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On Wiener's type regularity of a boundary pointfor higher order elliptic equationsVladimir Maz'ya1 IntroductionIn 1924 Wiener [1] gave his famous criterion for the so called regularity ofa boundary point.A point O at the boundary @
 of a domain 
 � Rn is called regularif solutions of the Dirichlet problem for the Laplace equation in 
 with theDirichlet data, continuous at O, are continuous at this point. (I do not wantto explain in which sense the solution is understood|this is not quite trivialand is also due to Wiener [2].)Before Wiener's result only some special facts concerning the regularitywere known. For example, since (by Riemann's theorem) an arbitrary Jordandomain in R2 is conformally homeomorphic to the unit disc, it follows thatany point of its boundary is regular.As for the n-dimensional case, it was known for years that a boundarypoint O is regular provided the complement of 
 near O is so thick thatit contains an open cone with O as a vertex (Poincar�e [3], Zaremba [4]).Lebesgue noticed that the vertex of a su�ciently thin cusp in R3 is irregular[5]. Therefore it became clear that, in order to characterize the regularity,one should �nd proper geometric or quasi-geometric terms describing themassiveness of Rn n
 near O.To this end Wiener introduced the harmonic capacity cap(K) of a com-pact set K in Rn , which corresponds to the electrostatic capacity of a bodywhen n = 3. Up to a constant factor, the harmonic capacity in the casen > 2 is equal toinf�ZRn j graduj2 dx : u 2 C10 (Rn ); u > 1 on K�:For n = 2 this de�nition of capacity needs to be altered.The notion of capacity enabled Wiener to state and prove the followingresult.



120 Vladimir Maz'yaTheorem (Wiener). The point O at the boundary of the domain 
 � Rn ,n � 2, is regular if and only ifXk�1 2(n�2)k cap(B2�k n
) =1: (1)We assume that O is the origin of a coordinate system and use thenotation B� = fx 2 Rn : jxj < �g. It is straightforward that (1) can berewritten in the integral formZ0 cap(B� n
)cap(B�) d�� =1: (2)Wiener's theorem was the �rst necessary and su�cient condition char-acterizing the dependence of properties of solutions on geometric propertiesof the boundary. The theorem strongly inuenced potential theory, par-tial di�erential equations, and probability theory. Especially striking wasthe impact of the notion of the Wiener capacity, which gave an adequatelanguage to answer many important questions. During the years many at-tempts have been made to extend the range of Wiener's result to di�erentclasses of linear equations of the second order, although some of them weresuccessful only in the su�ciency part. I mention here three necessary andsu�cient conditions.First, for uniformly elliptic operators with measurable bounded coe�-cients in divergence form u 7! nXi;j=1(aij(x)uxi)xj ; (3)Littman, Stampacchia and Weinberger [6] proved in 1963 that the regularityof a boundary point is equivalent to the Wiener condition (1).Second, in 1982 Fabes, Jerison and Kenig [7] gave an interesting analogof the Wiener criterion for a class of degenerate elliptic operators of theform (3).The third criterion for regularity, due to Dal Maso and Mosco [8], con-cerns the Schr�odinger operatoru 7! ��u+ �u in 
;where � is a measure. It characterizes both the geometry of 
 and thepotential � near the point O.



On Wiener's type regularity of a boundary point 121It seems worthwhile to mention a recently solved problem concerning anon-linear equation, which remained open for twenty �ve years. I mean thequestion of the regularity of a boundary point for the operatoru 7! div(j gradujp�2 gradu) in 
; (4)where p > 1. This di�erential operator, often called the p-Laplacian, appearsin some mechanical applications and is interesting from a pure mathematicalpoint of view.In 1970 I proved [9] that the following variant of the Wiener criterion issu�cient for the regularity with respect to (4)Z0�p-cap(B� n
)p-cap(B�) �1=(p�1) d�� =1: (5)Here 1 < p � n and the p-capacity is a modi�cation of the Wiener capacitygenerated by the p-Laplacian. This result was generalized by Gariepy andZiemer [10] to a large class of elliptic quasilinear equationsdivA(x; u; gradu) = B(x; u; gradu):Condition (5) and its generalizations also turned out to be relevant instudying the �ne properties of elements in Sobolev spaces. See, e.g. thebook [11].For a long time it seemed probable that (5) is also necessary for theregularity with respect to (4), and indeed, for p � n � 1, Lindqvist andMartio [12] proved this for the operator (4). Finally, Kilpel�ainen and Mal�ygave a proof valid for arbitrary values of p > 1 [13]. A comprehensive expo-sition of the area surrounding these results can be found in the recent bookby Mal�y and Ziemer [14].So far I spoke only about the regularity of a boundary point for sec-ond order elliptic equations. However, the topic could be extended to in-clude other equations, systems, boundary conditions and function spaces.In principle, the Wiener criterion suggests the possibility of the completecharacterization of properties of domains, equivalent to various solvabilityand spectral properties of boundary value problems.



