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Optimal Sobolev embeddings

LuBoS Pick

1 Introduction

Sobolev inequalities constitute an important part of functional analysis
with wide field of applications, mainly to the theory of partial differential
equations and to mathematical physics. There are many forms of Sobolev
inequalities; their common feature is that certain information on a function
w is derived from known data on its gradient Vu (or on a higher-order
gradient). By the “data” we usually mean the membership of the function
to a certain function space or class.

One form of the classical Sobolev inequality asserts that, given1 < p < n
and setting p* = np/(n — p), there exists C' > 0 such that

(/ﬂ Ju@) | dx)l/p* §C</9|(Vu)(x)|l’dx>l/p, u € Cy(R). (1.1)

(Here and throughout the paper, {2 is a bounded domain in R*, n > 2.
For our convenience, with no loss of generality, we shall everywhere below
assume that |£2| = 1. As usual, ¢, C' will denote various positive constants
independent of appropriate quantities and not necessarily the same at each
occurrence. )

In case when p > n and (2 is a Lipschitz domain, a function whose
gradient belongs to LP({2) is known to be Holder continuous, namely,

Ju(z) —u(y)| §C</9|(w)(x)|?dx>l/p, ue Cln).

sup
zyen |T— y|t—n/p

The limiting case p = n is the most interesting (and the most difficult)
one. It is known that, for every ¢ < oo,

(/Q Iu(x)lqu>1/q §C</9|(Vu)(x)|”dx>l/n7 weCy(), (1.2)

but standard examples show that, although np/(n — p) — oo when p — n_,
one cannot take the L>-norm on the left side of (1.2). In particular, there

AMS Class.: 46E30, 46E35, 47G10, 26D10.



Optimal Sobolev embeddings 157

does not exist an optimal (largest) L7-norm on the left hand side of (1.2).
However, a finer result than (1.2) is available if we are willing to replace the
environment of Lebesgue spaces by a broader one. Perhaps the most natural
next step in this direction is to consider the context of Orlicz spaces. We
say that A is a Young function when A is convex and increasing on [0, c0)
and

lim t/A(t) = lim A(¢)/t = oc.

t—04 t—o00

The quantity

lalla = llull ) = inf{A > 0: / ()l g, < 1}
0 A

is called the Luzemburg norm of u and the set L4 = L4 ({2) of all functions
u such that ||u||4 < oo is called the Orlicz space generated by A.

Now, independently of one another, Pokhozhaev [Po], Trudinger [Tr] and
Yudovich [Y] have shown that there is a constant C' such that

1/77,
||u||e,{w150(/9 |(Vu><x>|ndx) L wei®),  (13)

where [Jul] / is the norm in the Orlicz space exp L™, generated by any

exp L"
Young function A which is equivalent for large ¢ to expt™, n' =n/(n —1).
This space is essentially smaller than any L?-space with finite ¢, but, natu-
rally, it is essentially larger than L.

Hempel, Morris and Trudinger [HMT] showed that the exp L™ -norm
on the left hand side of (1.3) cannot be replaced by any essentially larger
Orlicz norm. It however turns out that a further essential improvement of
the norm on the left hand side of (1.3) is still possible if we allow a different
context of function spaces than that of Orlicz spaces. Namely, we can replace
the exp L™ -norm in (1.3) by a larger, classical Lorentz norm to get, for
u € Cg(92),

L (0" (log(e /1)) ”dt "<c [ (vw@r ar o (1.4)
0

where v*(t) = inf{\A > 0;|{z € 2;|u(z)] > A}| < t}, t € [0,1], is the
nonincreasing rearrangement of w. This 1nequahty can be easily derived
from classical capacitary estimates of Maz’ya (see [M], pages 105, 109); it
also appears in [Pe] (cf. [CPu] for more details), and it was stated explicitly
by Hansson ([H]) and by Brézis and Wainger ([BW]).
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Now, the norm on the left hand side of (1.4) is essentially larger than
that of (1.3) and therefore (1.4) is a better estimate than (1.3) but we
have to pay a tax for this improvement: while the definition of the norm in
an Orlicz space involves solely superposition of functions and integration,
the new function norm that appears in (1.4) contains a further nontrivial
operation: the nonincreasing rearrangement of a function.

Many of the function norms that have been mentioned so far are par-
ticular examples of (quasi-)norms in Lorentz-Zygmund spaces Ly q.o(12),
which were introduced and studied by Bennett and Rudnick in [BR]: for
0<p,qg<ooand a€ R, define

w (P01 (log(e/) |

lallpai =l i) = | 1oy
For a = 0, L, 4.o(f2) coincides with the usual Lorentz space L, ,(£2). The
following particular examples of Lorentz-Zygmund spaces are of interest:
exp L™ (2) = Lo oo;—1/m (§2), LP(§2) = Ly p:0(£2), and the space determined
by the norm on the left hand side of (1.4) is just Loo n,—1(£2).

Lorentz-Zygmund spaces and Orlicz spaces are two independent classes
of function spaces having a nontrivial overlap but also a nontrivial inter-
section (for example, Lebesgue spaces belong to both). A more interesting
example is exp L”'7 which is an Orlicz space as well as it is a Lorentz-
Zygmund space. In (1.3), exp L”I(Q) is optimal as an Orlicz space, but it
is not optimal as a Lorentz-Zygmund space, since it can be replaced by
Lo n;—1(£2), which is essentially smaller (see Theorem 3.2 below).

We shall focus on the question when Sobolev inequalities are optimal
within various classes of function spaces. We shall derive certain quite gen-
eral results and apply them to concrete situations. A special attention will
be paid to limiting cases such as those described by (1.3) and (1.4).

We will also consider inequalities involving the m*" order gradient, V™u,
of a function w in C{*(2), defined in terms of the usual first order gradient

0] 0] o? o?
V=|—,...,— ) and the Laplacian A = + -+ — as follows:
oxy ox,

o2 0x2

n

| AR when m = 2k,
V(A*u) when m = 2k + 1,

where Alu = A(ATu), j=2,..., [%] In order to obtain the analogues

of (1.1), (1.3) and (1.4) for V™u we have to replace n by n/m throughout
(for the resulting inequalities see [M], [Pe], [Sob], [Str], [H] and [BW]).
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In general, we shall consider two rearrangement-invariant Banach func-
tion norms gg and gp, defined on M4 (0, 1), the set of nonnegative measur-
able functions on (0,1), for which there is a constant C such that

or(u* (1) < Con(IV™u*(),  ue CF (). (1.5)

We would like to know that or cannot be effectively increased nor op ef-
fectively decreased.

For the reader’s convenience we denote by ogr the range norm and by
op the domain norm of the Sobolev inequality. The function spaces cor-
responding to por and pp will be frequently called the range space or the
domain space, respectively.

We will make no difference between Sobolev inequalities (between norms)
and Sobolev embeddings (between corresponding function spaces).

We shall present a survey of recent results on the subject of the optimal-
ity of Sobolev embeddings, many of which have been obtained in collabora-
tion with other authors, namely A. Cianchi, D.E. Edmunds, W.D. Evans,
R. Kerman and B. Opic.

We assume throughout that m,n € N, n > 2 and 1 <m <n — 1. For
two positive quantities A and B we write A = B when ¢ < A/B < C.

2 Reduction to Hardy operators

Our first step is the reduction of (1.5) (an inequality involving gradients)
to an inequality involving more manageable Hardy-type integral operators
acting on monotone functions on (0, 1).

To illustrate how the Hardy-type operators arise, let us consider the
cases m = 1 and m = 2 for smooth radial functions u(x) = u(|z|) supported
in the ball

B:{xER”;|x|<mn:w}

Tl/2
of unit measure centred at the origin. Setting r = |x|, one has
(V) ()] = [(Vu)(r)] = |u'(r)],
with u(r) = [*" u'(s)ds or

T

w(rar/™) = = /f O, f() = u/(s), s = wat!/™,
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Similarly,
(V2u)(r) = (Au)(r) = () + 200, ulsa) = () = 0.
so that
u(r) = 5 i - <r2_” /()T(Vgu)(s)s"_1 ds + /TM (Vu)(s)s ds>
or
w(ky,rt/™) = i r2/n)-1 ' ! (2/n)—1
(") = s (s [ pwaes [ o ar).

with f(t) = (V2u)(s), s = knt'/".

