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ON THE SHAPE OF SOLUTIONS TO
SOME VARIATIONAL PROBLEMS

BERND KAWOHL

The first spring school that I ever attended was organized by the late
Svatopluk Fuéik in 1978 in Horni Bradlo. During the conference he jokingly
remarked that he might not be able to attend the next spring school, because
it would be on free boundary problems and this is a topic which might be
misunderstood by the authorities. Unfortunately, he did not even have time
to find out that it became a regular institution. I dedicate my four lectures
during the spring school 1994 in Praha to his memory.

The lectures will deal with the following three problems:
1. A free boundary problem with fuzzy free boundary.
2. A conjecture of Saint Venant’s on points of maximal stress.

3. Newton’s principle of minimal resistance.

FIrRST PROBLEM

Let © C R? be the cross-section of a long cylindrical bar, whose torsional
rigidity we want to minimize subject to some side constraints. The outer
shape of 2 is prescribed as well as the proportions and physical properties
(shear moduli) of the materials which fill up Q. Suppose that ,ui_l denotes
the shear modulus of material i« = 1, 2. The shear modulus measures how
much one has to pull sideways at the top of an elastic block, which is fixed at
the bottom, in order to shear it by a standard amount. Therefore “strong”
material will have a high shear modulus, that is a small value for u. I shall
assume that 0 < u; < po < 0.

Maximizing torsional rigidity amounts to solving

m= min /{@m(x)ﬁ —v(x)} dz. (1.1)

”EHS'Z(Q) 2
Q

7
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If w solves (1.1), then

/{u(x)Vu(x)ch(x) —u(x)p(z)} de =0 forall p € C5° (), (1.2)
Q

and consequently

1
m=-3 /u(x) dx (1.3)

Now the torsional rigidity is defined as —2m, see [PS, p. 88].

If Q is a circular disc, then every engineer will immediately guess the
solution to our shape optimization problem. One has to put the stronger
material in an annulus with outer boundary 992 and the softer material into
the interior disc of the annulus. In this case the free boundary between
those two materials consists of a circle, a line of constant (and prescribed)
curvature.

What if the disc is slightly perturbed to an ellipse, say? Then I claim
that there is no optimal solution to this shape optimization problem. There
is, however, an almost optimal solution with a very fuzzy free boundary.
This boundary consists among other things of many (nonclosed) circular
arcs of identical (and prescribed) curvature. There the two materials are
intertwined like two curved combs that have been pushed against each other.
In other words, they form a sandwich-like homogenized material.

To prove this claim will take up the rest of this lecture. Let Q; = {z €
Q| p(z) =p}and Qo = {o € Q| pu(x) = p2}, let w be a solution of (1.1),
set u;(x) = ulg, and suppose first that ¢ € C§°(€;). Then (1.2) leads to
the Euler equations

1
—Aui - — in Qi7 1= 1,2 (14)

i
Next suppose that ; and Q2 have a common boundary I of class C' and
that n; is the outward normal to Q; along I'. Then (1.2), integration by

parts and (1.4) lead to

8u1 Bug -
/{Mla—nl +M28—nz}¢ds— . (1.5)
r

But (1.5) represents the continuity of flux across the free boundary. For Q
a ball and radial «, condition (1.5) translates into

8u1 3u2

—_— = Uy —— 1.6
H ar 12 or (1.6)

The following lemma will be useful.
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Lemma 1.1. Suppose that the shape optimization problem has a Lipschitz
continuous solution which is of class C*(Q;) and which has a free boundary
I of class C'. Then there exists a A € R such that

|V’LL2(JI)| S \ 2)\[1/1/[1/2 =T in QQ, (17)
|V’LL1(JI)| Z \ 2)\[1/2/[1/1 =T2 in Ql. (18)

I postpone the proof of this lemma and derive some immediate conse-
quences. The estimates (1.7) and (1.8) imply

p2|Vug| < /2 1 pe < pq [V |. (1.9)

If we split Vu into a tangential and normal derivative, we obtain, using
(1.9) (1.5) and the continuity of w along T,

2 2 2 2

2 3u2 2 8“2 2 8u1 2 Bul
1) on Ha FE My on My ot
_ pldul pldul  blousf s Ous
BRI Yot | ="\ on 2|t
Since there is equality and since pu; < po we conclude
c’)ul aU,Q
2 = T 1.10
ot ot o (1.10)
ie.
w =const along I (1.11)
But now (1.10), (1.9) and (1.5) imply
8ui
wi| V| = | = \/2Auq e on I (1.12)

Now let D be a connected component of 25 which is compactly contained
in Q. Such is the case if 2 is a ball, and we might expect continuous
dependence of I under small changes of 2. Then

(1.13) —Auz =1/puy in D,
Uy = Ca on 9D,
aUQ
- = CQ on 0D.
on

But now, according to a famous result of Serrin [Se], D must be a circular
disc. By analyticity of u;, Q must be a circular disc, too. Thus we have
shown
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Proposition 1.2. Unless (2 is a circular disc, the shape optimization prob-
lem cannot have a smooth solution.