122 Vladimir Maz'ya2 Regular points for arbitrary even order ellipticequationsLet P2m(Dx) be a strongly elliptic scalar or square matrix homoge-neous di�erential operator of order 2m with constant coe�cients, and letDx = (@=i@x1; : : : ; @=i@xn).Consider the Dirichlet problem(P2m(Dx)u = f; f 2 C10 (
);u 2 �Hm(
); (6)where
 is a bounded domain in Rn and �Hm(
) is the completion of C10 (
)in the norm of the Sobolev space Hm(
).De�nition 1. We call a boundary pointO regular with respect to P2m(Dx)if, for any f 2 C10 (
), u(x)! 0 as x! O:For n = 2; 3; : : : ; 2m � 1 the regularity is a consequence of the Sobolevimbedding theorem. Therefore, we assume n � 2m. One can show that inthe case of the Laplacian this de�nition of the regularity corresponds to thatgiven in the Introduction.A general problem is to �nd more or less explicit conditions for regu-larity. Contrary to the case of the scalar second order equation with realcoe�cients, this problem is in a non-satisfactory state. Before mentioninga few known facts I introduce the m-harmonic capacity capm(K) of a com-pact set K � Rn ; n > 2m, de�ned asinf�ZRn Xj�j=m jD�u(x)j2 dx : u 2 C10 (Rn ); u = 1 in a neighbourhood of K�:(This de�nition needs to be changed in the case n = 2m.) The extremalfunction Um of this variational problem will be called the m-harmonic po-tential.For m = 1 this capacity is proportional to Wiener's capacity. It isa deeper fact that for m > 1 the capacity capm(K) is equivalent to thepotential theoretic Riesz capacity of order 2m. In other words, replacing



On Wiener's type regularity of a boundary point 123the condition u = 1 near K in the de�nition of capm(K) by u � 1 on K wearrive at an equivalent set function (see [15], Theorem 9.3.2/1).In 1977 I proved that for n = 4; 5; 6; 7 the Wiener type conditionZ0 cap2(B� n
)cap2(B�) d�� =1 (7)garantees the regularity of O with respect to the biharmonic operator �2[16], [17].The di�erence between the conditions (1) and (7) is that the harmoniccapacity cap is replaced by the biharmonic capacity cap2.The restriction to dimensions n < 8 is dictated by the method of proofbased upon the property of weighted positivity of the biharmonic operator:ZRn u(x)�2u(x) dxjxjn�4 � 0: (8)Unfortunately, this property fails for n � 8.As a byproduct, in the same paper I proved that the Green function ofthe Dirichlet problem for �2 satis�esjG2(x; y)j � c(n)jx� yjn�4 ; n = 5; 6; 7; (9)where x; y are arbitrary points of 
 and c(n) is a constant independentof 
.Extensions of the results obtained in [17] to the polyharmonic operator�m, m > 2, were stated (without proofs) in my and Donchev's article [18],where the dimensions n = 2m; 2m + 1; 2m + 2 were considered. In whatfollows I prove all theorems formulated in [18] adding some new results. Inparticular, I show for the same dimensions as in [17], [18] that the regular-ity with respect to �m is a local property, i.e. it does not depend on thegeometry of 
 at any positive distance from the point O.Now I formulate some open problems connected with the above men-tioned results [19].Problem 1. Let n � 8 if m = 2 and n � 2m + 3 if m > 2. Prove ordisprove that the point O is regular with respect to �m providedZ0 capm(B� n
)capm(B�) d�� =1: (10)



124 Vladimir Maz'yaProblem 2. Let n � 8 if m = 2 and n � 2m+ 3 if m > 2. Prove that theGreen function Gm of the Dirichlet problem for �m in an arbitrary domain
 � Rn satis�es jGm(x; y)j � c(m;n)jx� yjn�2m ; (11)where c(m;n) is independent of 
.Clearly, (11) leads to the following estimate of the maximum modulusof the solution u 2 �Hm(
)jjujjL1(
) � c(m;n;mesn
)jjf jjLp(
);where p > n=2m. However, the validity of this estimate for the same n andm as in Problem 2 is also an open question. Moreover, it has not been provedthat u 2 L1(
) for any f 2 C10 (
) without any assumptions about @
.It is unknown whether (10) is also a necessary condition which can bestated asProblem 3. Prove or disprove the following assertion: Let n > 2m. If O isregular with respect to �m, then (10) is valid.Perhaps, in order to prove the necessity of (10) it would be helpful toverify or disprove the following estimate for the m-harmonic potential of acompact set K � B1:jUm(x)j � c(m;n)capm(K)jxjn�2m for jxj > 2; (12)where c(m;n) is independent of K and n > 2m.It may happen that the condition (10) is su�cient (and even necessaryand su�cient) for the regularity with respect to an arbitrary strongly ellipticscalar operator P2m(Dx) with real coe�cients, provided this operator hasa positive fundamental solution in Rn , n > 2m. The importance of the lastrestriction will be commented on later in Sec. 4.3 The H�older regularity and the k-regularityWe say that O is H�older regular with respect to P2m(Dx) if the solution of(6) with an arbitrary f 2 C10 (
) satis�esju(x)j � cjxj� (13)with some positive �.