For general u, the connection with Hardy operators is made by a version
of the Pélya-Szegd inequality when m = 1 and by a convolution inequality of
O’Neil when m > 1. This connection is sharp when u is radially decreasing.
It should be clear from the example above that the case m = 1 is different
from the others, involving, as it does, one Hardy operator rather than a pair
of dual Hardy operators.

Definition 2.1. Let (R, i) be a measure space such that u(R) = 1 and let
M (R, 1) be the set of nonnegative y-measurable functions on R. A Banach
function norm ¢ on My (R, ) is defined by the following six axioms (as
usual, x stands for the characteristic function):

(A1) o(f) > 0 with o(f) =0 if and only if f =0 a.e;

(A2)  olef) =co(f), ¢>0;

(Az)  o(f +9) <ol(f)+o(g);

(Ay)  0Z fo / f implies o(fn) /7 o(f);
(As)  o(xr) < oc;

(Ag) there exists C' > 0 such that

/ f@) du < Cof),  f €M (R, p).
R

If moreover

(A7) o(f) = e(g) for every f, g such that f* = g%,
then p is called a rearrangement-invariant (r.i.) norm.

The associate norm of an r.i. norm g on M4 (R, i) is the functional

0'(9) = sup /ghdu, g.h € M (R, ).
e(h)=1JR
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In the special case when R = (0,1) and p is the Lebesgue measure, we have
'(9) = 04(9"), (2.1)
where the “down” associate norm, o/}, is given at g by
1
dlo) = s [ gl @dt gheMm 1)
o(h)=1Jo

Then ¢’ and ¢/, are Banach function norms, ¢’ is moreover rearrangement-
invariant, and the duality principle

=0
holds (see [BS], Chapter 1, Theorem 2.7). Moreover, Holder’s inequality

/ fgdu < o(f)o'(9)
R

is true for every f,g € My (R, ).

In this paper, R will be mostly either 2 or the interval (0,1), and pu
will be the corresponding Lebesgue measure. In any case, we shall assume
throughout that p is atom-free.

In the sequel we shall denote by P the integral mean operator

1

Py(t) := g/o g(s)ds, ge M (0,1), t € (0,1).

Now we can state the general version of the reduction theorem.

Theorem 2.2. Let gr be an r.i. norm on My (0,1). Then, when m = 1,
a necessary and sufficient condition that (1.5) hold with or and a Banach
function norm op (not necessarily rearrangement-invariant) on M4 (0,1)
is the ezistence of K > 0 for which

1
on( [ 1O as) < Kop(n). Jem@). @2
t
Whenn > 3 and 2 <m <mn —1, a necessary and sufficient condition that

(1.5) hold for or and another r.i. norm op on M4 (0,1) is the existence of
K > 0 for which

on ( / (P ()5t ds ) < Kon(f"), (2.3)

for every f € M4 (0,1), f(1-)=0.
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Remark 2.3. (i) A short argument involving Fubini’s theorem yields (2.3)
equivalent to

QR( f(m/n)— 1/ f¥(s)ds +/ £ (s)stm/) 1ds) < Kop(f"),

where f € M,(0,1), f(1-) =0.
(ii) It is important that op and gg in Theorem 2.2 are norms. The
situation is different when we allow quasinorms (cf. [EKP]).

The proof of the sufficiency part of Theorem 2.2 follows for n > 3 and
m > 2 from O’Neil’s convolution inequality ([O])

[P(f *9)"](t) < H(PF)() / £ s (24

and, when m = 1, from the following version of the Pélya-Szego inequality,
proved in [CP1i] (cf. also [Ta], p. 203):

t s dut 1 t
/ [—yl/” ] (s)ds SC/ [Vu|"(s)ds, teRy,
0 dy 0

where u € C§(R™). The necessity part of Theorem 2.2 is proved by a reduc-
tion of (1.5) to spherically symmetric functions. Details of the proof can be
found in [EKP, Section 3].

The well-known estimate

@) <c [ WO - e oy,
po |z —y|n ™

where C' > 0 depends only on m and n (see [Z], Remark 2.8.6), combined
with (2.4), yields, for 0 <t < 1,

t 1
u* (t) gC{t(m/”)l/ V™ ul*(s) ds +/ |Vmu|*(s)s(m/”)1ds].
0 t

(The constant C is given explicitly in [Ad], p. 390.)

Corollary 2.4. Let m = 1. Then (2.3) is sufficient for (1.5). If moreover

R (/tl(Pf*)(S)S_l/”' d8> < Cor (/tl Fols)s™H d8> ; (2.5)

then (2.3) is also necessary for (and hence equivalent to) (1.5).
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Proof. That (2.3) implies (1.5) follows from the preceding remarks. Next,
Theorem 2.2 yields that (1.5) is equivalent to (2.2). The more so, (1.5)
implies (2.2) restricted to monotone functions, that is,

1
OR </ f*(s)sil/"l ds> < Kop(f"), feML(0,1).

If now (2.5) is satisfied, then the last estimate is equivalent to (2.3) (with
m=1). O

It would be of interest to be able to decide that a given r.i. norm pg
satisfies (2.5). A sufficient condition can be expressed by means of the lower
Boyd index.

Given an r.i. norm g on M4 (0,1), the lower Boyd index i, is given by

log(1/1)

ig = tl_i,%l+ log hg (t) ’
where
ho(t) =sup ZE9) g p) = p(st), Fem0,1), 0<st<1.
f#0 o(f)

Theorem 2.5. Let pr be an r.i. norm on M (0,1). Then (2.5) holds when-
ever the lower index ig of or satisfies

ip >n/(n—m). (2.6)

Proof. Fix g € 9M4(0,1), with ¢%2(g9) = 1. Then, by Fubini’s theorem and
an elementary change of variable,

/Olg ()/:(Pf )(s)sm/™ L ds dt

1 1 1
< / s m/m / g*(t) / Fr )y ™™t dy dt ds.
0 0 st

Taking the supremum over g, we obtain

QR( /tl(Pf*)(s)s(m/”“ds>§ / L ( £ @y 1dy) s
([t o[ rov2)

But (see [B]), ir > n/(n — m) is equivalent to fo s7/ My (s)ds < oo, O
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Equipped with these facts, we shall now investigate the optimality of
(1.3) and (1.4).

3 The optimality of (1.4) in the context of
Lorentz-Zygmund spaces

Given two (quasi-)normed spaces X,Y, we say that X is embedded into
Y, and write X — Y, when X C Y and there is a C > 0 such that
[flly < C|fllx for every f.

Definition 3.1. The fundamental function of an r.i. norm g on M, (R, u)
is the function ¢,, defined at ¢ € [0,1] by

@o(t) == o(xg),  where u(E)=t.

The function ¢, is quasiconcave, that is, nondecreasing on [0, 1], satisfy-
ing ¢,(t) = 0 if and only if ¢ = 0, and such that the function t/p,(t) is
nondecreasing on (0, 1).

Conversely, every quasiconcave function ¢ on [0,1] is a fundamental
function of certain r.i. space(s). Among these, of particular importance are
the endpoint Lorentz space A,(R), given by

1
s,y = [ 10 dote)
and the endpoint Marcinkiewicz space My(R), given by

1122, (R) (P (B)e(t).