It remains to prove Lemma 1.1. Notice that so far I have not brought
the condition into play, that the size of 2; is prescribed and that its shape
is optimal. The condition on the size of 2; can be restated as

[n@)de=co, (o) € s, o) (1.14)
Q

and it can be entered into the variational problem (1.1) by means of a
Lagrange parameter. We look for

inf inf /{E|V’U|2 - v} dx
uelppal, [ u=Co veHI2(Q) J 2

=inf sup/{ﬁ|Vv|2—v—)\u} dz + CoA.
v e ) 2

In fact, if fQ wdx # Co, the sup over A will be infinite.

Let us relax the condition u(x) € {u1,us} for a moment to u(x) €
[1, t2]. Then the inf is taken over a convex set of admissible functions
and v, and the above functional is convex in v and p and concave in A.
Therefore we may exchange the sup and inf and study

1
supinf/u{§|VU|2 —)\} dx+Co)\—/vdx. (1.15)
P
Q Q

Let us consider the curly bracket in (1.15). If it is negative we want u to
be as large as possible, i.e. u = uo, and if it is positive we want u = uy. So
the inf over u(z) € [u1, po] will be attained in {pq, p2}. We set

(1.16)

(| Vu|):= inf p <1|Vv|2 - A) = { 2(3|Vol* = A) if |Vol* < 22
p€lpiua] \ 2 11 (3| Vo]? = A) if [Vo|? > 2.

Therefore (1.15) can be rewritten as

supinf/{gk(|Vv|) —v}dr + CoA, (1.17)
by v
Q
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and in particular for fixed A we are faced with
inf /{gk(|V1j|) —v}dr, (1.18)
vEHL?(Q) 2

where g, is defined in (1.16) and depicted in Figure 1.1.

Figure 1.1 gy and g

Suppose we can solve (1.18) for every A. Then (1.17) amounts to maxi-
mizing a function of a single variable A only. But for fixed v the functional
in (1.17) is concave in A, i.e.

tgr(s) + (1 —1)g.(s) < garr1—1)v(s) (1.19)

for s > 0,t € [0,1] and A, v € R; and the functional tends to —oo as ||
tends to co. The derivation of (1.19) is a simple calculus exercise that has
to distinguish four different cases. Therefore the maximization with respect
to A will pose no problem.

Unfortunately problem (1.18) is nonconvex, and therefore we cannot use
the direct method in the calculus of variations to derive existence of a solu-
tion. This is in accordance with our observation, that in general there will
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be no solution of the shape optimization problem. However, if we convexify

(1.18), i.e. if we replace g\ by its convex envelope g, which is depicted in
Figure 1.1, then we could at least solve the relaxed problem

inf /{g(|Vu|) —v}de. (1.20)
veH;~2(Q)Q

What happens in the case that €2 is a circular disc? We may replace any
minimizer u, u of (1.15) by their circular means

u(r) = %/U(T, ) dd, p(r) = %/u(r, ) d.

This will lower the functional in (1.15), since it is convex in u and u. With-
out loss of generosity we may therefore assume that minimizers are radial;
and by the reasoning that leads to (1.16) we can be sure that u(r) € {1, 2}
and p(r) ¢ (p1,p2). Let us now see why |Vu| ¢ (11,72) in the radial case.
If |Ou/Or| € (11,72) on a set of positive measure, we can modify u to a
zig-zag-function u. on this set, so that u. approximates u in L ({2) and so
that |Vug| ¢ (71, 72). This is illustrated in Figure 1.2.

A

U Ue

Figure 1.2 w« and u.

Therefore the inequality

/ (V) do = / 9(|Vue]) dr = / o(|Vul) dz < / o3([Vul)dr (1.21)

Q Q Q Q

would lead to a contradiction.
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The same argument can be applied in the nonradial case. Now the level
lines of w serve as lines of discontinuity for |Vu.|, but along each line of
steepest descent of u, the approximating function u. looks like the one in
Figure 1.2. Again (1.21) leads to a contradiction and proves Lemma 1.1. O

Inequality (1.21) has another consequence. Any minimizer of (1.18) will
also be a minimizer of the relaxed problem (1.20).

Let us therefore from now on consider the relaxed variational problem
(1.20). This problem has a solution v € H}? (), which satisfies the Euler
equation

0= /{g |Vu| | Vo —¢}dx, forany ¢ € C5°(1),

or formally

9 (V) _
dlv{7|vu| Vupy =1.

We split Q into @y :={x € Q| |Vu| > n}, Q:={r e Q||Vy| <7} and
H=0\( UQy). In Q; we have (1.4), and in H we have ¢’ = /2 i pio,

ie.

If we rewrite (1.22) in curvilinear coordinates, tangent and normal to level
lines of u, it is rewritten as

K= 1/3/2\pa o, (1.23)

where k denotes the curvature of a level line of « for plane domains (or the
mean curvature of a level surface of u for higher-dimensional domains).