On Wiener's type regularity of a boundary point 125While discussing the H�older regularity I shall restrict myself to the op-erator �m, 2m < n.If m = 2; n = 5; 6; 7 or m > 2, n = 2m+ 1; 2m+ 2, one can prove thatthe solution of (6) satis�es the following estimate for small � and r 2 (0; �)supBr\
 juj � c supB�\
 juj exp��C �Zr capm(B� n
)capm(B�) d�� �; (14)where c and C do not depend on r and �. For the Laplacian and for theoperator (3) with bounded measurable real coe�cients this estimate wasproved in [20], [21]. By (14) the H�older condition (13) follows from theinequality limr!0 inf 1j log rj Z �r capm(B� n
)capm(B�) d�� > 0: (15)Although this condition for the H�older regularity with respect to �m isprecise in a sense, a simple counterexample shows that it is not necessaryand that it is impossible to give an equivalent description of H�older reg-ularity in terms of the Wiener integral. The su�cient condition (15) wasimproved in [22] for the case m = 1 (see also [23], where a similar result wasobtained for second order elliptic di�erential operators in divergence formwith measurable bounded coe�cients).Problem 4. Find a necessary and su�cient condition for the H�older regu-larity of a boundary point with respect to the Laplace operator.Without being precise, one can de�ne the k-regularity of the point Owith respect to P2m(Dx), 0 < k � m, as follows. We say that O is k-regularif the k-th gradient of the solution to (6) with an arbitrary f 2 C10 (
)vanishes at O in some sense.The question of k-regularity was treated by Maz'ya and Tashchiyan [24],where a capacitary su�cient condition for the 1-regularity with respect to�2 in a 3-dimensional domain was found. I prefer not to discuss this condi-tion in its general form and restrict myself to an example.Let a cusp be given in spherical coordinates (r; �; '), 0 � ' < 2�,0 � � � �, by the inequalities 0 � � � h(r), where h is a continuousincreasing function on [0,1] such that h(0) = 0 and h(2r) � const h(r).



126 Vladimir Maz'ya
���������	We consider the Dirichlet problem for the operator �2 in the exteriorof this cusp. In this special case the su�cient condition for the 1-regularityfound in [24] is equivalent toZ0 h(�)2 d�� =1: (16)Problem 5. Prove or disprove that (16) is necessary for the 1-regularity ofthe above cuspidal point.4 Regularity of the vertex of a coneFor the time being there are no results on the regularity of a boundarypoint O with respect to the general operator P2m(Dx) similar to those inSec. 1 for �m. I have in mind su�cient conditions obtained without a prioriassumptions about the structure of @
 near O. It was recently discoveredthat the situation is indeed more complicated when we turn to the general



On Wiener's type regularity of a boundary point 127operator. We shall see that even such a simple singularity of @
 as thevertex of a cone gives rise to unexpected phenomena.Speaking about a cone I shall always assume that its complement hasa non-empty interior. Then, as I mentioned in the Introduction, the vertexis regular if m = 1, P2m(Dx) is scalar and has real coe�cients. In [25] and[26] the regularity of the vertex of an arbitrary cone was proved for �2 andfor the Lam�e operator of linear isotropic elasticity (as well as for the Stokessystem although it does not satisfy the above condition on P2m(Dx)).A starting point for the derivation of these and similar results as wellas for the construction of counterexamples is the well-known asymptoticformula for the solution of the problem (6) near the origin:u(x) � constjxj� NXk=0 � log jxj�k'k � xjxj� : (17)Here � is an eigenvalue of the Dirichlet problem for an elliptic polynomialoperator pencil on the domain which is cut out by the cone on the unitsphere. The functions 'k on this spherical domain form a Jordan chain ofthe pencil corresponding to �.By (17), information about � and f'kg leads to results on the continuityand di�erentiability properties of u. In particular, if there exist eigenvaluesof the above mentioned operator pencil in the stripf� 2 C : 0 > Re � > m� n=2g (18)then there are solutions of (6) which are unbounded in an arbitrary neigh-bourhood of O and hence O is irregular.4.1 Second order operators with complex coe�cientsIt turned out [27], Ch. 10, that the strip (18) may contain eigenvalues ofthe operator pencil corresponding to strongly elliptic operatorsP2(Dx) = nXj;k=1 ajk@2=@xj@xk (19)provided n > 4 and some coe�cients ajk are non-real. This result was ob-tained by application of a singular perturbation technique developed in [26].



