i) u* is locally absolutely continuous in ]0,c0[;
(i) the following inequality

(1.13) % / ®(|Vu(z)|) de > rl)( - n,@}/w-l/n%(s))

{zeR": |u(z)|>u*(s)}

holds for almost every positive s. Here ® is any Young function — i.e.,
® maps [0, co[ into [0, oo[, ®(0) = 0, ® is increasing and convex.

Proof of Lemma 1.E. The basic ingredients involved are: the coarea for-
mula; the isoperimetric theorem in R™; Jensen’s inequality.

A coarea formula claims that if w is Lipschitz continuous and f is inte-
grable, then

/f(x)|Vu(x)| du = 7dt / F@)H, o (da).

Rn 0 {zeR™: |u(z)|=t}

In a sense, this formula amounts to saying that the distance between level
surfaces of u is inversely proportional to |Vu|. A proof of this formula
appears in [Fe]. The isoperimetric theorem in R™ claims that if E is a mea-
surable subset of R™ and the measure of E is finite, then

H, 1(0E) > nk}/"[m(E)* 1/,
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Treatments of this theorem appear in [BZa], [Oss], [Ta5]. Jensen’s inequality
says that if ® is convex, f is integrable and the measure of F is finite, then

ﬁ/@(f(x))dxk@(ﬁb/f(x)dx)

E

Jensen’s inequality is presented in [MPF], for instance.

First step. The following inequalities

(1.14) / |Vu(z)| de > nkl/"[u* (a) — u* (b)],
{zeR™: uw*(a)>|u(z)|>u*(b)}

(1.15) m{z € R": u"(a) > |u(z)| >u" (D)} <b—a

hold if m(sprtu) > b >a > 0.

Proof of (1.14).

The left-hand side of (1.14)

= by | Federer’s coarea formula |
u”(a)
/ Ho o fo € R™: [u(z)| = t} dt

u*(b)

> by | the isoperimetric theorem in R" |
u*(a)
/ nkt " m{z € R™: |u(z)| > t}]} =Y/ dt

u*(b)

> by the monotonicity of the integrand
nky M m{a € R Ju(z)| > u*(a)}]' " [u* (a) —u* (b))

> by Proposition (1.xiii)
the right-hand side of (1.14). O
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Proof of (1.15). Let u denote the distribution function of u. Proposition
(1.v) ensures that the left-hand side of (1.15) equals p(u* (b)) — p(u*(a) —),
Proposition (1.xiii) ensures that p(u*(b)) < b and p(u*(a) —) >a. O

Recall that sprtu* = [0, m(sprtu)] as per Proposition (1.xi). Thus, in-
equalities (1.14) and (1.15) show that u* is locally absolutely continuous in
]0,00[. The first assertion of Lemma 1.E is demonstrated.

Incidentally, inequalities (1.14) and (1.15) give also
nk/ a1Vt (a) — u (b)] < (b— a)esssup |Vul
whenever m(sprt u) > b > a > 0. Hence

d *
—n/-ei/”sl_l/”%(s) < esssup |Vu|

for almost every nonnegative s, consequently
|Vu*(2)] < esssup |Vul
for almost every x in R™.
Second step. The following inequality
d

ds
{zeR": |u(z)|>u*(s)}

v’

> _ 1/n 1-1/n
|Vu(z)|de > —nk,/"s s

(1.16) (s)

holds for almost every nonnegative s. In fact, the right-hand side of (1.16)
is zero if s > m(sprtu). If 0 < s < m(sprtu) the left-hand side of (1.16)
equals the limit of

1
7 |[Vu(z)|dx

{zeRm: u*(s)>[u(@)[>uw*(s+h)}

as h is positive and tends to 0; inequality (1.14) tells us that the last quantity
is greater than, or equals

1., ,
nmi/”sl_l/”ﬁ[u*(s) —u”(s+h)].

Third step. The previous step shows that inequality (1.13) holds for
almost every nonnegative s in the case where ®(¢) = t. We are going to
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show that inequality (1.13) holds for almost every nonnegative s if ® is any
Young function.

Arguments of real analysis tell us that there are exactly three alternatives:
1. s belongs to some exceptional set having one-dimensional measure zero;
2. du*/ds vanishes at s; 3. a neighbourhood of s exists where u* decreases
strictly. If either 1 or 2 holds, there is nothing to prove. Thus, suppose
alternative 3 is in force.

We claim that
(1.17) h=m{z € R": v*(s) > |u(x)| > u"(s + h)}.

if h is positive and small enough. Indeed, let p denote the distribution
function of w. The right-hand side of (1.17) equals p(u*(s+h)) — p(u*(s)).
Proposition (1.v) gives u(t—) — u(t) = 1l-dimensional measure of {r >
0: u*(r) = t} for every positive ¢, Proposition (1.xiii) gives p(u*(r)) <
r < p(u(r) =) if 0 < r < m(sprtu). Thus assumptions ensure that
p(u*(r)) = r whenever r is close enough to s. The claim follows.

We deduce
1
L 5 (Vu(w)) dr
{zeR™ : u*(s)>|u(z)|>u*(s+h)}

> by | Jensen’s inequality |
@(1 / V()] dx).
h
{z€Rm: w* (s)>|u(z)|>u*(s+h)}
Consequently
4 / ®(|Vu(z)|) dv
ds
{zeR™: |u(z)|>u*(s)}
(1.18)

> @(% / |Vu(z)] dx).
{zeR™: |u(z)|>u*(s)}

Inequalities (1.16) and (1.18) yield (1.13). The proof is complete. O
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2. STANDARD SOBOLEV INEQUALITIES

2.1. Background. Let us take three exponents p, ¢ and r (greater than,
or equal to 1) and ask whether a positive constant C' exists such that

v + ([ IVutrar) "]

R~

(2.L.a) lullzageny < €Il

for every test function v — sufficiently smooth and decaying fast enough at
infinity.

An argument of dimensional analysis shows that inequality (2.1.a) is
equivalent to the following
(2.1.b)

lllzaeny < C [k 7)jul

L) + k”/l’*n/qfl(/ |Vu(x)|pdx)1/p}7

R™

where k is a parameter having an arbitrary positive value — simply replace
u(z) in (2.1.a) by u(x/k), then rescale.

If the exponents of k in (2.1.b) are both positive or both negative, letting
k tend to zero or infinity results in a contradiction. Thus, the question has
a negative answer if g < rand 1/¢ > 1/p—1/norg>rand1/q¢ < 1/p—1/n.
For instance, inequality (2.1.a) fails to hold if r = p and ¢ < p or r = p,
p<nand ¢ > np/(n—Dp).

Suppose ¢ > r and 1/g > 1/p — 1/n. Minimizing the right-hand side of
(2.1.b) with respect to k leads to the following conclusions.

(21) If 1 < p <mand g = np/(n—p), (2.1.a) is equivalent to the following
inequality

1/p
2.2) lullzogeny < € / Vu() o).