In H the type of differential equation switches from elliptic, i.e. As-
operator, to degenerate elliptic, i.e. ~ Aj-operator. Here A u :=
div(|Vu[P72Vu). Relation (1.23) tells us, that level lines of u are, as long as
they run through H, circular arcs of constant curvature ¢; = 1/v/2Apg1o.
The derivation of (1.23), however, has to be justified via regularity consid-
erations.

Theorem 1.3 (Regularity). Let u be a solution of (1.20). Then
i) u e L™(Q).
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i) w € W,2°(Q) and, provided 89 is smooth, u € C*(Q).

loc
iii) uw € C*°(intf,;), i =1, 2.

iv) If the level lines {x € int H | uw(x) = ¢} are locally Lipschitz contin-
uous,then they are C* for a.e. t € R and have constant (mean) curvature

Cc1p = 1/\/2/\/1,1/12.

Proof. To prove i) one compares the solution of (1.20) on 2 with a solution
of the same problem on 2%, a ball of the same volume as 2. On Q* the
solution is explicitly known and is L™, see [Ta]. Statement ii) follows from
a result in [CE], iii) is a consequence of (1.4). To prove iv), let us fix v on
Q; U Qs and vary it only in H. Then we have to minimize

v) = /{01|Vv| —v}dz,
H

and the coarea formula yields

Umax

Jy(v) = / {1 Perim{v > t} in H — Area{v >t} in H}dt.

[e]

So for a.e. t € R we minimize (N — 1)-dimensional perimeter minus N-
dimensional volume for NV = 2, a regular elliptic problem in N — 1 dimen-
sions (since level lines were Lipschitz by assumption). Therefore iv) follows.
Notice that this proof of iv) does not use the implicit function theorem and
regularity of u. In fact, I do not even know that v € C?(H). O

What can be said about uniqueness of solutions to (1.20)7 Since we are
dealing with a convex problem, there is hope to have uniqueness. But g is
not strictly convex, so there may as well be nonuniqueness. In fact, consider
the one-dimensional problem

1

mln 1.24
v(0)=0,v(1)=(7T1+72) /Z/g ( )
0

This problem has u(z) = (11 + 72)x/2 as one solution, but there are other
ones depicted in Figure 1.3 with slope alternating between 7 and 7.
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Figure 1.3  Solutions of (1.24) for 7, =0

Theorem 1.4 (Partial Uniqueness). Let u, v be solutions of (1.20). Then
Vu|Vu| = Vo|Vu| a.e. in Q, (1.25)

ie. Vu and Vv are parallel. Moreover the sets @ = {z | [Vu| > 1} and
Oy = {z | |Vu| < m} are uniquely determined (modulo nullsets) and

Vu=Vv ae inQ;, i=1,2. (1.26)

A proof of this theorem can be found in [KSW].

Remark 1.5. If u, v are different solutions of (1.20), we may assume without
loss of generality that v < ». In fact w; = min{u,v} and ws = max{u,v}
are solutions of (1.20).

Lemma 1.6. Suppose that (1.24) holds and that the level lines of u and v
are Lipschitz-continuous. Then uw — v = const on every component L,(u) of
the set Lo(u) = {x € Q| u(xz) = a} for a.e. a. In particular, we have that
v(z) —u(x) = ¢ for some x € {,(u) implies v(x) = a+ ¢ for every x € £, (u).

Proof. Vv and Vv exist a.e. on L,(u) and are parallel. Therefore the tan-
gent vector on £, (u) is defined a.e., and it coincides with the tangent vector
on l,(v). O

Lemma 1.7. Under the assumptions of Lemma 1.6, every nonempty com-
ponent {,(u) of a level set L,(u) has nonempty intersection with Q; U Qs.

Proof. Else there exists a level C' and a component (.(u) with positive dis-
tance to Q; U Qs. Therefore an entire neighborhood of ¢.(u) is contained in
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int H. According to Theorem 1.3.iv), {.(u) has to have constant curvature
¢1. Since |Vu| € (1, 72) in H, there must be an adjacent level d such that
l4(u) C int H for another level line of constant curvature ¢;. Without loss
of generality we may assume d > ¢. But now {4(u) and ¢.(u) are both closed
circles of radius /2y pi2, and €.(u) does not intersect ¢4(u) for reasons of
continuity of u, a contradiction. O

Theorem 1.8 (Uniqueness). Suppose that the relaxed variational problem
(1.20) has a solution u with starshaped level sets {u > t} and Lipschitzian
level lines {u = t} , and 9Qy,9Qy are piecewise Ct. Then (1.20) has only
one solution.

To prove Theorem 1.8 suppose that there are two solutions u and wv.
Then there exists a map f : R — R with v(z) = f(u(z)), and f is locally
Lipschitz continuous, so both u and v are Lipschitz continuous. Moreover
f'lu(z)) =1 in Q C Qo, because of Theorem 1.4. But according to
Lemma 1.7 every level line runs through Q1 U Qs, i.e. f/ =1 on almost all
levels of u. Therefore v =u. O

Remark 1.9. One can give sufficient conditions for the assumptions on level
lines of Theorem 1.8, see [KSW]. They are in particular satisfied for regular
polygons.