128 Vladimir Maz'yaConsider the equation (or the system)P2m(Dx)u = 0 (20)in the complement of a thin coneQ" = �x = (y; xn) 2 Rn : xn > 0; x�1n y 2 !"g;where " is a small positive parameter and !" = �y 2 Rn�1 : "�1y 2 !	with ! being a bounded domain in Rn�1 . We look for a solution of (20)u("; x) = jxj�(")'�"; xjxj� (21)satisfying the zero Dirichlet conditions on @Q" n fOg. In [27] an asymptoticformula is given for small eigenvalues �(") of the above mentioned operatorpencil on the spherical domain.
��������For the simplest case of the scalar equation (19) this formula has theexplicit form�(") � "n�3�(n� 2)jSn�1j��1 cap�!;P2(Dy; 0)�� � det(ajk)n�1k=1�(2�n)=2�det(ajk)nj;k=1�(n�3)=2; (22)



On Wiener's type regularity of a boundary point 129where jSn�1j is the area of the (n � 1)-dimensional unit sphere andcap(!;P2(Dy; 0)) is a complex valued function of the domain ! which isa generalization of the harmonic capacity. This set function is de�ned bycap�!;P2(Dy; 0)� = ZRnn! n�1Xj;k=1 ajk(@w=@yj)(@w=@yk) dy;where w is the solution of the Dirichlet problemP2(Dy; 0)w(y) = 0; y 2 Rn�1 n !; w(y) = 1; y 2 @!;vanishing at in�nity.For n > 4 we can choose the coe�cients ajk in such a manner that theinequalities 0 > Re� > 1� n=2 are ful�lled, which implies the irregularityof O.This construction fails when n = 3 or n = 4 which gives rise toProblem 6. Prove or disprove that for n = 3 (n = 4) a vertex of a coneis regular with respect to an arbitrary scalar elliptic operator P2(Dx) withcomplex coe�cients.Using unbounded solutions of the form (21) to the Dirichlet problem forthe equation P2(Dx)u = 0, one can deduce, [27], Ch. 10, that H1-solutionsof the uniformly strongly elliptic equationnXj;k=1 �ajk(x)uxj�xk = 0 (23)unbounded near an interior point of the domain may exist, provided n > 4and some of the coe�cients are non-real. In other words, for the equa-tion (23) with complex coe�cients the De Giorgi-Nash theorem on the localcontinuity of solutions is not valid if n > 4.Problem 7. Prove or disprove that for n = 3 (n = 4) solutions of theuniformly strongly elliptic equation (23) with measurable bounded complexcoe�cients are H�older-continuous in 
.For n = 2 the H�older continuity of solutions to (23) with complex coef-�cients follows from the well-known theorem of Morrey.



130 Vladimir Maz'ya4.2 Higher order operators with real coe�cientsI turn to the regularity of a conic point with respect to a higher order scalarelliptic operator P2m(Dx) with real coe�cients. For the biharmonic operatorthe regularity was proved in [25] without restrictions to the cone. However,for other, even very simple, fourth order equations, the situation may bedi�erent.Theorem (Maz'ya, Nazarov [28], see also [27], Ch. 10). Let n � 8, a > 0,and (n � 3) arctanpa 2 (2�; 4�). Then there exist an open cone C � Rnand a function f 2 C10 (C n fOg) such that a solution u 2 H2(C; loc) of theDirichlet problem�2u(x) + a(@=@xn)4u(x) = f; x 2 C;u(x) = 0; ru(x) = 0; x 2 @C;is unbounded near the vertex of C; the condition on the coe�cient a isequivalent to a > 5 + 2p5 for n = 8; a > 3 for n = 9:The proof is based upon the following asymptotic formula for �(") in(21): �(") � "n�5kF (0; : : : ; 0; 1);where F (x) is a fundamental solution of the operator42+a(@=@xn)4 in Rnand k is a positive constant proportional to the biharmonic capacity of !.It can be proved that this fundamental solution is negative at the point(0; : : : ; 0; 1), which implies the theorem.This argument shows that for higher order equations in the casen > 2m+ 1 one cannot expect a theory of the regularity of a boundarypoint similar to that for second order equations without the complementaryassumption of positivity of the fundamental solution.Problem 8. Let n > 2m+ 1 and let P2m(Dx) be a scalar elliptic operatorwith real coe�cients whose fundamental solution in Rn is positive. Proveor disprove that the vertex of an arbitrary cone is regular with respect toP2m(Dx).In the case n = 2m + 1 Kozlov and Maz'ya [29] veri�ed the regularityof the vertex of a cone which can be explicitly represented in a Cartesiancoordinate system. In this paper the operator P2m(Dx) has real coe�cients.



On Wiener's type regularity of a boundary point 131It is unknown whether the restriction to the cone is important. This leadsto the followingProblem 9. Let n = 2m+ 1 and let P2m(Dx) be a scalar elliptic operatorwith real coe�cients. Prove or disprove that the vertex of an arbitrary coneis regular with respect to P2m(Dx).5 Weighted positivity of (��)mHenceforth, 
 is an open subset of Rn with boundary @
 and O is a pointof the closure 
.Let B�(p) be the ball fx 2 Rn : jx� pj < �g, where p 2 Rn and let B� =B�(O). We use the notation @� = @j�j=@�1 : : : @x�nn and by r` we meanthe gradient of order `, i.e. r` = f@�g with j�j = `. In the sequel c is apositive constant, which depends only on m and n, and !n�1 is the (n� 1)-dimensonal measure of @B1.We shall deal with solutions of the Dirichlet problem(��)mu = f; u 2 �Hm(
): (24)By � we denote the fundamental solution of the operator (��)m,� (x) = 8<:jxj2m�n for 2m < n; log Djxj for 2m = n;where D is a positive constant and�1 = 2m�1(m� 1)!(n� 2)(n� 4) : : : (n� 2m)!n�1for n > 2m, and �1 = �2m�1(m� 1)!�2 !n�1for n = 2m.Proposition 1. Let n � 2m and letZ
 u(x)(��)mu(x)� (x� p) dx � 0 (25)