= sup
o<t<1

If X is an r.i. space with the fundamental function ¢, then
A(R) = X — M,(R). (3.1)

We shall make use of the following embedding theorem from [Sh], Propo-
sition 3.1 (for more general version cf. e.g. [OP], Theorem 4.6 and [EOP],
Theorem 6.3; most of the results can be obtained also from various earlier
ones on weighted embeddings of classical Lorentz spaces—cf. e.g. [St], [Sor],
or [CPSS] and the references given there).
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Theorem 3.2. Let 0 < p,p1,p2,q,7 < 00 and let a, 3 € R.
(1) If p1 > p2, then the embedding
Lp,,g:a(£2) = Lp, rip(£2)

holds.
(ii) The embedding

Lpg;a(£2) = Lprip(£2)
holds if and only if one of the following conditions is satisfied:

1 1
0<g<r<oo, p = 00, at—=2>0+—;
q T
0<qg<r<oo, 0<p<oo, a > f;
1 1
0<7r<q< o, a+a>ﬂ+;.

Our aim is to use Theorem 3.2 and some ideas from [EOP] to show
that the range norm in (1.4) cannot be improved in the context of Lorentz-
Zygmund norms, but the domain norm can be replaced by the norm of any
of the spaces

anr;(l/n)_(l/r)(ﬂ), 1<r<n. (3.2)

By Theorem 3.2, for every two distinct values of r € [1,n], the corresponding
spaces in (3.2) are incomparable (we say that two (quasi)-normed spaces X,
Y are incomparable if neither of the embeddings X — Y, Y — X holds).

Theorem 3.3. (i) Assume that r € [1,n]. Then there exists a C > 0 such
that for every u € CL(92)

(/01 u*(t)n(log(e/t))—n%> 1/n

< C’</01 <|(VU)|*(t))7t(r/n)—1(log(e/t))(r/n)_l dt)

(ii) Assume that for some 0 < p,q < oo and a € R

1/r

1/n
fullty ot < € [ (Tw@I )
Then, necessarily,

Looni—1(£2) = Ly g;a(£2).
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Proof. (i) follows immediately from Corollary 2.4 and [EOP], Theo-
rem 4.2 (ii) with p, =n,r € [1,n], ¢z = 00, s =n,v=—-1,6 = (1/n)—(1/7),
and a = f = 0. The proof of (ii) can be obtained from Theorem 3.2
and [EOP], Theorem 10.4 (ii), via a tedious verification of conditions for
various parameters involved. Details are omitted. O

We conclude that, in (1.4), the range norm is optimal among Lorentz-
Zygmund norms, but there is no optimal Lorentz-Zygmund domain norm.

Using [EOP], Lemma 9.1, we can improve on (1.4) by replacing the
domain space L™(f2) by the sum of “endpoint spaces” in (3.2), (L™(£2) +
Ly 1,1 (£2)). We formulate the resulting inequality as a corollary.

Corollary 3.4. There exists a C > 0 such that for every u € C§(£2)

([ vt 4)" <o {(ore)”

Remark 3.5. The result of Corollary 3.4 is a special case of [EOP], The-
orem 12.6 with p = n’, r = n, § = —1/n’ and f = 0. The sum
L™(2) + Lya,—1/n(92) is indeed essentially larger than L™({2); this fol-
lows from Theorem 3.2. It is also of certain interest to note that the
fundamental function of L"(§2) 4+ Ly, 1,_1/ (§2) is equivalent near zero to

'/ (log(e/t))~1/"" hence it is “better” than that of L™(£2).

Now let us switch to Orlicz spaces.

4 The optimality of (1.3) in the context of Orlicz
spaces—Part 1

Given a Young function A, we define its complementary function A by

A(t) := sup(st — A(s)), t>0.
s>0
Given two Young functions A and B, we shall say that B > A when
A(t) < B(Ct) for some C > 0 and every large ¢ and, moreover, for every
fixed A > 0,
B(\t)

li =
125013p A 00
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As mentioned in the Introduction, Hempel, Morris and Trudinger ([HMT])
proved that exp L™ (£2) is the optimal (that is, the smallest possible) Orlicz
range space in (1.3) when the given domain space is L™({2). The following
remarkable general result on the optimality of an Orlicz range space was
proved recently by A. Cianchi ([Ci]).

Theorem 4.1. Let A be a Young function, satisfying

%) 1 5
/ Als) ds = 0 and / M ds < 00.
1 0

Sn’+1 Sn’+1

Set

where @, is the inverse function of

D, (t) :/0 ;i’(i)l ds.

Then
lullz,, @) < IVullLie), — uwe (), (4.1)

and (4.1) no longer holds when A, is replaced by a Young function B such
that B > A,.

However, neither the result of [HMT] nor Cianchi’s theorem give any
information on the optimality of the Orlicz domain space. Our aim in this
section is to investigate the optimality of L™ as an Orlicz domain space
in (1.3).

Rather surprisingly, it will turn out that L™({2) is not optimal as an
Orlicz domain space in (1.3), and even worse, that such an optimal Orlicz
domain space does not exist at all (a similar situation is described by (1.2),
in which case there is no optimal Lebesgue range space).

First, we need an auxiliary lemma, which can be obtained by a simple
exercise with Luxemburg norms (cf. also [Ci], Lemma 2).

Lemma 4.2. Let A be a Young function and 0 # « € R. Define

1 t
Ea(t):mt_l/o‘/o A()s19=1ds, te (0,00),
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and
Go(t) = ﬁt_l/“/ A(s)s/) =1 g, t € (0,00).
«a

Then both E, and G, are increasing and, for a € (0,1/2),

(0%

— ifa>0,
Bl U°
Htax(o’“) (t)HLA(O 1) ~
E) aa
———— ifa<0;
aaja) e
aOé
_— ] >0,
ERIV A
Htax(a’l)(t)’ L4(0,1) ~
E) a/Oé
———  ifa<;
CRIVOIAY
and
aa
aiqe Ye>0
H/ X(Oa) d ~
LA(0,1) a®
——  ifa<0;
aiaa 1

Now we are in a position to prove the main theorem of this section (this
result was obtained in collaboration with R. Kerman).

Theorem 4.3. Let A be a Young function such that
||“||exan’((z) < OVl 0)- (4.2)
Then there exists another Young function, Ay, say, such that
A> A (4.3)

and

”u”exp L' (Q) S C”VU’”LAl(Q) :
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Proof. First, we note that i, = co when o(f) = ||f||eXan/(0’1). Hence, by
Theorem 2.5,

1 1
‘/ sTY(PF*)(s)ds <C / sV 4 (s) ds .
t exp L™’ (0,1) t exp L™’ (0,1)
Thus, by Corollary 2.4 with m = 1, (4.2) is equivalent to
1 !
| ey < Cllfllzaon
t exp L™’ (0,1)
By duality, this is equivalent to
1
| sy as <OUflporyimrony:  (44)
t L ;(0,1)

Using the argument of [Ca], we obtain that (4.4) is equivalent to the same in-
equality restricted to characteristic functions of intervals (0, a) for a € (0, 1),
namely

< Ca(log(e/a))'™ .
L ;(0,1)

1
/t ST (Pl a)(5) ds

Now, it can be easily seen that, for a € (0,1/2),

hence, by Lemma 4.2, for a € (0,1),

~ a”t_l/n X(a,l)(t)”LA(O,l)v
L ;(0,1)

1
/ 57U (Pt o) (5) ds

t

al/n

1
S_l/nl(PX* a )(5) ds S
/t (0,a) L 01) G—1(1/a)

where G(t) = n/t" fot A(s)s™"' =1 ds. Passing to inverse functions, we get
that (4.2) is equivalent to the existence of some C7 > 0 such that for every
t € (e,00),

-
A
/1 Sn(i)l ds < Cy logt. (4.5)
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Thus, to prove the statement of the theorem, we need to construct a
function A; satisfying (4.3) and, for some Cy > 0,

.~

A

/ 1,(51) ds < Cylogt, t € (e,00). (4.6)
1 s

Suppose that A is fixed and that (4.5) holds. Then, with no loss of generality,
we may assume that there is a C3 > 0 such that

A(t) > Cst™,  te (e ). (4.7)
Observe that (4.5) implies that, for some Cy > 0,
A(t) < C4t" logt,  t € (e,00). (4.8)

Indeed, for t € (e, 00), we have

and (4.8) follows from (4.9) and (4.5).
Now, we note that, by (4.7),

A(s) 03”1*1
slogs log s

— 00 as s — 00. (4.10)

Let 8 > 21" Cy be fixed. We associate to each t € (e,00) the set

A(s ’_
6 = {s € 0,005 EL > peany 1},
and the number
T =7(t) :=inf G;. (4.11)

By (4.10), G; # 0. Further, 7 > ¢, since, by (4.8),

A(s)

< Cus" Tl <O T < BEROY Y, s € (e,t),
slog s

and, because the function A(s)/(slogs) is continuous in s,

A(T)
TlogT

= B2t L. (4.12)
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Next, (4.7) implies that every s, satisfying
n'—1

Cs
log s

> B2t 7,

belongs to G;. Since the inverse function F'~! of

n'—1

F(s):=

log s
satisfies for large values of ¢
FHt) ~ (tlogt)nfl,

it follows that there is a C5 > 0 such that

(05t(1ogt)”’1,oo) c {s; Cs Sizgsl > 5(275)"’*1} C G,

This, combined with (4.7), implies that
logt < logT < Clogt, t € (e,00). (4.13)

We now claim that for every A > e there exists a ¢ > 0 such that the
corresponding 7 = 7(t) satisfies 7 > At.