For every fixed A we have now a unique solution u) to the relaxed problem
(1.20), and we can maximize

/{9(|VUA|) —uy}dr + Co
Q

with respect to A. I denote the function u) associated with the maximizing
A by w. If |Vu| ¢ (m1,m2) ae. in 2, as is the case for a circular disc only,
then we have a solution to the unrelaxed problem (1.17). If, however, H
has positive measure, then w can be approximated by a function u. with
|Vue| ¢ (71,72) as depicted in Figure 1.2. The thin layers in H in which
|Vu®| > 72 are then filled with material pq, those with |Vu®| < 7 with
material ps and their common boundary consists of many circular arcs with
identical curvature c;.

SECOND PROBLEM

Consider the classical torsion problem

(2.1) —Au=1 inQ
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(2.2) wu=0 on 9N

for a given domain © C R2. Can one predict those points € Q, where
|Vu(x)| attains its maximum simply by looking at the shape of 27 Those
points mark the onset of plasticity and I call them points of maximal stress.
This question was raised by Saint Venant in his classical treatise [SV, p. 444]
from 1856, and it was answered in the positive for domains, the boundary of
which is described in polar coordinates by (r/rg)? —a(r/ro)* cosdp = 1 —a.
There, Saint Venant writes

“Les points dangereux sont donc, comme dans [’ellipse et le rectangle, les
points du contour les plus rapprochés de 'axe de torsion, ou les extrémités
des petits diametres.”

In fact, it is easy to see (although it was not shown until 1930 by Pdlya
[Po]) that the point of maximal stress must lie on the boundary.

Lemma 2.1. If u solves (2.1), (2.2), then |Vu(z)| attains its maximum
over 2 on 0f.

For the proof we differentiate |Vu(z)|?> and show that it satisfies the
differential inequality

2
82
A(VaP) =23 8x-;x- +2VuV(Au) > 0
0L

1,j=1

Now Lemma 2.1 follows from the maximum principle. O

It is not so easy to see, where on 92 the points of maximal stress must be
located. Take an ellipse for instance. There they are located on the short
axes, a result why “may be startling to many” according to [TT, Vol. 1,
Part IT, §710]. On the other hand J. Boussinesq gave a heuristic explanation
for this in [B, p. 200]. Imagine going down from the maximal point of u in
the center of the ellipse to various boundary points. Going along the short
axis will require more slope than following the long axis. This reasoning is
suggestive as long as level sets of u are convex, and the convexity of level
sets, given convex (2, was not shown until 1971, see [ML]. In any case these
results have lead people to believe in the general conjecture

Conjecture 2.2. For a doubly symmetric domain 2, |Vu| attains its max-
imum on the intersection of 92 and the largest inscribed circle.
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If © is not convex, this conjecture is false, as can be seen from an I-beam
or a domain like the one in Figure 2.1, which was found by Saint Venant in
1859 and “rediscovered” in 1900 in [Fi].

Figure 2.1 Saint Venant’s rail

Under some additional assumptions on the geometry of 2, I was able to
prove the following result in 1985 [K].

Theorem 2.3. Suppose that u solves (2.1), (2.2), and that Q C R? is
convex and symmetric with respect to xy and x5. Suppose in addition that

(2.3) oN is of class C**,
(2.4) the curvature of 9Q N {x1 > 0,25 > 0} is nondecreasing in x;.

Then max |Vu(z)| is attained only at those points (z1,z2) € 92 which have
zeQ
minimal distance to the origin. Furthermore, unless 05} is a circle, there are

precisely two points of maximal stress, namely the points of intersection of
0f) with the xq-axis.

The idea of proof is fairly simple. Let s denote arclength of 912, increasing
as we approach the zq-axis along 90 N {z; > 0,22 > 0}. We want to show

0
—|Vul> >0 2.5
or equivalently
0 (0Ou 0 Ou ou
— (=) ==.= — < 1 Q. 2.
0s <8n> on 85+H85 <0 along 9 (26)
But du/ds = 0 along 92, and to evaluate a—i (%) at a fixed point xg € 992,

we fix £ to be tangent to 92 at xo and pointing in s-direction and obtain

on \ Os e—0¢
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or

0

a—?(xo —en) >0 (2.8)
as the desired inequality. But (2.8) follows from a well-known result of
Gidas, Ni and Nirenberg, provided the lower cap that the normal to xg cuts
off from ) can be reflected across this normal into 2. Now a finer analysis
shows that (2.3), (2.4) lead to the reflection property (incidentally, there
is a typographical error in [K,p. 200 line 2], the inequality sign has to be
reversed) and that |Vu| increases strictly unless 99 is a circle. O

Remark 2.4. Of course there is an extension of Theorem 2.3 to quasilinear
elliptic equations. See [K] for details.