132 Vladimir Maz'yafor all u 2 C10 (
) and for at least one point p 2 
. Thenn = 2m; 2m+ 1; 2m+ 2 for m > 2and n = 4; 5; 6; 7 for m = 2:Proof. Assume that n � 2m+3 for m > 2 and n � 8 for m = 2. Denote by(r; !), r > 0, ! 2 @B1(p), the spherical coordinates with center p, and byG the image of 
 under the mapping x 7! (t; !), t = � log r. Sincer2�u = r2�n (r @r) �rn�2 (r @r)u�+ �!u;where �! is the Beltrami operator on @B1(p), then� = e2t �@2t � (n� 2)@t + �!� = e2t(�@t � n� 22 �2 �A) ;where A = ��! + (n� 2)24 : (26)Hence r2m�m = m�1Yj=0 (�@t � n� 22 + 2j�2 �A) : (27)Let u be a function in C10 (
), which depends only on jx � pj. We setw(t) = u(x). Clearly,Z
(��)mu(x)u(x)� (x � p) dx = ZR1 w(t)P(d=dt)w(t) dt; (28)whereP(�) = (�1)m!n�1 m�1Yj=0 (� + 2j)(�� n+ 2 + 2j)= (�1)m!n�1�(�� n+ 2)m�1Yj=1 (�+ 2j)(�� n� 2m+ 2+ 2j):



On Wiener's type regularity of a boundary point 133Let P(�) = (�1)m!n�1�2m + 2m�1Xk=1 ak�k:We havea2 = (��1P(�))0���=0 = 12� n + m�1Xj=1 � 12j � 1n� 2� 2m+ 2j� :Hence and by n � 2m+ 3,a2 = 12 � 1n� 2 � 1n� 2m + m�1Xj=2 n� 2� 2m2j(n� 2� 2m+ 2j)� 12 � 1n� 2 � 1n� 2m > 0:We choose a real-valued function � 2 C10 (1; 2) normalized byZR1 j�0(�)j2 d� = 1and we set u(x) = �("t), where " is so small that suppu � 
. The quadraticform on the right hand side of (28) equalsZR1 �"2m!n�1j�(m)("t)j2 + m�1Xk=1 a2k(�1)k"2kj�(k)("t)j2� dt= �a2"+O("3) < 0;which contradicts the assumption (25).Now we prove the converse statement.Proposition 2. Let �p(x) = � (x� p), where p 2 
. Ifn = 2m; 2m+ 1; 2m+ 2 for m > 2;n = 4; 5; 6; 7 for m = 2;n = 2; 3; 4; : : : for m = 1;



134 Vladimir Maz'yathen for all u 2 C10 (
)Z
(��)mu(x) � u(x)� (x � p) dx� 2�1u2(p) + c mXk=1 Z
 jrku(x)j2jx� pj2(m�k) � (x� p) dx: (29)(In the case n = 2m the constant D in the de�nition of � is greater thanjx� pj for all x 2 suppu.)Proof. We preserve the notation introduced in the proof of Proposition 1.We note �rst that (29) becomes identity when m = 1. The subsequent proofwill be divided into four parts.(i) The case n = 2m+ 2. By (27),r�2m�m = m�1Yj=0 �@t �m+ 2j �A1=2�m�1Yj=0 �@t �m+ 2j +A1=2� ;where A = ��! +m2 and A1=2 is de�ned by using spherical harmonics. Bysetting k = m� j in the second product, we rewrite the right-hand side asm�1Yj=0 �@t �m+ 2j �A1=2� mYk=1�@t +m� 2k +A1=2� :This can be represented in the form�@t �m�A1=2��@t �m+A1=2�m�1Yj=1 �@2t � B2j � ;where Bj = A1=2 +m� 2j. Therefore2m�m = �@2t + �! � 2m @@t�m�1Yj=1 �@2t � B2j �= �@2t + �!�m�1Yj=1 �@2t � B2j �+ (�1)m2m @t X0�j�m�1k1<���<kj ��@2t �m�j�1 B2k1 : : :B2kj :