R~

(24i) If n < p < o0 and ¢ = o0, (2.1.a) is equivalent to the following
inequality

(p—m)r e

2.3 sup |u| < Const ||u 1: ",,’*"” Vu(z)|? dz (et
L (Rn)

where Const stands for

np (p—n)r

C’(l _n + ﬁ) (ﬁ) (1)_771.)_7'+711)_( P )m
P T n p—n
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(2iil) If 1/g > 1/p—1/n and r < ¢ < o0, (2.1.a) is equivalent to the
following inequality

1— n/p+n/q _n/r—n/q_
w/ptn/r T—n/ptn/v 7,/7
@24)  Jull e < Ay /|Vu )T
R’n
where Const stands for
C(l_lJrl)(l_l) %(1_1+1)7%
n p r r q n P q ’

(2.2), (2.3) and (2.4) are samples of the so-called Sobolev inequalities.
Sobolev inequalities are a customary tool in functional analysis, calculus
of variations, partial differential equations. Basically, they inform that the
membership to a Sobolev space implies ipso facto extra properties such as
higher integrability or boundedness. Thus, Sobolev inequalities are prototy-
pal regularization theorems. A presentation of Sobolev inequalities appears
in [Sol] and [So2]. Exhaustive proofs appear, e.g., in [Ada], [Maz], [Zie]. It
can be demonstrated that (2.2) holds if 1 < p < n and 1/¢ = 1/p — 1/n,
(2.3) holds if p>n and r > 1, (2.4) holds if 1/¢ > 1/p—1/n and ¢ > r.

2.2. A special case. The case where p = 1 and ¢ = n/(n — 1), i.e., the
following Sobolev inequality

(2.5.a) ([uarena) ™" <c [1vu)a.
R" B

deserves special attention. Theorem 2.A below — which appeared in [FF] —
shows that (2.5.a) is nothing but an alternative version of the isoperimetric
theorem in R™. A variant of Theorem 2.A — where Lebesgue measure is
replaced by Gauss measure — is offered in [PT].

Theorem 2.A. The smallest constant C, such that inequality (2.5.a) holds
for every test function u, is given by

(2.5.b) 1/C = nkl/m,
Proof. First step. Assume a positive constant C' exists such that (2.5.a)

holds for every test function u, and let E by any nice bounded subset of
R™. We claim that

[m(E)*~'Y/" < C-H,_1(dE).
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In fact, consider a mollified version, u€, of the characteristic function of
E. In other words, let € > 0 and

uc(z) = /Je(x —y)xe(y) dy
s

— here J.(z) = e "J(x/e€), and J is any nonnegative compactly supported
smooth function whose integral over R™ is 1. Well-known properties of
mollifiers ensure that u, — xg in L (*~D(R") as €0, therefore

(/|u€(x)|n/(n71) dx)lfl/n . [m(E)]l—l/n
Br

as €]0. On the other hand, the Gauss—Green formulas give

Vue(z) = / Je(x — y) x (inner unit normal to OF at y)H,—1(dy);

OF

hence |Vu(z)| < [, Je(# — y)Hn—1(dy), consequently

/|Vu€(x)| dx < H,_1(0F)

R

for every positive e. Thus, replacing w in (2.5.a) by u. then letting €|0
results in the claimed inequality.

The same inequality implies

1/C < nkl/™,

n

since H,_1(0E)[m(E)]~**Y/" = nki/™ if E is a ball.
In conclusion, we have shown that if inequality (2.5.a) holds for every

test function w then 1/C cannot be larger than n/@i/n

Second step. Assume C' is defined by (2.5.b), and let u be any test func-
tion. We claim that inequality (2.5.a) actually holds. The main ingredients
involved in the present proof are: the standard isoperimetric theorem in R";
a coarea formula. See Subsection 1.5 for information on these topics.

Layer-cake formula — formula (1.5) — gives

lul :/ o € R™: Ju(@)] > t) dt:
0
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therefore we deduce via Minkowski’s inequality that

/1 n 7
/|u I ) /m{xe R™: [u(x)| > )]/ d.
0

The standard isoperimetric theorem in R"™ yields
nit/ M m{z € R™: Ju(z)| > t}]' 7" < Hooo {2 € R™: Ju(z)| = t}

for every positive . The coarea formula of Federer says that

/Hn_l{x € R™: Ju(x)| =t} dt = / |Vu(z)|de.
0

R~

In conclusion

nnl/" /|u )|/ (=) dx /|Vu )| dz,

as claimed.

The proof of Theorem 2.A is complete. O

2.3. Sharp constants. The next theorem — which appeared in [Au],
[Lb], [Tal] — gives a sharp form of Sobolev inequality (2.2).

Theorem 2.B. Assume 1 < p <n and 1/q=1/p—1/n. Then every test
function u obeys the following inequality

(2.6.2) (/|u(x)|qu)1/q < C([|Vu(x)|pdx)l/p,
En En

provided C' is given by

o om (2 P

Equality holds in (2.6.a) if C' is given by (2.6.b) and u is given by

(2.6.c) w(@) = [1 + x|/ (-t n/p,
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Proof, outlined. The equimeasurability of rearrangements gives

/|u|qu:/|u*|qu;

Rn Rn
Theorem 1.C gives
/|Vu|p dx Z/|Vu*|p dzx.
B B

We deduce a decisive information, i.e., minimizing the ratio

1/
/|Vu|pdx /|u|qu !

R R

among all test functions v amounts to minimizing the same ratio in the
special class of functions that are monnegative, radial, radially decreasing
and Lipschitz continuous. Hence the goal is identifying minimizers and the
minimum value of the following ratio

) ( [r=aopr=ar)” /(futer=rar)”

where r is a real variable and u is a nonnegative, decreasing, Lipschitz
continuous function of r only. This goal can be attained via techniques of
the one-dimensional calculus of variations. It turns out that the relevant
minimum is exactly the right-hand side of equation (2.6.b) and a relevant
minimizer is given by u(r) = [L 4+ r?/(P=D]'="/?_ Details are in [Tal]. O

2.4. Sharp constants, continued. In this subsection we present theo-
rems related to inequality (2.3).

Theorem 2.C. Assume n < p < co. Then every test function u obeys the
following inequality
(n—1)q n(g=1)

(2.7.a) sup |u| < C’(/|u(x)|dx BE /|Vu |de e

R R

where ¢ = p/(p — 1) and

o=(ted)(b- 1)
nyep) s (LI O =g = 1/m)y o3
X (n"kn) n+q{ 1+qF((21+qq/;) 1 )} |

(2.7.b)
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Equality holds in (2.7.a) if C' is given by (2.7.b) and u is given by

1
[ (=Dl (1 —prya=t gy if |z <1,
(2.7.c) w(x) =< |ef
0 if |z| > 1.
Proof. We have
. k k "
u(O)—k/u (s)ds+/(1 k)[ T (s)}ds
0 0
since Lemma 1.E guarantees that u* is absolutely continuous. Consequently,
u*(0) < k! /u" ds
0
N kl/nfl/p{ L(1+q)(1—gq(1—1/n)) }1/q
I'(2+q/n)

]O §- 1/ndu (s)]pds}l/p
0

by Holder’s inequality. Here k is any positive parameter. Minimizing with
respect to k yields

0l T
x{/u*ds = / g l/ndu ()}pd }f)
0 0

A property or rearrangements gives
w(0) = sup [ul;

the equimeasurability of rearrangements gives

/u*ds:/|u|dx;
0 B®
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Theorem 1.C gives

o0

/ [— n/ii/”sl*l/"dd%(s)]pds < /|Vu(x)|p dx.