Remark 2.5. Can one drop the assumptions (2.3) and (2.4), which were
caused by the method of proof? This question has a negative answer. In
fact G. Sweers has shown in [S1] that Conjecture 2.2 is not true for the
barrel-shaped domain in Figure 2.2 or a nearby domain.

on

(10

Figure 2.2 The barrel

In fact, as Ramaswamy showed in [R], the max of |Vu| is attained on the
horizontal, but not on the vertical axis. The proof of Theorem 2.3 can be
easily extended to regular polygons, though.

In 1989 there was another and independent attempt [Ko] to prove Con-
jecture 2.2. Unfortunately it contained an error, as was later pointed out
in [S2]. In fact, G. Sweers found yet another counterexample to Conjecture
2.2, a thombus with rounded corners as in [K, Fig. 1(b)].
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THIRD PROBLEM

Imagine a threedimensional ball flying through a liquid. In 1685 I. New-
ton showed that the resistance of such a ball is half the resistance of a
cylinder of same diameter, if flying in axial direction. In his words [N]:

“If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal diameter
move with equal velocities in the direction of the azis of the cylinder, then
the resistance of the globe will be half as great as that of the cylinder. ...
I reckon that this proposition will be not without application in the building
of ships.”

How did Newton come up with such a statement? Let us think of the
fluid as a rare gas, consisting of many free particles with large mean free
paths. Suppose that these particles do not collide with each other, but that
they interact with the ball or cylinder through at most one perfectly elastic
collision. Other effect, such as friction, turbulence etc. are neglected in New-
ton’s model. If the part of the body, which is exposed to such collisions, can
be described by a function u: @ C R? — R and if the fluid flows vertically
downward, the portion of the momentum which a particle transfers to the
body upon impact at (z,u(r)) can be described by sina = (1+|Vu|?)~/2.

The horizontal component of this portion will be balanced for rotational
bodies by a corresponding momentum at ( — z,u(—x)). The vertical com-
ponent, however, is of magnitude (1 + |Vu|?)™!, see Figure 3.1.

K

4

Asind

Ksind

Figure 3.1 The sine-square pressure law
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Therefore the total resistance of the body can be measured by

1

Now we calculate the resistance of a circular cylinder of radius 1 to be 7.
To calculate the resistance of a ball, we evaluate (3.1) at u(z) = /1 — |z|2.

Since du/dr = —r(1 — r2)~2, we obtain

T4

1 2 1
r
R(u) =27 [ (1=rdrdr =2r[" -] =n/2
(u) 7r/0( r)rdr T3 407r/,
i.e. a confirmation of I. Newton’s observation that a ball has half the resis-
tance of a cylinder.
Incidentally, Newton’s considerations were illustrated by the drawing in

Figure 3.2, and they have been extensively studied by D.T. Whiteside.

D

E
Figure 3.2 Newton’s drawing

Another body of same resistance as the ball is the cone u(r) = 1 —r.
Until recently [BK, BFK] the functional (3.1) was written differently (for

radial functions) as

M
'
/ o7 dt, v(0)=0,v(M)=R. (3.2)

If M denotes the maximum of v and 0 < v < M, then we can set v =
u~ (M —t) and perform a simple change of variables. To do this we have

to assume, that u or v are monotone.
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So if we want to minimize (3.1) or the resistance of a body described by
a function u(z), we have to specify the class of admissible functions for w.
Since R(2u) < R(u) for nonconstant u, any class of admissible functions
should be bounded in L*(£2). Moreover we want the body to have the
property that

every particle interacts at least once with the body. (3.3)

A sufficient criterion (but not a necessary one) is the convexity of the body
or concavity of admissible functions. We set

Cy={v e Wh>(Q)|0<wv< M,v concave}

loc

and study the problem
in R(v). 34
2, B o4
Since R is bounded from below there exists a minimizing sequence
{un} C Cyr. Does it converge? If we write

R(v) = / (Vo (@)]) de, (3.5)
Q

then standard problems from the calculus of variations have an integrand f
which is convex and coercive, e.g. f(s) = (1+ s?)~! is neither coercive nor
bounded, and so we cannot expect compactness of a minimizing sequence
from the structure of f alone. This disadvantage is made up for by the set
Cu, as was noticed by Marcellini.

Lemma 3.1. If{u,} C Cy, then {u,} has a subsequence, still denoted by
{u,} which converges strongly in W,5?(Q) to a limit u.

The proof of Lemma 3.1 can be found in [M] and [BK], but let me outline
the idea. In a first step it is shown by geometric considerations that the

pointwise estimate
2M

D —
< dist(z, 00)
holds for every w, € Cp, so that the sequence {u,} is locally uniformly

Lipschitz continuous. By the Arzela—Ascoli theorem it has a uniform limit
u € W2 (), after passing to a subsequence. So u,, — u is L. ().

loc

[Vu,(z) (3.6)

In a second step one has to show that Vu,, — Vu pointwise a.e. in (.
This is done by taking difference quotients from the left and right, by using
the concavity of u,,, and by proper limits. Convergence in Wlﬂf follows from
Lebesgue’s dominated convergence theorem. O



SHAPE OF SOLUTIONS 93

Theorem 3.2 (Existence). Problem (3.4) has a solution.