Indeed, suppose that the claim is not true, that is, there exists a A > e
such that 7 < At for every t € (e,00). Then, by (4.12), (4.13) and the

monotonicity of A(s)/s,

ﬂ(2t)” “llogt < % < %

that is,
A > B2V "M\ logt,  t € (e,00).

We therefore obtain, for sufficiently large ¢,

t oy t oy t )
/ Als) ds > / A,(j_)l ds > c/ M ds > c(logt)z,
1 A " A

sn'+1 S

a contradiction with (4.5). This proves our claim. In turn, by convexity of
A, we get, for some ty large enough,

A(r) > 24(1),  t>to. (4.14)
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Next we claim that, for every fixed M € N, there exists a sequence
t; /" oo such that
A(ry)
(7;) = — — o0, Jj— o0, (4.15)
Tj A(Mtj)

where 7; corresponds to ¢; in the sense of (4.11). Suppose that our claim is
not satisfied, namely, that there is an M € N and a K > 0 such that

A(r) ¢
T A(Mt)

N

<K,

t € (e,00).
Then, for t > Me, we have by (4.12) and (4.13)

t t o optM g
A,(S) ds > Als) ds=M™" 7A(MS) ds
p st 1

M Sn’Jrl Sn’+1

\%

, t/M 1
>K M / Ogsdszc(logt)2,
1

- S

a contradiction with (4.5). This shows (4.15). Passing to a diagonal sequence
if necessary, we obtain

00,  j— oo (4.16)

We may assume with no loss of generality that t; > ¢o, where tg is from
(4.14), t; > 7;—1 and 2t; < 7, j > 2 (again, we can pass to a subsequence
when necessary).
Now we are ready to construct A;. We shall in fact construct gl. For
71=2,3,...,set
T A(ry) — A(E)) .
gl(t): ] Tj—tj (t_tj) if tj StSTja (417)
A(t) otherwise.

Obviously, A;(t) > A(t) for every ¢t € (0,00), and, moreover, by (4.17),
(4.14) and (4.16),
A, (2t)) 1
A(jty) — 2

A(rj)t

,j — 00, ] — 0.
A(jt;)T;
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This shows that A; > A, which is equivalent to (4.3).
It remains to verify (4.6). Fix j € N and assume that ¢ € [t;,t;41). Then

P Tr — U
(4.18)
and, by (4.12) and (4.13),
el A(r) — A(t ,
/ Aty + A =AW )]s”lds
th Tr — tk
T A , Al (4.19)
< C/ Aty) + ﬂs smlds<C (T,"_)l
t Tk Trty
< Clogm, < Clogty.
With no loss of generality we may assume that
j—1
t; > exp (Zlogtk>7
k=1
whence, by (4.18), (4.19), (4.5), and the fact that ¢ > t;,
t Avl (5) J
e ds < Clogt+ Y _logty < C(logt +logt;) < Clogt.
k=1
O

Remark 4.4. We have shown that there is no optimal Orlicz range space
n (4.4), although, by Theorem 4.1, there is one for the corresponding
Sobolev inequality with the fixed domain space L(log L)*/™ (£2). This shows
that (2.3) is not equivalent to (1.5) in general.

5 The optimality of Sobolev embeddings in the
context of rearrangement-invariant spaces

The surprising results of Theorems 4.3 and 3.3 motivate us to dig a little
deeper and to investigate the optimality of Sobolev embeddings in a broader
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context than in that of, say, Lebesgue, Orlicz or Lorentz-Zygmund spaces.
The natural appropriate environment seems to be that of rearrangement-
invariant spaces (which moreover includes all the three above-mentioned
classes of function spaces). We shall apply Theorem 2.2, as in [Kel], to as-
sociate to a given r.i. norm gg the essentially smallest r.i. norm gp for which
(1.5) holds. For the sake of brevity, in the case m = 1 we restrict ourselves
to r.i. norms gr which satisfy (2.5). When this restriction is removed, we
can still obtain certain optimality results (see [EKP] for details).

Theorem 5.1. Let or be an r.i. norm on M (0,1).
(i) Assume that (2.5) (with m = 1) holds. Then the functional

R(/tl Fr(s)ys ds), feMm(0,1), (5.1)

is equivalent to an r.i. norm. Moreover, it is the optimal (that is, the
smallest) r.i. domain norm for gr in (1.5) with m = 1.
(ii) Letn >3 and 2 < m <n — 1. Then the functional

gD(f>=gR(/t <Pf*>(s>s<m/">1ds), FEM 0,1, (5.2

is the optimal r.i. domain norm for gr in (1.5).

The proof of Theorem 5.1 can be derived from Theorem 2.2, Corollary 2.4
and the axioms of an r.i. norm.

Remark 5.2. The condition (2.5) is not necessary for the functional
or( ftl fr(s)s™/ ds) to be equivalent to an r.i. norm; consider for example
the Lorentz norm gg(f fo t)t=1/7 dt. Then gR(ft )s L/ ds) =
fo t) dt, but (2.5) is not satlsﬁed.

Now we turn our attention to the question of the optimal range space
when the domain space is given.

Theorem 5.3. Suppose that op is an r.i. norm on 9M4(0,1). Then the
functional o, defined by

(/™ (Pg*)(t)) ifm=1

o(9) = op (/1(139*)(8)5(7”/”)_1 ds> ifn>3andm >2 (53)

is an r.3. norm on M4 (0,1). Put opr = c'. Then og is the optimal (that is,
the largest) r.i. norm for op in (1.5).
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Proof of Theorem 5.3 again follows from Theorem 2.2 and the axioms of
an r.i. norm.

6 Optimal pairs of Lorentz-Karamata norms

Our next goal is to combine the results on the optimality of a domain norm
with those on the optimality of a range norm and to investigate the opti-
mality of the pair (¢p, 0r), that is, the question of when the gpp associated
to or in Theorem 5.1 has gr as its optimal range norm.

The key obstacle is of course the fact that the optimal range norm is
given implicitly via its associate norm by (5.3). However, we can apply the
construction of Section 5 to a quite large family of classical Lorentz norms
(the so-called Lorentz-Karamata norms), which includes almost all examples
of norms that have been mentioned so far.

Definition 6.1. A positive function b is said to be slowly varying (s.v.) on
(1,00), in the sense of Karamata, if for each ¢ > 0, t°b(t) is equivalent to
an increasing function and ¢~<b(t) is equivalent to a decreasing function on
(1, 00).

Example 6.2. The following functions are slowly varying on (1, 00):

(i) b(t) = (e +logt)*(log(e + logt))ﬂ7 a,BER;
(i) b(t) = exp(vIogt).

The properties of slowly varying functions are discussed in some detail
in [Zy], Chapter 2, p. 184, see also [W] and [Ke2]. We list some that will be
needed later.