0 Rn

The argument above shows that inequality (2.7.a) holds if the relevant
constant is defined as in (2.7.b). It shows also that equality holds in (2.7.a)
if (2.7.b) is in force and u satisfies

dux( _ { S*(lfl/”)q(l — 3)‘171 if 0<s<1,
PR i s> 1

The proof is complete. O

Theorem 2.D. Assume co > p >n > g > 1. Then every test function u
obeys the following inequality

esa) swhl<c( [1vu@Pp )™ ([ Ivu@la)
R™ Bn

where

(2.8.b)

_pln—q) _alp—n)
C =nt Ve M p = )[p(n = q)] 00 [g(p — m)] 6=

x ( - 1) e (q ~1 ) BT
bp—n n—q
Equality holds in (2.8.a) if C' is given by (2.8.b) and u is given by
(2.8.c)

, (n—1)p—q) —(n—q)(p—1)srrD if0<s<1,
u'(s) = .

(g—1)(p—mn)s n=D if §>1.

Proof. We have

u (0) = / [— d;: (s)] ds

since we know from Lemma 1.E that v* is absolutely continuous. Therefore

k oo
du*
— —1+1/n _ 1 l/n_
(/+/ T (s)] ds,
0 k
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hence
u”(0) Skl/"*l/p[”;p 1 l/p /[ gl 1/nd“ (S)]pds}l/p
+ ke 1/q[ ;_q 1- 1/61{7O EE 1/nd“ (S)]qu}l/q
0

by Hoélder’s inequality. Here k is any positive parameter. A property of

rearrangements gives
u”(0) = sup |uf;

Theorem 1.C gives

[— nni/"slfl/"dd%(s)]pds < /|Vu(x)|p dx,

R

[—nm}/"sl*l/"%(s)]qu < /|Vu(x)|qu.

R

0\8 0\8

Thus we have shown

—1)11-1/ 1/
nil/™ - sup lu| <KV~ 1“’[M} i / Vu(e) P dr)
p—n

R’rl

71/
+k1/n—1/p[% q /|Vu |qu) q.
R

Minimizing with respect to k yields (2.8.a) and (2.8.b).

The argument above shows also that equality holds in (2.8.a) if (2.8.b)
is in force and u obeys

_pn—1) .
dux( ) s nlp—1) if 0<s< 1,
J— S =
q(n—1)
ds s #la=D) if s>1.

The proof is complete. O
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Theorem 2.E. Assume n < p < oo. Let u be a test function and the
support of u have finite measure. Then

1/
(2.9.0) esssup |u| < C[m(sprtu)]l/n—l/p(/|vu(x)|de) g
Rn
where
— 111/
(2.9.b) C= n_l/pnrjl/”(p—) "
p—n
Equality holds in (2.8.a) if C' is given by (2.8.b) and u is given by
1 — |g|(P—m)/(p—1) if <1,
(2.9.¢) u(z) = { < 1 l
0 it |z| > 1.
Proof. We have
m(sprt u) du*
i _du
w(0) = [ — (s)] ds
0

since u* is absolutely continuous. Hence

—1\1-1/
w©) <oV (E0 ) m(sprta) /o

x {/[—51*1/"%(3)]11618}1/1}

0
by Holder’s inequality. Furthermore,

u*(0) = esssup |u|

by a property of rearrangements, and

/ [— nm}/"sl*l/”di(s)]p ds < / [Vu(z)P dz
s
0 R~
by Theorem 1.C.

The argument above shows that inequality (2.9.a) holds if the relevant
constant is defined as in (2.9.b). It shows also that equality holds in (2.9.a)
if (2.9.b) is in force and u satisfies

du® g—(1=1/n)/(1=1/p) if 0<s<1,
_ds(s_{o if s> 1.

The proof is complete. O
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2.5. Remarks. (2.5.1) A sharp form of inequality (2.3) can be stated as
follows. If n < p < 00 and 1 < r < oo, the smallest constant C' such that
the inequality

(2.10.a) (sup |u)"PHE=mr < C(/|u|rdx)pin(/|Vu|p dx)n
B B

holds for every test function u is given by

(2.10.b)
1 P (n— 1)P 7 1)1) P n, n
o np,p — _77\P
c=n K{n(p /U (/( U)dt)7
0 0

where U is a nonnegative decreasing solution of the differential equation

d _ (n=1)p .
vy + Uy = o

such that U(0) =1 and U(t) — 0 as t — +o0.

(2.5.i1) Inequality (2.4) is easily derived from (2.2), (2.3) and Hélder’s
inequality. Thus, Theorem 2.A tells us that inequality (2.4) does hold if
p=1land1l<qg<n/(n—1), and the smallest relevant constant is given by

(2.10.c)

1/C = nkl/™.

However, a sharp form of (2.4) is not known in general — partial results are
in [Le].

3. INEQUALITIES RELATING u*, |Vu|* AND (Au)*

3.1. Introduction. A rearrangement invariant function space is a Banach
space X of real-valued measurable functions having the following properties:
(i) If w belongs to X" and v is a measurable function such that w > |v|, then
visin X and ||u] > ||v]|;

(ii) If w belongs to X and v is equidistributed with w, then v is in X and
lfull = ]l

Rearrangement invariant function spaces were introduced in [LZ], and
include Lebesgue, Orlicz and Lorentz spaces.

The theorems from the present Section provide with tools for investigat-
ing inequalities & la Sobolev, i.e.,

a norm of |Vu
[Vul > Const independent of u

a stronger norm of u
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or
a norm of Auw

> Const independent of wu,
a stronger norm of u

in the case where rearrangement invariant function spaces are involved.

Applications are given in Section 4.
3.2. Statements.

Theorem 3.A. Let u be a real-valued function defined in R"™. Assume u
is sufficiently smooth — e.g., Lipschitz continuous — and decays at infinity
— i.e., the measure of {x € G: |u(x)| > t} is finite for every positive t. Let
V = m(sprtu). Then

V—s

(3.1.a) ut(s) <nte ™ [ (s 4+ t) I V) () di
0

and

(3.1.b) u*(s) > u"(0) — nflngl/"/t71+1/"|Vu|*(t) dt

0

for almost every s such that 0 < s < V. Equality holds in (3.1.a) and (3.1.b)
if w is given by

1— |z if || <1,
0 it |z| > 1.