Proof. In fact, let Q\Q' be a thin neighbourhood of 9§ in 2, then Lemma 3.1
implies

liminf R(u,,) —hmlnf f(Vu,|) dx + / f(IVuyl)d

n— oo

Q o\’

/f (|Vul) dx+hrn1nf / f(Vuy|)d

Q\Q/

/ F(IVul) dz + / (F(IVun)) — F(Vul)} de

Q\Q/
> R(u) = 2/ | f]loo-

But since f is bounded, and since we can make |Q\Q'| arbitrarily small, we
have
liminf R(u,) > R(u),

i.e. u is a solution of problem (3.4). O

Notice that the noncoerciveness of f has been extremely helpful in this
proof, and that W,2>° () is the natural function space for problem (3.4).
Later I shall change the class Cj; of admissible functions and come up with

I/Vlif (Q) or even BV(Q) as natural function spaces.

Remark 3.3. Proving the existence of a solution has been a relatively easy
task. But how about uniqueness? This appears to be a hard open prob-
lem. The functional R(w) is not convex in u, for instance, which prohibits
convexity arguments.

Another approach to proving uniqueness might be to show that without
loss of generality solutions are ordered, i.e. if u and v are two solutions, then
wy = min{u, v} and wy0 max{u, v} are solutions. Clearly R(w;) = R(wsy) =
R(u) = R(v) holds in such a case, but unfortunately we cannot guarantee
that we € C'yy, i.e. that wy is admissible.

Those readers who are familiar with Newton’s problem of minimal resis-
tance will object to this Remark. If 2 is a circular disc, and if the class
of admissible functions is restricted to radial functions in Cj;, then w is
known to be unique, and in fact in this case v has been known for centuries.
Its representation is described in [BK] and its shape looks like the one in
Figure 3.3.
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Figure 3.3 Optimal radial solution in C,

Remark 3.4. Tt is remarkable that u is flat on top. In fact anybody working
in fluid dynamics will immediately argue that the shape in Figure 3.3 cannot
be optimal, because the body has a whole surface of stagnation points where
the fluid will settle and cause frictional effects. This macroscopic point of
view, although realistic for most fluids, neglects Newton’s model may neglect
effects from interactions among particles.

It is even more remarkable that Newton was aware of the advantage
of “flatness”, as can be seen from his drawing in Figure 3.2. The fact
that |Vu| is discontinuous has a simple reason: the nonconvexity of f in
R(v) = [ f(]Vv]) dz. Along the boundary of the flat part, |Vu| jumps from
zero to at least one, and at 1 the convex lower envelope f of f touches f
again, see Figure 3.4.

S~

>
Figure 3.4 The functions f and f

Suppose that there is a set D of positive measure where |Vu(z)| € (0, 1),
the set where f differs from f. Then one can construct a function w which
coincides with u outside D, and whose slope (or modulus of gradient) is 0
or 1 only. Define w(z) to be the infimum of M and of all those tangent
planes to the graph of u whose slope is outside (0,1). It is easily seen that
w € Cyy, provided u is, and that the equality sign holds in (3.7) below.
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Moreover, an application of the coarea formula leads to the first inequality
sign in (3.7). Therefore

R(w) = R(w) = /f(|Vw|) dr < R(u) < R(u), (3.7)
Q

a contradiction which proves

Lemma 3.5. If u solves (3.4), then |Vu(z)| ¢ (0,1) almost everywhere
in Q.

Remark 3.6. Note that f(|Vu|) is convex in |Vu/, but not convex in u. Note
also that the proof of Lemma 3.5 shows more: Minimizers of R over Cy
are minimizers of R over Cj; and vice versa.

The classical questions in PDE are existence, uniqueness and regularity.
To investigate regularity one looks for the Euler equation associated to (3.4).

Ifu, v € Cypy, then (1—c)u+ev € Cyy for 0 < £ < 1, and if u solves (3.4),
then R(u) < R((1 — €)u + €v), so that u solves the variational inequality

VuV (v —u)

<0 foran veECy. 3.8
J v Y " (38)

Now consider the set N of those points x € 0, where v — u can vary in
sign, i.e. where 0 < u(z) < M and where the matrix of second derivatives
D?u(z) is negative.

Then the Euler equation in weak form can be stated as

L Vu®) o de =0 for an _
/(1+|Vu(x)|2)2v<p( )dz =0 forany € Cg°(N), (3.9)

and formally, after integration by parts, it reads

v Vu—(sc) =0 inN 3.10
((1+|VU(9€)|2)2) 7 (310

or in curvilinear coordinates (n = normal, ¢ = tangent to a level line of u)

(14 u)ug + (1 — 3u)up, = 0. (3.11)
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This equation is of elliptic-hyperbolic type. It is hyperbolic where |Vu(x)| >
1/4/3, i.e. on the non-flat part of u. The “natural boundary condition” on
NN N is

Un

S ———) 3.12
(1+[Vu(z)]?)? (312

ie. up(z) =0or u, = —oo on N N N. But in the first case u(z) must
equal M, so z ¢ N. And on 90Q\(0Q2 N N) we can have u = 0 or a van-
ishing eigenvalue for D?u(z) as well. In summary, little seems to be known
about the boundary behaviour of u except that u(x) vanishes in at least
one boundary point.