Lemma 6.3. Suppose that b is slowly varying on (1,00). Then

(i) b" is slowly varying on (1,00) for all v € R;
(i) ftl,l s710(s71) ds is slowly varying on (1,00) and (see [Zy], Chapter 2,
p. 186)

lim ——) —0; (6.1)
t=oo [ s7ib(s71) ds

(iil) limy— o0 =1 for all ¢ > 0.
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Denote

0p(9) = llgllzr (0,1, 0<p<oo.

Definition 6.4. Let 0 < p,q < oo, and suppose b is slowly varying on
(1,00). Let ¢ = ¢y q:6 be given by

o(t) = /P =D p—1y, 0<t<l.

Assume that g,(t~/%(t 1)) < oo when p = oco. The Lorentz-Karamata
(L-K) (quasi-)norm ¢ = 0p ¢ is given at f € M4 (0,1) by

o(f) = oq(0f").
Standard calculations (see [B]) yield
1o = P.

We shall need some information on associate norms of classical Lorentz
norms.

Proposition 6.5. Assume that p € (0,0] and ¢ € M (0,1). Let

0(9) = 0¢.p(9) = 0p(09").

Then
o'(9) = { o (%) if 1<p< oo, (6.2)
o1 (%) if P =00, ¢ nondecreasing. |

Proof. By (2.1), o'(9) = 0/,(¢*). In [Sa], Theorem 1, it was shown that if
1 < p < oo (and ¢ is any locally integrable nonnegative function (weight)
on (0,1)), then

b~ o (Tt ) + 20 gemion. 6
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It remains to observe that when ¢ is decreasing, then the second summand
on the right hand side of (6.3) is not greater than a constant multiple of
the first one.

The corresponding expression for 0 < p < 1 was obtained in [St], Propo-
sition 1:

t' (P (Pg)(t)
' (9) & on | —— IR M. (0,1). 6.4
D e B NS (%)
As for p = 0, it is clear that when ¢ is nondecreasing on (0, 1), then
") = o (2
@) =a(3)  geMmO. (6.5)
([l

Given the index p, 1 < p < 0o, and the weight ¢ on (0, 1), with

1
/ $(1)? dt < oo, (6.6)

0

it is not difficult to verify that

o(f) = ep(@Pf"),  feM(0,1), (6.7)

is an r.i. norm. We will need the following result, which is of independent
interest.

Theorem 6.6. Let 1 < p < oo and suppose the weight ¢ on (0,1) satisfies
(6.6). Assume, further, that fol o(t)Pt~P dt = 0o and

/OT p(t)P dt < CrP (1 + /Tl o()” dt), 0<r<l. (6.8)

tp
Then the r.i. norm o defined in (6.7) has the associate norm
d(9) m op(tbg"), g €M(0,1),

where
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Proof. Observe that

P = (p' —1) (1 + /1 o(s)? d5> 4 ¢S;)p.

Hence, integrating both sides of (6.9) between 0 and ¢, we obtain

/Oq/)(s)l” <1+/ ()" ) (6.10)

These equations, together with (2.1) and (6.2), yield

0y (9) = 0,(9Pg") = 0(g).

Thus, by the duality principle it suffices to show that g, , is a Banach
function norm. According to [Sa], Theorem 4 this will be true if and only if

T 1/p r 1/p
</ W’I> (/ (Pqu')l—P> <Cr, O<r<l.
0 0

But, by (6.10),

[mwrorra= [oo([) "
S /¢ Vo [ o [ 2L war o
el )

/tp 1/ o) " dsdt = /T¢(t)pdt§0rp<1+ :@m)
)

by (6.8). The result now follows from (6.10) and (6.11).

O

Remark 6.7. The norm (6.7) defines a space denoted by I'?(¢?) in [Sa].
An expression equivalent to the associate norm, QIFP( vy Was obtained
in [GHS], but it is not always easy to compute. Theorem 2.7 thus gives
a more tractable way to deal with the associate norm, provided that (6.8)
is satisfied. This is the case, for example, when

2r
/¢p<0 P, 0<r<1/2,

and so, in particular, when ¢ is essentially nondecreasing on (0, 1).
More results and references on the associate spaces of classical Lorentz
spaces can be found e.g. in [CPSS].
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We shall frequently use various weighted estimates for integral operators

n (0,1) (possibly restricted to monotone functions). Of the vast literature

available on this subject, our standard general reference is [OK] and, when
the restricted version is needed, [Sa].

We can now state the main results of this section. First we discuss the
case m = 1.

Theorem 6.8. Let p € (n',00] and q¢ € [1,00], and suppose that b is
a slowly varying function on (1,00) such that ¢(t) = t0/P) =W/ Dp(t—1) sat-
isfies 04(¢) < co. Let

_ Jog(of*)  whenp>gq,
onlf) = {gq(quf*) when p < q,

and

] o)

Then or and op are optimal .. norms in (1.5) (with m = 1).

Proof. In view of Theorem 5.1, only the optimality of oz needs to be shown.
To this end, we prove

or(9) = dp(t/™(Pg")(2),

and then invoke Theorem 5.3. Now, one always has

or(9) = dp(t' /™ (Pg")(1).

This is readily seen, via Fubini’s theorem and Hoélder’s inequality, from

fol ft (s)st/™" dsdt

op (8" (Pg")(1)) = sup

£20 op(f)
__ th(@en ( S ()5 ds)
= Ts0 oo (f)

and the definition of gp(f). Hence, it just remains to show

o (M (Pg)(t) = colp(g)-
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We shall only sketch the proof in the case when 1 < ¢ < 0.
By known weighted inequalities for Hardy integral operators we have

or(f) = 0q4(0f7).
Thus, by (6.2),

or(9) = oy <¢;1¢: Pg*) ~ o (Pj*)- (6.12)
Again,
on(f) = og(t/"o(1) (1))
So, by (6.12),

t””t”"(Pg*)(t)) :

ol (Pg)(0) 2 cay () > i)

In the case m > 2 we have the following result:

Theorem 6.9. Letn >3 and 2 <m <n—1. Let 1 < p,q < oo, and let
b, ¢ and or be as in Theorem 6.8. Given f € M (0,1), define

op(f) = er (/tl Pf*(s)sm/m-1 ds).

Then or and gop are optimal r.i. norms in (1.5) if either p > n/(n—m) or
p=mn/(n—m), ¢ = cc and b is bounded away from zero. In all the other
cases of p,q and b, op is optimal but or is not.

Proof. Once again, just the optimality of pp is in question. We examine this
by cases.

Case1: n/(n —m) < p < oo

Agsume that 1 < ¢ < oo. It is easy to see that it suffices to get ogr
optimal in (1.5) for some r.i. norm. In view of Theorem 5.3, we need only
to find an r.i. norm p such that

or(g) ~ o' (/t1(Pg”‘)(8)s(m/”)1 d8>~ (6.13)
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Since p' < n/m, we have or(f) = 04(0f*), so, from (6.2),

or(9) = 0g (VPg"), (6.14)
where
o), when p < oo,
() = DT =

fot s—1b(s~1)ads’
We claim that a suitable choice for ¢ is the one with associate norm

0'(9) = oy (7" P(8)(Pg™)(8)).

A weighted inequality for the operator P yields

0'(9) = oy (t7"P(t)g" (¢)). (6.15)

Now,

¢ ( / (Pg)(s)stmm ds)
> o (v (00 000 [ Y () (s)stm/m 1 )

> oy (X012 (OVED(PG)(2)) 2 cop(9):

Similarly, using (6.15) and (6.14),
! 1
¢ ([ 2orse=tas) m g (o [ g0 as)
¢ t
< Coy(VPg") < Cop(9):

whence (6.13) is verified. The proof in other cases of ¢ is similar.
Case 2: p < n/(n—m)or p=n/(n—m)and g,(t~/b(t"1)) < oo
In this case, op(f) =~ 01(f). Indeed,

05 = 0o (o00) [ s )
< 0, (o00a(r) [ 872 05) < Cont),
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and the converse inequality follows from the axiom (Ag) of the r.i. norm,
applied to 0 = ¢p.
The optimal r.i. range norm for p; is the classical Lorentz norm

7 (f) = 0o (t' /™ f7(2)).