(3.1.c) u(z) = {

Theorem 3.B. Let G be an open subset of R, u a real-valued function
defined in G. Assume w is smooth enough — e.g., twice continuously dif-
ferentiable — and vanishes on the boundary of G — i.e., the measure of
{z € G: |u(z)| > t} is finite and the closure of {x € G: |u(x)| > t} is
contained in G for every positive t. Let v be defined by

m(G) r
(3.2) v(s) =n "2k 2" / dr 1"’2+2/"/(Au)*(t) dt
s 0

for every s such that 0 < s < m(G). Assertions: (i) the following inequality

(3.3.2) u*(s) < wv(s)
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holds for every s such that 0 < s < m(G): (ii) the following inequality

m(G)
(3.3.b) /|Vu|p dr < / [— nm}/"sl*l/"%(s)]p ds
a 0

holds for every p such that 0 < p < 2: (iil) equality holds in (3.3.a) and
(3.3.b) if G is a ball and Au is radial and radially decreasing.

Theorem 3.B is a prototype: generalizations of it are available, in which
Laplace operator A is replaced by elliptic second-order partial differential
operators (linear or nonlinear) having a divergence structure. These gen-
eralizations are a tool for investigating a priori estimates of solutions to
elliptic second-order boundary value problems — see, e.g., [Ta3] and the
references therein.

A version of Theorem 3.A appeared in [Tad]; a shortened proof is offered
in the next subsection. For a proof of Theorem 3.B we refer to [Ta2].

3.3. A proof of Theorem 3.A. Lemma 1.E tells us that u* is absolutely
continuous and

du* d
o l/n < —14+1/n
k" (t) <t o / |Vu(z)|dx
{meR™: |u(z)|>ux (1)}

for almost every nonnegative t. A property of rearrangements gives sprt u*
=[0,V]. We deduce

y
ey Mu (s) < /dt t‘1+1/”% / |Vu(z)|dx

s {zeR™: w*(t)<|u(z)|<u*(s)}

for almost every s such that 0 < s < V.

4. LORENTZ SPACES

4.1. Introduction. Rearrangement invariant function spaces are men-
tioned in Subsection 3.1. Lorentz spaces are significant examples of these
spaces. Lorentz spaces play a role in the theory of interpolation of operators
and in partial differential equations; they were introduced in [Lol] and [Lo2]
and exhaustively treated in [Hu].
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4.2. Definitions and basic properties. (4.i) Let G be a measurable
subset of R™. If w is a real-valued measurable function defined in G, then w
is defined by
(4.1)

sup {[m(E)]*l [ u(z)|dz: E C G,m(E) > s} if 0<s<m(@),

as) =14 | E |
L [|u(z)|dx if s >m(G)
G

for every nonnegative s.

(4ii) Let 1 < p < oo and 1 < g < oco. The Lorentz L(p,q) space is the
collection of all real-valued measurable functions « defined in G such that

o0

dsy1/q
L/per( )19 22 .
(4.2.2) { /[5 a(s)]'= } < o0;
0
L(p,q) is a linear space and an appropriate norm in L(p, q) is defined by

o0

(4.21) i = { [/ 2}

S
0

The usual modification has to be made if ¢ = co. Accordingly, L(p, o) —
also called weak LP space — is the collection of all real-valued measurable
functions u such that

sup {[m(E)]_1+1/p/ ju(e)| dr: B € G} < o0,
E

and
ull ey = sup { [m ()] 47 / ju(@)] de: £ G
E

The following propositions hold:

(4.iil) @ is a decreasing function defined in [0, o[, w(0) = esssup |u| and
u(4o00) = 0.

(4.1v) We have

(4.3) a(s) = % / w*(t) dt
0
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for every positive s.

Proof of Proposition (4.iv). Propositions from Subsection 1.2 inform that
sprtu® = [0,m(sprtu)] and [J° u*(t)dt = [, |u(z)|dz. Hence equation
(4.3) does hold if s > m(G). We shall demonstrate that if 0 < s < m(G)
the sup in (4.1) is actually a maximum and equals the right-hand side of
(4.3).

First step. Let 0 < s < m(G). We have

) / ()| do < 57! / w (1) dt
E 0

for every measurable set E such that £ C G and m(E) < s. Indeed,
Theorem 1.A tells us that

m(E)

/|u(x)|dsc§ / (1) dt
E

0

if F is any measurable subset of G. As is easy to see, the monotonicity of
u* implies

m(E) s
[m(E)]™* / u(t)dt < s_l/u*(t) dt

if m(E) >s>0.
Second step. Let 0 < s < m(G). A measurable set E exists such that

/ lu(z)| da = ?E)u*(t) dt,
E 0

and E C G and m(E) = s. Indeed, observe that
m{z € G: |u(x)] >u*(s)} <s<m{zr € G: |u(z)| >u"(s)}

and recall that the Lebesgue n-dimensional measure m is free from atoms.
The former property is a consequence of Propositions (1.ix) and (1.xiii):
the latter is crucial in the present setting. Then a measurable set E exists
such that

{r e G: |u(z)] >u"(s)} CEC{zreqG: |u(x) >u*(s)}
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and m(E) = s.

Such a set E satisfies the equation

E

= / lu(z)|de + u*(s)[m(E) —m{z € G: Ju(z)| > u"(s)}].
{2€G: Ju(z)[>ux(s)}

We have also

/ W (1) dt

m{zeG: |u(z)|>u*(s)}
= / w (t) dt + u* (s)[m(E) — m{x € G: |u(x)] > u*(s)}]
0

by Proposition (1.xiv). The equimeasurability of v and u* — Proposition
(1.xi) — implies

m{zeG: |u(z)|>u"(s)}
|u(z)|dz = / w* (t) dt.

(€@ Ju(z)[>u*(s)} 0

Therefore the set £ in hand does the job.
The proof is complete. [

(4.v) If p > 1 then

D v, ds
(4.4.2) o = 55 /sl/Pu ()~
0

if p>1and 1< g < oo, then

1 7 dsy1/4
(4.4.b) (1——) ]| £pq) < / Yrut(s))! } < ullzip,q)
0
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— thus, if p > 1 the functional whose values are

7 by 1/q
0 )

is equivalent to the standard norm in L(p, q).

Proof of Proposition (4.v). Equation (4.4.a) is an immediate consequence
of equation (4.2.b) and Proposition (4.iv). Proposition (4.iv) yields @ > u*,
since u* decreases monotonically. Proposition (4.iv) and Theorem 330 from

[HLP] give
/ 1/p 1/q / 1/p “( }1/11
0 0

if p>1and ¢ > 1. Inequalities (4.4.b) follow. O

(4.vi) If p > 1, then L(p,p) = LP(G).