On Wiener's type regularity of a boundary point 135We extend u by zero outside 
 and introduce the function w de�ned byw(t; !) = u(x). We write the left-hand side of (29) in the form (I1 + I2),where  is the constant in the de�nition of � ,(2m�1I1) = ZG @t X0�j�m�1k1<���<kj ��@2t �m�j�1 B2k1 : : :B2kjw � w dtd!;and I2 = (�1)m ZG �@2t + �!�m�1Yj=1 �@2t � B2j �w � w dtd!:Since the operators Bj are symmetric, it follows thatm�1I1 = X0�j�m�1k1<���<kj ZR1 @t Z@B1 �@m�j�1t Bk1 : : :Bkjw�2 d!dt= X0�j�m�1k1<���<kj Z@B1 ����@m�j�1t Bk1 : : :Bkjw� (+1; !)���2 d!:Since u 2 C1(
), we have w(t; !) = u(p) + O(e�t) as t ! +1, and thiscan be di�erentiated. Therefore, all terms with j < m� 1 are equal to zeroand we �nd I1 = m Z@B1 j(B1 : : :Bm�1w) (+1; !)j2 d!= mu2(p) Z@B1 jB1 : : :Bm�11j2 d!:By Bj = (��! +m2)1=2 +m� 2j, we haveI1 = 4m�1m[(m� 1)!]2!2m+1u2(p):Since in the case n = 2m+ 2�1 = 22m�1m[(m� 1)!]2!2m+1;we conclude that I1 = (2)�1u2(p): (30)



136 Vladimir Maz'yaWe now wish to obtain the lower bound for I2. Let ew denote the Fouriertransform of w with respect to t. ThenI2 = Z@B1 ZR1(�2 � �!)m�1Yj=1 (�2 + B2j ) ew(�; !) ew(�; !) d�d!:Clearly, Bj � (m2 � �!)1=2 �m+ 2 � 2m�1(m2 � �!)1=2;and �2 + B2j � 4m�2(�2 + 1� �!);the operators being compared with respect to their quadratic forms. Thus�m2 �2m�2 I2 � Z@B1�R1(�2 � �!)(�2 + 1� �!)m�1 ew(�; !) � ew(�; !) d�d!� c�k@twk2Hm�1(G) + kr!wk2Hm�1(G)� ;where Hm�1 is the Sobolev space. This is equivalent to the inequalityI2 � c Z
 mXk=1 jrku(x)j2jx� pjn�2k dx;which along with (30) completes the proof for n = 2m+ 2.(ii) The case n = 2m+1. We shall treat this case by descent from n = 2m+2to n = 2m + 1. Let z = (x; s), where x 2 
; s 2 R1 , and let q = (p; 0),where p 2 
; 0 2 R1 . We introduce a cut-o� function � 2 C10 (�2; 2) whichsatis�es �(s) = 1 for jsj � 1 and 0 � � � 1 on R1 . LetU"(z) = u(x)�("s)and let � (n) denote the fundamental solution of (��)m in Rn .By integrating (��z)m� (n+1)(z; q) = �(z � q);with respect to s 2 R1 we have� (n)(x; y) = ZR1 � (k+1)(z; q) ds: (31)



On Wiener's type regularity of a boundary point 137From part (i) of the present proof we obtainZ
�R1(��z)mU"(z)�U"(z)� (k+1)(z � q) dz� 12U2" (q) + c Z
�R1 mXk=1 jrkU"(z)j2jz � qj2(m+1�k) dz:By letting "! 0, we �ndZ
�R1(��x)mu(x)�u(x)� (n+1)(z � q) dsdx� 12u2(p) + c Z
�R1 mXk=1 jrku(x)j2jz � qj2(m+1�k) dsdx:The result follows from (31).(iii) The case m = 2; n = 7. By (27),30!6 Z
�2u(x) � u(x)� (x � p) dx= ZG(wtt � 5wt + �!w)(wtt + wt � 6w + �!w) dtd!:Since w(t; !) = u(p) +O(e�t) as t! +1, the last integral equalsZG �w2tt � 5w2t � 6wttw + 2wtt�!w + (�!w)2 � 6w�!w� dtd! + 15!6u2(p):After integrating by parts we rewrite this in the formZG �w2tt + (�!w)2 + 2(r!wt)2 + 6(r!w)2 + w2t� dtd! + 15!6u2(p):Using the variables (r; !), we obtain that the left-hand side exceedsc Z
 � (�u(x))2jx� pj3 + jru(x)j2jx� pj � dx+ 15!6u2(p):Since jr2uj2 � (�u)2 = �((ru)2)� @2@xi@xj � @u@xi @u@xj � ;



138 Vladimir Maz'yait follows thatZ
 (r2u(x))2jx� pj3 dx � Z
 (�u(x))2jx� pj dx+ c Z
 (ru(x))2jx� pj dx;which completes the proof.(iv) The case n = 2m. By (27),r2m�m = m�1Yj=0 n(@t �m+ 1 + 2j)2 � (m� 1)2 + �!o= m�1Yj=0 �@t �m+ 1 + 2j � E1=2�m�1Yj=0 �@t �m+ 1 + 2j + E1=2� ;where E = ��! + (m � 1)2. We introduce k = m � 1 � j in the secondproduct and obtain r2m�m = m�1Yj=0 �@2t �F2j � ;where Fj = m� 1� 2j + E1=2. HenceZ
(��)mu(x) � u(x)� (x� p) dx=  ZG m�1Yj=0 ��@2t + F2j �w � (`+ t)w dtd! (32)where ` = logD. Since w(t; !) = u(p) +O(e�t) andm�1Yj=0 ��@2t + F2j � = mXj=0 ��@2t �m�j Xk1<���<kj F2k1 : : :F2kj ;