This follows from Theorem 5.3, since

& ( / (Pg)(s)stmIm ds) = 0u ( / (Pg*)(s)stmim1 ds>
= 01(Pg" (Ot 71 & o (M7 g (1)) = 0 (9).

We conclude that gg is optimal if and inly if p’ = n/m, ¢ = oo, and b is
equivalent to a constant.

Case 3: p’ = n/m and g,(t~1/9b(t~1)) = 0o
By Theorem 5.3, the optimality of g in (1.5) is equivalent to

dr(9) = 0p (/tl(Pg*)(S)s(m/”)_1 d5> : (6.16)

We start with 1 < ¢ < co. By weighted inequalities for P and its dual,

on(f) ~ o, (¢<t> | ey ds) ~ oIt (PF7) (1)),

so, by Theorem 6.6,

. " I e (e e
ool9) ~ er (W), 0t = 1+ [ s~b(s~)ads

Direct calculation yields
1 1 —1/q
op (/ (PX(0,0))(5)s™/™) d5> ~a™" (1 + / sT1p(s7h)e ds> ,
t a

and

/ ~ a ~ a m/nb —1\—1
Q) R ~ =a a .
QR(X(O’ )) QR(X(O,a)) al/pb(a—l) ( )
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Thus,

o ([} (Pxow)()sm/m 1 ds)
Q%(X(O,a)) B

1
bla—1)e . .
=
1+ fal s7Ib(s~1)e ds

as a — 04 by (6.1). As this is not compatible with (6.16), pr cannot be
optimal.

Let ¢ = 1. Then, by Fubini’s theorem,

QR(f)ZAn(f*(t)/tls(”p) “b(s™)d > o (f7),

since b is slowly varying. Denoting

1
B(t) = /t s7ib(s™h) ds, 1<t< oo,

-1

and using Fubini’s theorem and the slow variance of b, we obtain

o) = o1 (000) [ (PrIsD s )
~ o (0 (PF)) ~ e (B 1 (1),

Therefore, from (6.4) and the slow variance of b (hence of )

*

or(9) = Qoo(l;,i:) ~ Qoo(%)a

and

In particular,

1
op ( ftl (PX(O’Q))(s)s(m/”)_1 ds) am™/m (1 + fal s7ib(s™h) ds)
07 (X(0,a)) - am/np(a=t)~1
b(a™t)

T1g fal s71b(s 1) ds

—0 asa— 04
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As before, this rules out (6.16), whence ppg is not optimal.
Finally, let ¢ = co. Then

or(f) = 00 (PP f") = 000 (0 f7),
so, by (6.5)
or(9) = 91(%);

moreover,

op(f) = 0o (aﬁ(t)/t (Pf)(s)stm/m dS) R 00 (1D(t™1) (PF7)(1)).-

If b(t) = 1, then one readily verifies that

o ( / Py ()5 ds) ~ dnl9)

whence gg is optimal. In other cases we may assume that b is continuous
and (replacing b(t) by B(t) = infss¢ b(s), if necessary) that it increases to

d
infinity. If, in addition, we require that Eb(t_l)_1 is nonincreasing, then

ople) = o1 (S0 " 0)),

and hence, applying Fubini’s theorem twice,

1 d 1 .
o [ oyt as) o ([t 2| [ paystnm - as)
t t
= o1 (t"M () T (P ) (1) = o1 (H () T g (1) & oR(9)-
Thus, gg is optimal, again. We conclude that gg is optimal if and only if

q = oo and b increases to infinity. O

7 Examples

We present here examples of norms, op and ogr, which, in view of Theo-
rems 6.8, 6.9 and 5.1, are optimal in (1.5). Throughout this section, b is
a slowly-varying function on (1, 00).



Optimal Sobolev embeddings 185

Example 7.1 (nonlimiting case). Let 1 < p < n/m and let

on(f) = op(f)
and
er(f) = op (" (1)),
Then (or, op) is an optimal pair of r.i. norms in (1.5).
Indeed, this follows for m > 1 from Theorem 6.9 on observing that
o (t‘m/n/t (Pf)(s)sm/m lds) ~ 0p(Pf") ~ ().

When m = 1, we have to combine the arguments of Theorems 6.8 and 5.1 (i)
and note that (2.5) is satisfied because i,, = np/(n —p) > n'.

In particular, this improves (1.1) in the following sense: the range space
LP"(£2) in (1.1) can be replaced by the (smaller) Lorentz space L« ,(12).
That is a well-known fact, but here we may moreover conclude that L,- ,(2)
is the smallest possible such rearrangement-invariant space.

Example 7.2 (limiting case). Suppose that op(f) = 0n/m(f) and that
0r is the norm of the Lorentz-Zygmund space Lo y/m,—1:

0r(f) = onm (177" (log(e/8) " £ (1)) (7.1)

Then gr and gp are r.i. norms satisfying (1.5); moreover, by Theorems 5.3
and 6.6, pp is optimal, though gp is not (see Corollary 3.4). The gr given
by (7.1) and the gp, defined by

QD(f):Qn/m(t_m/”(log(e/t))_l/ (PF) ()5 )

Ngn/m<t m/”(log e/t /f s(m/n) 1ds)

are optimal in (1.5).

For m > 1, this follows from Theorem 6.9 with p = o0, ¢ = m/n and
b(t) = (logt)~'. When m = 1, we have i,, = oo, whence, by Theorem 2.5,
(2.5) is satisfied. The assertion then follows, as above, from the combination
of arguments of Theorem 5.1 (i) and Theorem 6.8.
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Example 7.3 (limiting case—a general version). The above example
can be formulated for a general slowly-varying function as follows: The
r.i. norms

1
00(f) = gagm (1770 [P )
tl
R On/m (tm/nb(tl) / f*(S)S(m/n)71 dS)

and
0r(f) = on/m (177/"0(E) £ (1))
are optimal in (1.5).

When b(t) = [1 + log (1 + log t)]fl, this result extends and gives the
best possible refinement of the double-exponential analogue of (1.3), proved
in [EGO].

Example 7.4 (the optimal domain space for L*°(£2)). Take
1
n(f) = 0o (0067) [ (P17 Y S )
t
1
~ Oco (b(t_l)/ fx(s)s(’m/n)—l dS)
t

and
() = o (B PF)O) 0 (107170

Then (¢op,er) is an optimal pair of r.i. norms in (1.5). Given b(t) = 1
and m = 1, this yields the pair op(f) = o1 (t V™ f*(t)) and or(f) =
00o(f). In other words, when L°({2) is the target space, then the opti-
mal rearrangement-invariant domain space is the Lorentz space L, 1(2).
This fact was obtained also in [CPi], Theorem 5.3, by different means (see
Theorem 10.2 below).

8 The optimal rearrangement-invariant domain space
in (1.4)

A particular case of Example 7.2 finishes the analysis of the optimality of the
limiting case of Sobolev inequality initiated by the domain space L™(£2). We
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can reformulate the result in terms of function spaces in the following way:
For the domain space L™({2), the smallest possible rearrangement-invariant
range space is the Lorentz-Zygmund space Lo n,—1(f2). However, then
L™(£2) is not optimal (the largest possible) rearrangement-invariant domain
space for the Sobolev embedding into Leo ,;—1(f2). This is already known
to us from Corollary 3.4. By Theorem 5.1 (i), the optimal rearrangement-
invariant domain space, denoted by X = X ({2), say, is normed by

1flx = H / L (P (s)ds (5.1)

Lo n:—-1(0,1)

We shall see that the space X is still essentially larger than (L™(£2) +
Lyi—1/n (.Q)), obtained by Evans, Opic and Pick (Corollary 3.4 above). It
turns out that X is a new type of a very important function space. Our
goal in this section is to carry out a detailed study of X, in particular to
describe its relations to familiar function spaces.

First we recall the important fact that there exists exactly one Orlicz
space per a fundamental function.