(4vii) f p > 1 and 1 < ¢ < r < 00, then L(p,q) C L(p,r) and the
relevant embedding is continuous.

Proof of Proposition (4.vii). If r is not oo, then clearly

aol [y Y = [ @) T} ey

0

for every positive s. The right-hand side of the last equation

S

> L [rae) S} mpese,

0

since r/q > 1 and Proposition (4.iii) guarantees that @ decreases monoton-
ically. Therefore

S

il [ oy Y 2y

S
0



208 G. TALENTI

for every positive s. We deduce

1/py q@ r/e > prlalgrla 1/p Tds
(era) =5 =p r —,
0 0

in other words

(a/P) Ny = (/D) " ull 1 pyr)
This inequality implies also that
(@/P)Y Nl L (pg) > N1l Lip,o0)s
therefore concludes the proof. O

4.3. An embedding theorem. The following theorem improves a classi-
cal result.

Theorem 4.A. Suppose 1 < p < n. Then W1P(R") is continuously em-
bedded into Lorentz space L(n p,p)

Proof. First step. We consider here the p = 1 case and show that the
following inequality

(4.5) (1= 1/ all o < [ [Vuta)ldo

Rn
holds for every function w.

The coarea formula of Federer says that
/|Vu(x)| de = /Hn,l{x € R™: |u(x)| =t} dt.
R 0

The isoperimetric theorem in R™ gives
H,_{z € R": |u(z)| = t} > nk/"m{z € R" : Ju(z)| > t}]* /"

for every positive ¢t. Proposition (1.xvii) yields

/m{xE]R” lu(z)| > t}]* /™ dt = (1 —1/n) /s Vnas(
0 0
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Hence

S

/|Vu(x)|dx >(n— 1)&}/"/51*1/"u*(s)ﬁ.
0

R~

Inequality (4.5) follows since
[ ot s
w [T O E =l
0
according to equation (4.4.a).

Incidentally, one may observe that inequality (4.5) is sharp and can be
derived also from Theorem 4.B below.

Second step. We assume here 1 < p < n and 1 < g < oo, and show that
the following inequality

(4.6) {/[Sl/p—unu*(s)]q%}l/q
— ~1my [ S1/p sy1/a
<]

holds for every test function wu.

Theorem 3.A plays a role at this point. It gives
* 71 71/n —141/n
u*(s) [0 T e
0

for almost every positive s.
The last inequality reads

o0

o(s) < [ K v dr

0

for almost every positive s, if the abbreviations ¢(s) = s'/?~1/?u*(s) and
Y(s) = s1/?|Vu|*(s) are used and K is defined by

K(s,t) =n"w3!/" o -1+ ) (;)Up(é + 1)1/n'
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As K is homogeneous of degree —1, a change of variables gives

< [ K(1,7)¢(rs)dr
/

for almost every positive s. Consequently, Minkowski’s inequality and the
equation ["[1h(rs)]?ds/s = [ [¥(s)]? ds/s imply

7 1/q 7 7 1/q
/ /Ix 1,7r) dr /
0 0

A computation gives

I _T(1-1/pT(1/p—1/n)
/K(l,T)dr— T(1=1/n) .
0

Inequality (4.6) follows. We stress that inequality (4.6) holds for every
g such that 1 < ¢ < oo, and a sharp form of (4.6) appears in Theorem 4.B
below in the case where 1 < ¢ < p.

The proof of Theorem 4.A is complete. O
4.4. Sharp constants. The following theorem is in [Al].

Theorem 4.B. Suppose 1 < ¢ < p < n. Ifu is any test function — i.e., is
sufficiently smooth and decays fast enough at infinity — then

@iy (5-1) 'k [l e @ < [l vl e
0 0

Equality holds in (4.7.a) if ¢ = 1 and u is any test function obeying
(4.7.b) u(x) is a decreasing convex function of |z|;

the ratio between the two sides of (4.7.a) is arbitrarily close to 1 if

(4.7.¢) u(z) = { 1+ k(1 = |2]) if |z| <1,

2] " if o] > 1,



INEQUALITIES IN R. I. FUNCTION SPACES 211

and k is larger than, but close enough to n/p — 1.

Proof. As p > q, s9/P~! decreases as s increases from 0 to +oco. Conse-
quently, Lemma 4.C below tells us that

T ds [ du*  4ds
1/p ()2 > — prl/ngl/p=1/n+1

[ a2 [ [~ o],

0 0

Recall from Lemma 1.E that u* is absolutely continuous — thus

:O/OO[_

for every positive s. An integration by parts shows

o0 o0

du* ds 1 1 ds

A /p—1/n41 %% B 1/p—1/n, = -

/[ N ds(s)]s (p n)/s U(S)s’
0

0
whereas Theorem 330 from [HLP] yields

T du* st 1 T ds
_ J/p—1/n+1 1/p 1/n, *(s)]1—
/[ 5 ds (S)] / ()] ]
0 0
if ¢ > 1.

Inequality (4.7.a) follows. The remaining assertions are easily checked by
inspection. O

Lemma 4.C. Suppose ® is a Young function, u is a test function. Then

o0 [e]

(4.8) /<I>(|Vu|*(s))¢(s) ds > /@(—m;/nslfl/nﬁ(s))ws) ds.

ds
0 0
provided ¢ is a nonnegative decreasing function.

Proof of Lemma 4.C. Since ¢ is nonnegative, Lemma 1.E gives

o0

/(I)(—nK,l/n 1= 1/"621 (s))fb(s)ds
0

< 7ds¢<s>d% / & (|Vu(2)]) da.

{zeR™: |u(z)|>u*(s)}
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An integration by parts shows that the last right-hand side equals

$(+00) / B(|Vul) dz + / [~ d(s)] / & (|Vu(z)]) dz.
R™ 0 {zeR™: |u(z)|>u*(s)}

Notice the following proposition:

(4.viii) Let f be a real-valued continuous increasing function defined in
[0,00[ such that f(0) = 0 and f(+00) = 4+00. Suppose w is a nonnega-
tive measurable function defined in R™ that decays at infinity. Then the
decreasing rearrangement of f(w) is less than, or equals f(w*).