On Wiener's type regularity of a boundary point 139the right-hand side in (32) can be rewritten as ZG X0�j�m�1k1<���<kj @m�jt Fk1 : : :Fkjw@m�jt �(`+ t)Fk1 : : :Fkjw� dtd!=  ZG X0�j�m�1k1<���<kj�@m�jt Fk1 : : :Fkjw�2(`+ t) dtd!+ 2 ZG X0�j�m�1k1<���<kj (m� j)@t�@m�1�jt Fk1 : : :Fkjw�2 dtd!:The second integral in the right-hand side equalslimt!+1 Z@B1(p) X0�j�m�1k1<���<kj (m� j) ���@m�1�jt Fk1 : : :Fkjw���2 d!= limt!+1 Z@B1(p) Xk1<���<km�1 �Fk1 : : :Fkm�1e�2 d!and since (Fm�1w) (t; !) = O(e�t) the last expression is equal tolimt!+1 Z@B1(p) (F0 : : :Fm�2w)2 d! = �2m�1(m� 1)!�2 !n�1u2(p):HenceZ
(��)mu(x) � u(x)� (x � p) dx= 12 u2(p) +  ZG(`+ t) X0�j�m�1k1<���<kj�@m�1�jt Fk1 : : :Fkjw�2 dtd!:Since Fm�1 � c(��)1=2 and Fk � c(�� + 1)1=2 for k < m � 1, the lastintegral majorizesc ZG(`+ t) X1��+��m�1 �@�t (��)�=2w�2 dtd!� c Z
 log Djx� pj mXk=1 jrku(x)j2jx� pj2(m�k) dx;which completes the proof.



140 Vladimir Maz'yaWe introduce the bilinear formQ(V;W ) = Z
 Xj�j=m m!�! @�V @�W dxfor V and W in �Hm(
). Clearly, for u 2 C10 (
), we haveQ(u; u�p) = Z
(��)mu(x) � u(x)� (x� p) dx;where �p(x) = � (x�p) and p 2 
. The quadratic form Q(u; u�p) is positiveby Proposition 2.Let u be an arbitrary function in the space �Hm(
)\C1(
). We approx-imate u in the norm of �Hm(
) by a sequence fu�g of functions in C10 (
) insuch a way that u�(x) = u(x) in a neighbourhood of p. Then u� ! u in thenorm v 7! (Q(v; v�p))1=2 and Proposition 2 implies the following assertion.Corollary 1. Let n and m be the same as in Proposition 2. Then for allu 2 �Hm(
) \ C1(
) and p 2 
Q(u; u�p) � 2�1u2(p) + c mXk=1 Z
 jrku(x)j2jx� pj2(m�k) � (x� p) dx: (33)6 Regularity of a boundary point as a local propertyProposition 3. In the case m = 1 the regularity in the sense of De�ni-tion 1 is equivalent to Wiener's regularity.Proof. Let O be regular in the Wiener sense and let u be the solution of (4)with m = 1. We introduce the Newton potential uf with the density f andwe note that uf is smooth in a neighbourhood of @
. Since v = u� uf isthe H1(
)-solution of the Dirichlet problem��v = 0 on 
;v = �uf on @
;it follows from Wiener's regularity that u is continuous at O (see [6], Sec. 3).Hence O is regular in the sense of De�nition 1.In order to prove the converse assertion consider the Dirichlet problem��w = 0 on 
; w 2 H1(
);w(x) = (2n)�1jxj2 on @
:



On Wiener's type regularity of a boundary point 141We show that w is continuous at O provided O is regular in the sense ofDe�nition 1. In fact, since the functionz(x) = w(x) � (2n)�1jxj2satis�es ��z = 1 on 
; z 2 �H1(
);we have z(x) = Z
 G(x; s) ds;where G is Green's function of the Dirichlet problem. Therefore,z(x) = Z
 G(x; s)h(s) ds + Z
 G(x; s)(1 � h(s)) ds;where h 2 C10 (
); 0 � h � 1 and h = 1 on a domain !, ! � 
.The �rst integral tends to zero as x ! 0 by the regularity assumption.Hencelim supx!O jz(x)j � c Z
n! dsjx� sjn�2 = O �(mesn(
 n !))2=n� :Since mesn(
 n !) can be made arbitrarily small, z(x) ! 0 as x ! O. Asa result we obtain that z satis�es the de�nition of barrier (see [30], Ch. 4,Sec. 2) and by Theorem 4.8 in [30] the regularity of O in the Wiener sensefollows.Lemma 1. Let n and m be the same as in Proposition 2. If O is regular inthe sense of De�nition 1, then the solution u 2 �Hm(
) of(��)mu = Xf�: j�j�mg @�f� on 
;with f� 2 L2(
) \ C1(
) and f� = 0 in a neighbourhood of O, satis�esu(x)! 0 as x! O: (34)Proof. Let � 2 C10 (
). We represent u as the sum v+w, where w 2 �Hm(
)and (��)mv = Xf�: j�j�mg@�(�f�):