Remark 3.7 (On Symmetry). Figure 3.3 shows the optimal radial solution
in C'y, but is it the solution of problem (3.4)? Is it the optimal solution in
Cn? In other words, if Q has symmetries, does u have symmetries? This
appears to be a nontrivial open problem. There are many tricks in the
calculus of variations to prove symmetry of minimizers, and many of them
seem to fail due to the nonconvexity of R in its argument u. Let me list
some strategies that fail:

a) Show that u is unique, then it must be radial. This has been discussed
in Remark 3.3.

b) Replace u by its spherical mean

1

T o

ur) = 5 | T u(rg) de,

show that w € Cj and hope that R(u) < R(u). A counterexample is
provided by w(z,y) =1 — |x|.

¢) Replace u by u#, its Schwarz-symmetrization as defined in the lectures
of G. Talenti, show that u € C; implies u# € C; and hope that R(u#) <
R(u). Unfortunately, u(z,y) = 1 —min{|z|, |y|} provides a counterexample.

d) Replace |Vu| = w by its radially increasing symmetrization wy and
set wy = —0v/dr. Then R(v) = R(u) and v € Cp; and one might hope
that ||v|lce < ||t|lco, in which case there exists @ > 1 such that av € C)yy
and R(av) < R(v) = R(u). G. Aronsson found out that this hope is
unjustified, because u(z,y) = /1 —y? — |z| serves as a counterexample.
Incidentally, this approach leads to an interesting question for Hamilton—
Jacobi-Bellmann equations. Suppose |Vu(z)| = h(z) is given and h can
vary over its equimeasurable rearrangements. For which function h is the
L*>-norm of u extremal? This question has been addressed in a recent paper
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[FPV] of Ferone, Posteraro and Volpicelli, who found out that there is no
general answer.

e) Replace |Vu| = w by its spherical mean, set w = —9v/90r and show
that R(v) < R(u). In fact, R(v) < R(u) follows from Jensen’s inequality.
Unfortunately, the counterexample from d) shows that v is not necessarily
in C'y, because its L°°-norm can exceed M.

In summary, there are many open questions on solutions to problem (3.4).
When I told these questions to my friends and colleagues in Praha, they
suggested to look for solutions in a different class of admissible functions.
Equations of hyperbolic-elliptic type occur also in transsonic flow problems,
and those equations can have multiple (nonphysical) solutions. The physi-
cally meaningful solution can be extracted by imposing an entropy condition
on the class of admissible functions. In our case this condition amounts to
requiring Au < 0, i.e. less than concavity of u, and the notation of “en-
tropy” has no physical meaning and was chosen for purely formal reasons
of analogy. In [FN] entropy has a meaning.

A week formulation of the entropy condition is

- / Vu(z)Ve(z)dr >0  for every p € H} (), (3.13)
O

and (3.13) suggests the use of Hllof(ﬂ) as the appropriate function space.
Therefore, let us set

Ev={veH2(Q)]|0<v<M inQ, vsatisfies (3.13)}

loc

and investigate the problem

min R(v) (3.14)

vEE N
Fortunately, the set E};, although larger than Cjy, still has some compact-
ness properties.

Lemma 3.8. If {u,} is a sequence in Ey;, then for every Q' CC Q we have
lunllgr2ny < C(Q, M), (3.15)

i.e. the sequence is uniformly bounded in H>>(Q). Moreover, for every
a > 0 there is a small set A, of measure |A,| < a and a subsequence such
that Vu,, — Vu strongly in L _(Q\A,).

loc

In the proof of Lemma 3.8 one chooses ¢ = n?(M —u,,) as a test function,
with 1 being a usual cut-off function. This leads to (3.15) and to weak
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convergence in HIIOCQ(Q) or strong convergence in L?(Q) of a subsequence.
The superharmonicity of admissible function is helpful in the proof of strong
convergence in Hlloz(ﬂ) as well. Rather than give the details of proof, which
can be found in [BFK], let me give a heuristic reason. Sequences in H'2
which are weakly but not strongly convergent show oscillatory behaviour.
In particular, their second derivatives change sign. But (3.13) prohibits
such sign chances. [

As a consequence of Lemma 3.8 there is an existence result:
Theorem 3.9. Problem (3.14) has a solution.

The proof follows the same reasoning as the proof of Theorem 3.2. O

Aside from the existence result, all the questions that were discussed for
problem (3.4) remain open for problem (3.14); in particular, uniqueness,
regularity and symmetry. Not even an analogue of Lemma 3.5 seems to be
known for solutions of (3.14). It is interesting to note, however, that the
properties of admissible functions determine the underlying function space.
In fact, a first tentative description had

Ey={neD(Q)]|0<v<M-Av>0 inD'(Q)}.

as class of admissible functions, but (3.15) justifies the use of Hllof as ap-
propriate function space in the “entropy case”.