Proof of Proposition (4.vii). As f increases monotonically,
{z eR": f(w(z)) > f(t)} C {zr € R": w(z) >t}
for every nonnegative t. We deduce successively
m{z € R": f(w(z)) > f(t)} <m{z € R™: w(z) > t}
for every nonnegative t,

{t >0:m{z e R": f(w(x)) > f(t)} < s}
D{t>0:m{z e R": w(z) >t} < s}
for every nonnegative s,

min {¢t > 0: m{z € R™: f(w(x)) > f(t)} < s}
<min{t>0: m{z € R": w(z) >t} < s}

for every nonnegative s. Propositions from Subsection 1.2 yield
w*(s) =min {¢t > 0: m{z € R": w(z) >t} < s}

and
(f(w)*)(s) =min {¢t > 0: m{z € R*: f(w(x)) >t} <s}

for every nonnegative s. As f is increasing and continuous and the range of
f is [0, +00[, we have

(f(w)*)(s) = f(min {t > 0: m{z € R™: f(w(z)) > f(t)} < s})
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for every nonnegative s. In conclusion,

(f(w)*)(s) < fw"(s))
for every nonnegative s. O

Proposition (4.viii) tells us that the decreasing rearrangement of ®(|Vu|)
is less than, or equals ®(|Vu|*). Proposition (1.xiii) ensures that
m{z € R": |u(x)] > u*(s)} < s for every nonnegative s. Therefore Theo-
rem 1.A gives

S

&(|Vu(2))) de < /'I)(|Vu|*(t)) dat
{2eR™: Ju(z)|>u*(s)} 0
for every positive s.

Thus,

8= nnl{ "ML () o) ds < 6(+00) [ @(Vul)da

R~

+/Oo[— /Oocp (|Vul* (¢

because [—d¢] is a nonnegative measure. An integration by parts shows
that the last right-hand side equals

0/@ IVul* () 6(s) ds.

Inequality (4.8) follows. O

Theorem 4.D. Ifu is any test function then
(4.9.2) sup |u| < (n — 1)n72n;1/"|||Vu|||L(n71).

Equality holds in (4.9.a) if u is given by

1— if |z| < 1,
(4.9.h) u(x) = { 1« if el
0 if |z| > 1.
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Proof. Theorem 3.A yields

o)

u*(0) < n*lmgl/"/t*m/nwuﬁ(t) dt

0

A property or rearrangements gives
u”(0) = sup [ul;

equation (4.4.a) gives

o0

, 1
[l o= (1= L)Vl

0

Inequality (4.9.a) follows. The remaining assertion follows from an imme-
diate inspection. O

Theorem 4.E. Let p, ¢ and r satisfy 1 <p <mn/2and1<q<r. Let G
be any open subset of R™, u a real-valued function defined in G. Assume u
is smooth enough — e.g., twice continuously differentiable — and vanishes
on the boundary of G — i.e., the measure of {z € G: |u(z)| > t} is finite
and the closure of {z € G: |u(z)| > t} is contained in G for every positive
t. Then

7 ds\1/7
(4.10.a) / L/p=2/mx( )]r;} < CllAullz(p,q)
0

where C' is given by
(4.10.b)
rq

22/ 0 = (1_z>71+1/q*1/r (1_1)11/%_1”{#}1@1/7«.

pon q L)
Moreover
2, .—2/n
P~ Rn
4.11 u np < Au .
@) il € Gy 180

The constants displayed are the smallest ones which bound the ratios be-
tween the left-hand side and the norm on the right-hand side.
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The present theorem informs that W2P(R") is continuously imbedded in
Lorentz space L( 25, p) if 1 < p <n/2.

Proof, outlined. Since sprt u* C [0,m(G)], Theorem 3.B gives

t

u(s) < nle-ef/n/ dt t72+2/n/(Au)*(z) dz

0

for almost every positive s. Therefore Proposition (4.iv) gives successively

(4.12) ut(s) < n*%;z’/"/t*”?/"(m)(t) dt
and
t2/n
) < —2/n
(4.13) u(s) <n ?k, max(l5] Au)(t) dt

for almost every positive s.

Slight changes in an inequality by Bliss [Bl] ensure that

(e roa
0 0
T dsy1l/a
< 2/n 1+1/p—2/n q°
W Q/h Fre)
0

if f is any nonnegative measurable function, 1/p —2/n > 0 and 1 < ¢
< r,and C is given by (4.10.b). Hence inequality (4.12) gives (4.10.a) and
(4.10.b).

Inequality (4.13) reads

s ra(s)) < [ Koo o) e

for almost every positive s, if the following abbreviation

/p=2/n
¢ = -2 —Q/nL
K(s,t) =n""k, max(s. 1]
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is used. Observe that K is positive and homogeneous of degree —1. Quite
the same argument used while proving Theorem 4.A yields

o)

/ 1/p=2/nyg l/q /Ix 1,7) dr / 1/” —S}l/q.
s
0 0

o

As

inequality (4.11) follows.
We skip further details and break off. O

5. EQUIDISTRIBUTED GRADIENTS

5.1. Introduction. Consider a cylindrical rod made up of a number of
plastic materials and subject to torsion. Suppose the rod has a given length;
suppose the number of the materials, and the quantity and the plastic yield
limit of each material are given. Then the rod withstands the largest twist-
ing moment if and only if its cross-section is a disk and the materials are
arranged in concentric annuli — the softest material innermost, the hardest
material outermost, the other materials orderly in between. Recall from
the theory of plasticity that the moment in question is proportional to the
integral of a real-valued function u — the stress function — and the rele-
vant data are stored in the distribution function of |Vu| — the length of
the gradient of u. See [Ar] for details. The above assertion can be derived
from the following theorem.

Theorem 5.A. Let M be a nonnegative decreasing right-continuous func-
tion defined in [0, 00[ that decays fast enough at the infinity, and let V' be
a number larger than or equal to M (0). Consider any real-valued function
w defined in R™ that is nice enough and satisfies the following conditions:
(i) the distribution function of |Vu| is M, i.e.,

(5.1) m{z € R™: |Vu(z)| >t} = M(t)

for every nonnegative t;
(ii) the support of u has measure V, i.e.,

(5.2) m{x € R": |u(z)] > 0} = V.



INEQUALITIES IN R. I. FUNCTION SPACES 217

Then

(5.3) ‘/ dx‘< (n+1)""! 71/n/ yl+i/n _ V—M(t))lﬂ/"] dt.
0

R~

Equality holds in (5.3) if and only if either u or —u is a dome function (i.e.,
a nonnegative radial function whose restriction to its support is concave).

A full proof of Theorem 5.A, including a derivation of the “only if” clause,
was given in [AT]. Related proofs appeared in [Ar] and [GN].

Theorem 2.1 from [GN] implies the following theorem.

Theorem 5.B. Let M, V, u as in Theorem 5.A. Then
(5.4) sup |u] < lfl/"/ 1/n
0

Equality holds in (5.4) if w is any spire function (i.e., a nonnegative radial
function whose restriction to any ray is decreasing and convex).