Remark 8.1. Given a quasiconcave function ¢ on [0, 1], then there exists
exactly one (up to equivalence of norms) Orlicz space L4(R) whose funda-
mental function is ¢. This space is determined by the Young function A,
satisfying

1

Then, of course, by (3.1)
A4(R) = La(R) — My(R),
and L4 (R) may coincide with either (or both) of the endpoint spaces.
The main result of this section is the following theorem.
Theorem 8.2. Let the space X be defined by (8.1). Then
(i) the fundamental function px of X satisfies

px(t) = 11/ (log(e/0) ™", te (0,1) (8:2)
(ii) the following relations hold:
(Ln(Q) + Ln,l;fl/n’(Q)) — Xa (83)
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X C (Ln,ngfl/n’(‘Q) N ﬂ Ln,lgfa/n’(“o)); (84)
a>1

and both the embedding (8.3) and the inclusion (8.4) are strict;
(iii) X s incomparable to every space from the scale of Lorentz-Zygmund
spaces

{Ln,r;fl/n’(Q)}v LS (1,77,);

(iv) X is incomparable to every space from the scale of Orlicz spaces
{Ln,n;—a/n’(Q)}a a € (0,1)

Proof. To show (i) is an easy exercise. We shall prove (ii) in several steps.
First, since L, 1,_1/n/({2) is the endpoint Lorentz space corresponding
to the fundamental function ¢ x from (8.2), it follows from (i) and (3.1) that

Ln,l;—l/n’ ('Q) — X.

We next observe that L™({2) is admissible as a domain space in the
Sobolev embedding with the range space Log n;—1(£2), and X is the largest
such space. Hence it must be

L'(2) < X,

showing (8.3). We shall verify that this embedding is strict.
Using [BS], Chapter 3, Exercise 5, we obtain a formula for the associate
space of (L"(§2) + Ly,1;—1/n(£2)), namely

(Ln(Q) + Ln,l;fl/n’(Q))l = (LnI(Q) N Ln’,oo;l/n’(“Q))'

Thus, it will suffice to find f € X and g € (L”’(Q) N Ln/’m;l/n/(ﬁ)) such

that fol f*g" = oo. A little calculation shows that such functions are, for
example, those having rearrangements

() = Z arX1, (1), g'(t) = Z bix1, (),
k=1 k=1

where I, are the intervals [exp(—2k+1),exp(—2k)), k € N, and the se-
quences {ay}, {br} are defined by

, 2k , 2k
ap = k125" exp (—), by = 275/ exp (—,)
n n
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There are several ways of showing that
X — Ly ny—1/n(£2). (8.5)

For example, one can use weighted estimates on Hardy-type operators re-
stricted to monotone functions. We present a simple direct proof.

First,
1 I
1fllx ~ H [ s as
t

It will be useful to observe that

Loc,ni—1(0,1)

1115 ~ | "1 (log(e/1) " (/ L ) ds)ndt, (5.6)

and

1
VI s = / (log(e/t))' ™" F*(t)" dt

~/ "1 (log(e/1) ™" / P dsde

We claim that, for ¢ € (0,1/2),

/ f*(y)" min(t,y) dy <C’/ (/ ly _1/"1 dy)nds. (8.8)

Indeed,

t 1 , n t 2s , n
/(/ )yt dy) dsZ/( Fryy dy) ds
0 s 0 s

¢ t
> c/ fr(2s)"sds > c/ fr(s)"sds,
0 0
and also

/Ot (/1 Frlyy=r dy>nds > /OW (/1 £ )y dy>nd5

\ o (8.10)
> ct< Fyy=m dy) :
)2
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Now, an argument similar to that of [Ca], Theorem 7, shows that

1 1/n 1 )
(/t f*(y)”dy> <C t/gf*(y)y‘l/” dy, t€(0,1).

Combined with (8.10) and (8.9), this yields (8.8).
Now, (8.8) can be rewritten, using Fubini’s theorem, as

/0/ F ()" dyds < c/ot (/ I dy)”ds.

Hence, by Hardy’s lemma ([BS], Chapter 2, Proposition 3.6),

1
/tl (log(e/t)) / fr(s)™dsdt
0
<c/ =1 (log(e/t)) (/ iy —1/”’dy> dt,

and (8.5) follows from (8.6), (8.7) and (8.11).
It is easy to show that

X # Ln,ngfl/n’ (‘Q)a

as this would contradict Theorem 4.1.
In order to prove the embedding

X — Ln,l;—a/n’(Q)v a>1,

we define

u(t) = %(log(e/t))_(a/nl)_l, w(t) = %(log(e/t))_n

1 1
'7 ) = * —1/n' dvd
- / u(t) / £y V™ dy dt
1 1 n 1/n
— * —1/n' d ) d> ,
T (/ “’(”(/t Py dy) dt

Note that

and

(8.11)

(8.12)
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hence (8.12) follows from the weighted embedding

/0 gttty dt < c( / gt ) dt) T emo.

which is (cf. [Ka], [Av]) equivalent to
/O <w(t)> w(t) dt < . (8.13)

It is a matter of a simple calculation to verify (8.13).
To prove that

X # ﬂ Ln,l;foc/n’(‘Q)a

a>1

it is enough to take any function

g€ ﬂ Ln,l;foc/n’(‘Q) \Ln,n;fl/n’(Q)

a>1

(this set difference is not empty, cf. [EOP]).
This finishes the proof of (ii).

(iii) It is easy to verify that the function

g(t) = t71/" (log(e/t) /"

satisfies
g€ Ly 1/ (2)\ X, 1<r<n.

Conversely, every function h,, whose rearrangement is

* = —a n' 2+
hoc(t) = ZX[exp(—2k+1),exp(—2k))(t)k 2k/ exp (;) )
k=1

satisfies
1 1
ho € X\ Ly ri—1/n(£2) when —<a<-.

(iv) By Theorem 3.2 (ii),

. n
Ln,n;foc/n’ — Ln,T;fl/n’ if 0 <a<l and ﬁ <r<n.
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Therefore, we conclude that, for a € (0, 1),

X <7L’ Ln,n;fa/n’ (Q)v

as the embedding would imply X — L,, .1/, (§2) and thus contradict (iii).
Conversely, assume that, for some a € (0, 1), the embedding

Ln,n;foc/n’ (‘Q) — X

holds. Then (recall that L, ,,_a/n (2) coincides with the Orlicz space
L () where A(t) ~ t"(logt)**~™)) we get a contradiction with Theo-
rem 4.1. ([l

Remark 8.3. It has been recently brought to our attention that spaces
of type X appear naturally also in certain limiting interpolation problems
(see [CPu], [Pu]).

9 The optimality of (1.3) in the context of Orlicz
spaces—Part 2

Let us now return to the question of the optimality of (1.3) in the context
of Orlicz spaces. Theorem 4.1 of A. Cianchi shows that, given a fixed Orlicz
domain space, there always exists the optimal Orlicz range space. On the
other hand, the situation described in Theorem 4.3 shows that for a given
Orlicz range space, the optimal Orlicz domain space need not necessarily
exist. Still, this situation is not universal: consider the simplest possible
example of Orlicz range space, i.e. a Lebesgue space L1({2), n’ < ¢ < oc.
Then it can be shown that the optimal Orlicz domain space is the Lebesgue
space L"(£2) with

an
T =
qg+n

<q. (9.1)

A natural question now occurs: what governs the difference between
the case represented by the range space exp L”’(Q) (for which there is no
optimal Orlicz domain space) and the case represented by the range space
Li(£2), q € (n',00) (for which the optimal Orlicz domain space is readily
found)?

Certain insight into this problem is achieved when the “optimal funda-
mental function” is calculated and the corresponding Orlicz space is con-
sidered. We shall give the details below, but perhaps it might be helpful to
the reader if we outline the idea first:
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) start with a given Orlicz range space L 4;
(ii) find the corresponding optimal rearrangement-invariant domain space X ;
iii) calculate its fundamental function ¢ = px;

) find the (unique) Orlicz space whose fundamental function is equivalent
to ¢, denote this space by Lp;
(v) find out whether or not Lp is a candidate as a domain space for the

Sobolev embedding into L 4;

(vi) if the answer to the question in (v) is affirmative, then Lp is the optimal
Orlicz domain space for L, in (1.5).