Remark 3.10. Another generalization of concave functions are quasiconcave
functions, i.e. functions with the property that the set {x € Q | v(z) > ¢}
are all convex. If C), is replaced by the class of bounded, quasiconcave
functions, a companion to Lemma 3.8 states that sequences in this class
of functions are uniformly bounded in BV (Q2), the space of functions of
bounded variation. In this case, however, we cannot even give an existence
result for minima of the original functional R. Instead even the functional
R has to be suitably modified to obtain an existence result, see [BFK] for
details.

Remark 3.11. As noted earlier, concave functions have the property (3.3)
that every particle interacts at most once with the body. If we take (3.3)
as a characterization of admissible functions

Py :={ve Wli’coo(ﬂ) | 0 < v < M,v satisfies (3.3)},
we can study the problem

min R(v), (3.16)

vE Py



SHAPE OF SOLUTIONS 99

If this problem has a solution, then it will lie outside C'ys. In fact, instead
of Newton’s optimal shape for Q2 a circular disk, modify the flat part of
Newton’s solution into a cone of opening angle exceeding 2w /3, see Figure
3.5.

Figure 3.5 “better” profiles than Newton’s

Part of this cone can be flipped up as in Figure 3.5 without changing the
resistance of the profile. In fact, one can construct a sequence of oscillating
solutions which tends to Newton’s solution (with a rough surface on the flat
part) in L, but not in Wlifo (©). Such a development of microstructure
and lack of weak lower semicontinuity is due to the nonconvexity of the
functional R. At present, the investigation of problem (3.16) is still going
on but there are some preliminary results.

Lemma 3.12. Given M, the set Py is bounded in W,>>° (). In fact, for
v € Py; we have the pointwise estimate

M 4/ M2 4 dist®(z, 00)
[Vu(z)] < .
dist(z, 90Q)

in Q. (3.17)

For the proof of Lemma 3.12 we note that Vu(x) and the vertical axis
span a plane, and in this plane any reflected particle path represents an
upper bound for v. The rest is trigonometry and arithmetic. I refer to
[BFK] for details. O

Unfortunately, unlike Lemma 3.1, Lemma 3.12 does not provide point-
wise convergence of the gradients of a minimizing sequence. Therefore the
existence question for (3.16) appears to be open.

Remark 3.13. Suppose that a solution of (3.16) sits on the boundary of
the admissible set P, and thus fails to satisfy the Euler equation almost
everywhere. Then a following kind of question from geometric optics comes
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up (at least in the radially symmetric case). What is the shape of a mirror
with the property that every vertically incoming ray is reflected through the
axis of rotation and leaves at the edge of the mirror? So parallel light would
cause a halo to appear on the outer rim. This question has a simple answer,
a polynomial of degree 2 in r, which is not differentiable at zero. If the
flat part of Newton’s solution is replaced by such a “mirror”, the resulting
profile has less resistance than the ones in Figure 3.5.

There are many more questions about Newton’s problem than answers,
and I shall address only one additional question. What if Q is not a disc
but a square and if w is a solution to problem (3.3), i.e. u minimizes R in
Cu? To a certain extent this question can be answered by a computer. We
replace Cy; by a set of piecewise linear functions and try to minimize the
corresponding discrete functional. But how can we tell that a modification
of an approximate solution u} in a single nodal point, which might lower the
value of R(uy), results in a concave function u)™'? Concavity is a nonlocal
property.

For lack of time let me skip the details and be vague about answering this
question. Details are written in [KS]. Concave functions have the property
that their negative gradient is a monotone operator or, in other words, that
their graph bends only one way. So if it bends the wrong way, the product
(Vu(zy) — Vu(xpsr))(xr —xpa1), is positive, where x and x4 are centers
of adjacent triangles in a triangulation of 2. This defect is heavily penalized
in [KS] by modifying the functional R; and then one can show that finite
element solutions of the penalized problem converge to a concave solution of
the continuous problem as the grid-size goes to zero. Similar to penalizing
absence from C'; one can penalize the violation of Au < 0 and obtain a
convergent finite element method for problem (3.14).

A finite element solution in C)y is depicted for M = 2 in Figure 3.6. Here
Q2 is the square [—1,1]?, and the plot shows [0,1]? and u on this northeast
quarter square. The jumps in gradient seem to be no numerical artefacts.
Hyperbolic equations can have nonsmooth solutions. Moreover, Figure 3.6
shows that u does not need to vanish everywhere on 9. If you reflect
the graph of w it looks like the nose of a TGV train, which I once saw at
Holesovice station in Praha, and whose sight apparently caused my curiosity
about the subject of minimal resistance. And as you all noted during this
conference, Praha is worth visiting more than once.
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Figure 3.6 Finite element solution of (3.4) in a quarter square
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