Motivated by the preceding result, one may consider the variational prob-
lem

55 |lw|| = maximum,
(5:5) under conditions (i) and (ii) above

— i.e., the problem of rendering ||u|| a maximum within a class of functions
u whose support has a prescribed measure and such that |Vu| has a pre-
scribed rearrangement. Here || . || stands for a norm in some Banach function
space. According to usage, we say that two functions are equidistributed, or
a rearrangement of each other, if they have the same distribution function.
Theorems 5.A and 5.B give a complete answer if ||. || is either the norm in
L'(R™) or the norm in L>(R"). Theorem 3.1 from [ALT] claims that, if
I .|l is the norm in LP(R™), then a solution to problem (5.5) actually exists
and is radial (provided p is suitably related to dimension n and the decay
of distribution function M at infinity). A characterization of maximizers is
left out in [ALT], however. Further investigations about problem (5.5) are
in [FP], Section 3, and [Po].

In this section we display the geometry of solutions to problem (5.5) in the
case where || .|| is (equivalent to) a norm in Lorentz space L(p,1). Our main
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result — Theorem 5.C below — includes both Theorem 5.A and Theorem
5.B. It may be viewed as an approach to problems from the calculus of
variations in which side conditions constrain a rearrangement. Problems of
such a sort are worked out, e.g., in [ALT], [Bu], [EST], [FP], [LS], [McL].

For the sake of brevity we shall abuse notations and set

[ee]

(5.6 fullar = { [0}

0

Thus |[ullLpp) = { fon [u(@)]? dsc}l/p7 the norm of « in LP(R™); arguments
used while proving Proposition (4.vii) give

(5.7) (a/D)" Nl Loy = (/D) ull o)

if ¢ <r — hence [[ul|Lp,1) > pllullr@n) if p > 1.

5.2. Statement. The following theorem can be found in [Ta6].

Theorem 5.C. Let u be a real-valued function defined in R™. Suppose
w is nice enough — e.g., Lipschitz continuous — and the support of u has
a finite measure. Let M and V denote the distribution function of |Vu| and
the measure of the support of u, respectively — in the other words, suppose
equations (5.1) and (5.2) are in force.

Let v and w be the real-valued functions defined in R™ that obey the
following conditions: (i) |Vv| and |Vw| are rearrangements of |Vul, i.e.,

(5.8) M(t) = m{x € R": |Vo(z)| >t} = m{x € R": |Vw(x)| >t}

for every nonnegative t; (ii) the support of v and the support of w have the
same measure as the support of u, i.e.,

(5.9) V=m{zx € R": |v(z)| > 0} = m{x € R": |w(z)| > 0};

(iii) v and w are radial and radially decreasing; moreover the restriction
of |Vu| to the support of v is radially increasing, while |Vw| is radially
decreasing — in the other words, v is a dome function and w is a spire
function.

Assertions:

(5.10.a)  ullz(p,1) < vl if n=1or 0<p<n/(n-—1),
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(5.10.b) lull ) < lwllppa) if n>1 and p>mn/(n-1);
furthermore
(5.11&) “’U”L(p71) 1/n / Vl/l’+1/n_ V—M(t))l/p+1/n] dt,
W) 0
1 1/n
(5.11.b) [ W a / P g,
n 0

Proof of Theorem 5.C. Let ¢ and 1 be nice real-valued functions defined
in 0, co[ such that

S

(5.12.) P20, spl9) = (1= 1/n) [ el at
0

and

(5.12.b) 0920, sis) £ (1= 1n) [ (o)

for every positive s. We are going to prove

(5.13.a) p(s)u*(s)ds < [ @(s)v*(s)ds,
[romims]
(5.13.b) P(s)u*(s)ds < [ P(s
ey
Notice these facts:
(i) We have
Ve oo .
(5.14) u*(s):{sf[—dt(t)]dt if 0<s<V,
0 if s>V.
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Indeed, we know from Subsection 1.2 that the support of v* is [0, V], and
Lemma 1.E informs that the restriction of u™ to every compact subinterval
of 10, 00| is absolutely continuous.

(ii) The following inequalities

(5.152) — 2 (5) < e 4 / V()| do

ds nkt/"g1=1/n ds
{zeR™: 0<|u(z)|<u*(s)}
du* 1 d
15. L ) [ Q. —
(5.15.b) —(s) < M}/nslil/n{ds / V()] dx}

{zeRm: |u(e)|>u*(s)}

hold for almost every positive s. This assertion follows from Lemma 1.E.
Indeed,

|[Vu(x)|dx
{zeRm: 0<u(z)|<u*(s)}
_ / V()| dz — / |Vu(z)|dz,
{zeR™: |u(z)|>0} {zeR™: [u(z)|>ur ()}

since Theorem 3.2.2(c) from [Mrr] ensure that either {z € R™: |u(z)| =
Constant} has measure zero or Vu vanishes almost everywhere in such a set.
Hence (5.15.a) is a consequence of (5.15.b). The latter follows from (1.13).

(iii) The inequality

V—s

(5.16.0) / V()| de < / IVl (¢) dt
{zeR™: 0<|u(z)|<u*(s)} 0
holds for every s such that 0 < s < V, the inequality
(5.16.b) / |[Vu(z)|de < /|Vu|*(t) dt
{zeR": |u(z)|>u*(s)} 0

holds for every nonnegative s. Indeed, Theorem 1.A yields

[r@ar< [ ras
E 0
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if f is a nonnegative and E is measurable. On the other hand, recall
from Subsection 1.2 that the distribution function of w, p, is defined by
w(t) = m{x € R™: |u(z)| > t} for every nonnegative ¢, and obeys p(t—)
= m{z € R™: |u(z)| > t} for every positive ¢. Proposition (1.xiii) gives
,u(u*(s)) <sifs>0and u(ux(s) —) > s5if 0 < s < V. Therefore

m{zr € R": 0 < |u(z)] <u*(s)} <V —s

if0<s<V,and
m{zr € R": Ju(z)| >u"(s)} <s
if s > 0.

The proof goes ahead this way.

p(s)u*(s) ds

0\8

= by formula (5.14)

/¢ = (s) ) ds

°\<

= by the first inequality in (5.12.a) and inequality (5.15.a)
\4 ) s ;
/{m /*"(” if{ -G / [Vu(a)] da | ds
0 0 {zeR™: 0<|u(z)|<u*(s)}

IA

S

{m [eway{-d / Vue)| de’}
0

{zeR”: 0<|u(z)|<u*(s)}

O~ <

IN

integrations by parts

S

\%4
Fot (1) foos
0 n S

0
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X { / |Vu(x)|dx} ds

{zeRm: 0<]u(z)|<u*(s)}

< by the second inequality in (5.12.a) and inequality (5.16.a)
v 1 1 s V—s
/nﬁh/nsg_l/n {S‘P(S) - (1 - ﬁ) /<P(t) dt}{ / [Vul*(t) dt} ds
0 5 0

= integrations by parts

v
.0/ - 711/”81 7 / dt |Vu|( —s)ds

%

y
. dt
:/@(s){/|vu| V=) b as
Nkn "

0

Thus we have shown

o)

(5.17.a) /go(s)u*(s) /cp /|Vu| 1/ntt1 1/n}ds

0

Parallel arguments, that will be omitted here, show

(5.17.h) /¢ ds</¢ /|Vu|*(t)%}ds.
0

The very definitions of v and w give

n)l/n7

(5.182)  |Vo(z)| = { [Vul*(V =t |2]*) if |z| < (V/k

/
if || > (V/ka)'"™,
and

(5.18.b) [Vw(z)| = [Vw|*(kn|z|"),
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as well as

(5.19) [Vo|" = |Vw|* = |Vu|™.