Now, when Lo = L9, ¢ € (n',00), then X is the Lorentz space L, 4
with the r from (9.1), ¢(t) = t'/", and therefore Ly = L", which is a good
candidate for the Sobolev embedding into L9. Thus, it is the optimal Orlicz
domain space for such embedding. On the other hand, when L4 = exp L”’,
then X is the space given by (8.1), the optimal fundamental function ¢
is by (8.2) equivalent to t'/™(log(e/t))~"/", and Lp = Ly, p;—1/n, which
is the Orlicz space generated by the Young function B satisfying B(t) ~
t”(log t)1=" for large t. It follows from Theorem 4.1 that Lg is too big to
be a candidate for the Sobolev embedding into exp .

This relatively simple observation can be extended to a general principle
which provides us with a sufficient condition for the existence of an optimal
Orlicz domain space.

We shall first determine the optimal fundamental functions. The proof
of the following proposition is an easy exercise.

Proposition 9.1. (i) Let or be a rearrangement-invariant norm on
M (0,1). In case m = 1 assume further that (2.5) holds. Let gp be given
by (5.2). Then

oD (X(O,a)) N QR (X(a,l) (t)t(m/n)71)7 ac (07 1/2)

(i) Let op be a rearrangement-invariant norm. Let o be given by (5.3) (with
0= op) and set or = o'. Then

1
op (X(a,1)(t)t(m/n)71)

Of course, the above-outlined procedure works as well for any given
r.i. range space which is not necessarily an Orlicz space. Here is a general
sufficient condition for the existence of the optimal Orlicz domain space
when an arbitrary r.i. range space is given.

0r(X(0,a)) = , a€(0,1/2).



194 Lubos Pick

Theorem 9.2. Let pr be a rearrangement-invariant norm on 94 (0,1)
such that (2.5) holds when m = 1. Let op be given by (5.2). Assume that
there ezists a quasiconcave function ¢ on [0,1], satisfying

o) = ton(xen ()5 ), te(0,1/2). (9.2)
Let A be a Young function such that
1
Alt) ® ———, t € (1,00).
O= Tam (o)
Assume that there is a C > 0 such that, for every u € La(£2),
op(u”) < Cllullp (o). (9.3)

Then for every u € CA(£2)
or(u’) < CIIV™ullL (),
and LA (£2) is the optimal (largest) such Orlicz space.

Proof. This readily follows from the fact that there is only one Orlicz space
per a fundamental function (cf. Remark 8.1). More precisely, suppose Lz ({2)
is another such space with A > B. Then, since op is the optimal r.i. domain
space, we get for every u € L4(12)

QD(U*) < C”u”LB(Q) < ||u||LA(-Q)'

By assumptions of the theorem, pp and || - |4 have the same fundamental
function, equivalent to ¢. Thus, necessarily, the fundamental function of
|l - || 8 is also equivalent to ¢, which contradicts A > B. O

For the case when pg is an Orlicz norm, we have the following result,
which follows immediately from Theorem 9.2, (9.2) and Lemma 4.2.

Theorem 9.3. Let B be a Young function. If m = 1, we assume that the
norm o, given by o(f) = |fllzs(0,1), satisfies (2.5). Suppose that there is
a quasiconcave function ¢ on [0,1], satisfying

tm/n

t€(0,1/2),
where Y~ is the inverse function of

- ‘ B(S)
w(t) t /0 g(n/(n—m))+1 ds.
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Let A be a Young function such that
1
e (1Y)

Assume that there is a C > 0 such that, for every f € La(0,1),

A(t) = t € (1,00).

/ P ()t ds

< Clifllizac.-
L5(0,1)

Then La(£2) is the optimal (largest) Orlicz domain space such that

lullLy2) < CIV™ullL,0)-

Remark 9.4. It is not known to us whether or not the condition (9.3) is
also necessary for the existence of the optimal Orlicz domain space.

10 The optimal domain spaces for Sobolev
embeddings into L, BMO and VMO.

We conclude with a brief survey of results from [CPi] on the optimality of
domain space for a Sobolev embedding of order 1 when the range space is
either BMO or VMO. The space BMO of functions having bounded mean
oscillation, introduced by John and Nirenberg [JN], has proved to be partic-
ularly useful in various areas of analysis, especially harmonic analysis and
interpolation theory. For example, it serves as an appropriate substitute for
L* when L* does not work. In this section we establish necessary and
sufficient conditions for the membership of a function to BMO, VMO, or to
L in terms of the summability properties of its gradient.

Definition 10.1. Let @ be a cube in R™ such that |Q| = 1. The space
BMO(Q) is the class of real-valued integrable functions on @ such that

1
17l = s o [ 15(@) = forlde < .
@celQ| /g
where the supremum is extended over all subcubes Q' of @, and fo =

|Q"|~! fQ, f. Let us recall that BMO is not a Banach space, although it can
be turned into one by introducing the norm

Il fllBmo@) = [1flls@ + [ £l (q)-
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We say that a function f : @ — R belongs to VMO(Q), the space of
functions with vanishing mean oscillation, if lim, .o, 67 (t) = 0, where

1
1) = s [ 15)~ foldn, e )

Throughout this section, if X = X (Q) is an r.i. space on M (Q), then we
denote by px its representation r.i. norm on (0, 1), that is, ||u||x := ox (u*)
for every u € M4 (Q) (see [BS] for details).

We start with recalling the result on L*>°(Q) (cf. Example 7.4 above),
formulated in a slightly modified way.

Theorem 10.2. Let X (Q) be an r.i. space on M (Q). Then the following
statements are equivalent:

() llulli() < Cox(Val"). ue CHQ);
(i) o'y (til/” X(0,1) (1)) < o0;
(ili) X(Q) = Ln,1(Q).

In other words, the space L, 1(Q) is the largest r.i. space X(Q) that ren-
ders (1) true.

Main results of this section are the following two theorems. The tech-
niques of proofs are based on the notion of signed nonincreasing rearrange-
ment. Details can be found in [CPi].

Theorem 10.3. Let X (Q) be an r.i. space on M (Q). Then the following
statements are equivalent:

@) llull.q < Cox(IVul),  ueC3(Q);
(1) supgorcr t " Oy (57X (0,0 () < 00;
(iii) X(Q) = Ln,(Q).

In other words, the space L,, «(Q) is the largest r.i. space X (Q) that ren-
ders (i) true.

Theorem 10.4. Let X (Q) be an r.4. space on My (Q). Then the following
statements are equivalent:

(1) limt_,0+ SupQX(Wumgl 9u(t) = 0,'
(i) lime—o, t7 10 (s X(0,)(s)) = 0;
(iil) X(Q) C (Ln,o)a(Q), where (Ln,oo)a(Q) is the set of all functions having
absolutely continuous norm in L, «(Q).
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In particular, for Orlicz spaces we get the following results:

Corollary 10.5. Let A be a Young function.
(i) The embedding
lullv.o < ClIVullLy@), — w€Co(Q), (10.1)

holds if and only if there is a C > 0 such that for all large t
t ~ ’
/ A(s)ds < ct™ L,
0

(ii) The embedding

llullL~ @) < ClIVullL,(q) ue Cy(Q), (10.2)

holds if and only if

/ A(s)s™™ 1 ds < .
1

To conclude, let us investigate the existence of an optimal Orlicz domain
space.

Theorem 10.6. (i) The space L,(Q) is the largest Orlicz space La(Q)
such that (10.1) holds.

(ii) There does not exist any largest Orlicz space La(Q) such that (10.2)
holds.

The assertion (i) recovers a result obtained earlier by Fiorenza in [F] by
different means. It can be also shown by a method analogous to that of the
proof of Theorem 9.2.
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