We deduce the following representation formulas

(5.20.2)
1%
[ VUl (V = 8) e if |o| < (V/Ka)"™,
v(2) = § xalel s
0 if |z| > (V/k)'"™,
and
1% . .
J |VU|*(5)W‘1_1/" if |z < (V/ko)!"™,

0 if |z] > (V/Kkn)Y"

We deduce consequently

v

* _ dt :
(5.21.a) v (s) = SfIVu| V=0 e £ 0<s<V,
0 if s>V,
and
4 dt :
Gab)  wi =] V0TS <<l
0 if s>V,

Inequalities (5.13.a) and (5.13.b) follow via inequalities (5.17.a) and
(5.17.b), and equations (5.21.a) and (5.21.b).

Observe that,if n=1orn >1land 0 <p <n/(n—1), and ¢ is given by
(5.22.a) o(s) = st/P7L,

then conditions (5.12.a) are satisfied; if n > 1 and p > n/(n — 1), and ¢
given by

(5.22.b) P(s) = st/P7L

then conditions (5.12.b) are satisfied. Coupling (5.13.a) and (5.22.a) results
in inequality (5.10.a); coupling (5.13.b) and (5.22.b) results in inequality
(5.10.b) — equation (5.6) comes here into play.
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Equation (5.6) and equations (5.21.a) and (5.21.b) yield

Vv
p n—
ol = 7 / PR (s) d.

NKn

\4
lullso =~ [ /7 (5) ds
0

Layer-cake formula (1.5) implies

o0

(5.23) |Vul|* = /X[O,M(t)[dt7
0

since the very definition of decreasing rearrangement and the definition of
M ensure that {s > 0: |Vu|*(s) > t} is, for every positive ¢, precisely the
interval [0, M (t)[. Formula (5.23) gives

1%
[ = syl o) as
0
- 1 - / Vl/P+1/n_ V_M(t))l/PJFl/n] dt,
ES + =
P n oy
\4 oo
1 n
/ 1/p+1/n— 1|Vu| (s) I / 1/p+1/ dt.
0 Py

Equations (5.11.a) and (5.11.b) follow.
The proof is complete. [

5.3. Remarks. An analog of Theorem 5.C cannot hold verbatim if Lorentz

space L(p,1) is replaced by Lebesgue space LP(R™). The following are
apropos examples.

(5.1)) Let n = 2 and consider the function u defined thus

1— |z if |z| <1,
(5.24) u(z) = { < if el
0 if |z]>1
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— a dome function.

An inspection shows that M, the distribution function of |Vu|, obeys
M(t)=n(1—t2/4)if0 <t <2, M(t) = 0if t > 2; and that V, the measure
of the support of u, equals 7. Then |Vu|*(s) = 24/1 —s/mif 0 < 5 < m,
|[Vu|*(s) =0if s > w. Formulas (5.20.a) and (5.20.b) yield

(5.25.a) v =u,

arccos(|z|) — |x|y/1 — |z|? if |z| <1,
0 if |z| > 1.

(5.25.b) w(z) = {

Formulas (5.24), (5.25.a) and (5.25.b) give

ks

/|v(x)|pdx —/(p+1), /|w(x)|pdx _ zw*lw/(a _ sin ) db.
B2 B2

0

Hence numerical analysis shows that

(5.26.) el ooy /1ol oogeey > 1
if and only if

(5.26.b) p>2.871649. ...

Now consider the function v defined thus

1— |z))2 if || < 1,
(5.27) u(z) = { (1=« ) «
0 if x| >1
— a spire function. This time M (t) = n(1 —t/2)? if 0 <t <2, M(t) =0 if
t>2;V=m; |Vul*(s) =21 —/s/m) if 0 < s <, |Vul*(s) =0if s > .
Hence formulas (5.20.a) and (5.20.b) give
(5.28.a)
{ arc cos(|z|) + |z|/1 — |z]? + 2(1 — |z|) if |z] <1,
v(r) = :
0 if |z| > 1;

(5.28.b) w = u.
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Formulas (5.27), (5.28.a) and (5.28.b) imply that the inequality

(5.29.a) |lw]|

re@2)/||vllpe 2y > 1
holds if and only if

(5.29.b) p>2.777883....

Note that the right-hand side of (5.26.b) differs from the right-hand side
of (5.29.b), and both differ from n/(n—1), the index appearing the Theorem
5.C.

(5.ii) Let {p1,p2,...,p} be a decreasing sequence of | positive numbers.
Consider the problem

(5.30) /(u(x))2dx: maximum,
Rn

under the following conditions: w is real-valued and Lipschitz continuous,
and

(5.31) m(sprtu) = Ky,
l
(5.32) |Vul* = ZpiX[nn (i—1)1=1 kil =]
=1

— the right-hand side of the last equation is the step function that takes
the value p; at every point from [k, (i — 1)I7!, k,il7![ and takes the value
0 at every point from [k, o0[.

Clearly, competing functions include Lipschitz continuous functions u
having the following properties:

(5.33.a) u is radial and radially decreasing,

(5.33.b) w(z) =0 if |z >1,

1
(5.33.¢) |Vu| = ZiZIQiX{(i—l)l*1<\z|"<il*1}



INEQUALITIES IN R. I. FUNCTION SPACES 227

— here {q1,¢2, ..., q} is any permutation of {p1,pa,...,p}, and the right-
hand side of equation (5.33.c) is the piecewise constant function that takes
the value ¢; where (1 — 1)I7! < |z|® < il~! and takes the value 0 where
|z[ > 1.

Let [ = 7 and assume {p1,p2,...,p1} is
(5.34) {100, 85, 70, 55, 40, 25, 10}.

Computations show the following. If n = 2, the Lipschitz function specified
by (5.33.a), (5.33.b) and (5.33.c) satisfies (5.30) if {q1,¢2,...,q} is

(5.35) {10,25,40,70, 100,85, 55}.

If n = 3, the Lipschitz continuous function specified by (5.33.a), (5.33.b)
and (5.33.c) satisfies (5.30) if {q1,q2,..-,q} is

(5.36) {40,100, 85, 70, 55,25, 10}.

Notice that neither (5.35) nor (5.36) is a monotone rearrangement of
(5.34). In other words, if n = 2 or n = 3 the solution of problem (5.30),
(5.33.a) and (5.33.b) is neither a dome nor a spire function.
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