142 Vladimir Maz'yaBy the regularity of O the term v satis�es (34). We shall verify that w canbe made arbitrarily small by making the Lebesgue measure of the supportof 1 � � su�ciently small. Let f� = 0 on B� and let p 2 
; jpj < �=2. Byde�nition of w and by Corollary 1,Xf�: j�j�mgZ
(1� �)f�(�@)�(w�p) dx� 2�1w2(p) + c mXk=1 Z
 jrkw(x)j2jx� pj2(m�k) � (x� p) dx:The result follows.Theorem 1. Let O be a regular point for the operator (��)m on 
 andlet 
0 be a domain such that
0 \ B2� = 
 \ B2�for some � > 0. Then O is regular for the operator (��)m on 
0.Proof. Let u 2 �Hm(
0) satisfy (24) on 
0 with f 2 C10 (
0) and introduce��(x) = �(x=�), � 2 C10 (B2), � = 1 on B3=2. Then ��u 2 �Hm(
) and(��)m(��u) = ��f + [(��)m; ��]u on 
:Since the commutator [(��)m; ��] is a di�erential operator of order 2m�1,with smooth coe�cients supported by B2� nB3�=2, it follows that(��)m(��u) = Xf�: j�j�mg@�f� on 
;where f� 2 L2(
)\C1(
) and f� = 0 in a neighbourhood of O. Therefore,(��u)(x) = o(1) as x tends to O by Lemma 1 and by the regularity of Owith respect to (��)m on 
.7 A local estimateIn the next lemma and henceforth we use the notationM�(u) = ��n Z
\S� u2(x) dx;where, as before, S� = fx : � < jxj < 2�g.



On Wiener's type regularity of a boundary point 143Lemma 2. Let m and n be the same as in Proposition 2, u 2 �Hm(
) and�mu = 0 on 
 \ B2�: (35)Then, for an arbitrary point p 2 B�,Q(u��; u���p) � cM�(u);where ��(x) = �(x=�), � 2 C10 (B2), � = 1 on B3=2. (In the case n = 2m,here and in what follows we set D = 4� in the de�nition of the fundamentalsolution � .)Proof. By de�nition of the quadratic form Q,Q (u��; u���p)�Q �u; u�2��p�= Xj�j=m m!�! Z
 �[@�; ��]u � @�(u���p)� @�u � [@�; ��](u���p)� dx; (36)where [A;B] = AB�BA. Since u is m-harmonic on 
 \B2� it follows thatQ �u; u�2��p� = 0:The right-hand side in (36) is majorized byc mXj=0 �2j�n Z
 ��jrjuj2 dx;where ��(x) = �(x=�), � 2 C10 (S) and �� = �. By the well-known localenergy estimate Z
 ��jrjuj2 dx � c��2j Z
\S� u2 dxthe result follows.Combining Corollary 1 and Lemma 2 we arrive at the following localestimate.Corollary 2. Let m and n be the same as in Proposition 2 and let us sup-pose that u 2 �Hm(
) satisfy (35). Then, for an arbitrary point p 2 
 \ B�,u2(p) + Z
\B� mXk=1 jrku(x)j2jx� pj2(m�k) � (x� p) dx � cM�(u) (37)



144 Vladimir Maz'ya8 Local estimates stated in terms of the m-harmoniccapacityWe say that a compact subset of the ball B� = fx : jxj � �g is m-small,2m � n, if capm (e;B2�) � 16�n�n�2m:In the case 2m > n only the empty subset of B� will be called m-small.Let u� denote the mean value of u on the ball B�, i.e.u� = (mesnB�)�1 ZB� u(x) dx:We introduce the seminormjjjujjjm;B� = � mXj=1 �2(j�m) krjuk2L2(B�)�1=2:Proposition 4 ([15], 10.1.2). Let e be a closed subset of the ball B�.1) For all u 2 C1 �B�� with dist(suppu; e) > 0 the inequalitykukL2(B�) � Cjjjujjjm;B� (38)is valid, where C�2 � c��ncapm (e;B�)and c depends only on m and n.2) If e is m-small and if the inequality (38) holds for all u 2 C1 �B�� withdist (suppu; e) > 0 then the best constant C in (1) satis�esC�2 � c��ncap (e;B�)The second assertion of this Proposition will not be used in the se-quel and therefore will not be proved here. Its proof can be found in [15],pp. 405{406. In order to check the �rst assertion we need the following aux-iliary result.Lemma 3. Let e be a compact set in B1. There exists a constant c depend-ing on n and m and such thatc�1capm (e;B2)� inf � k1� uk2Hm(B1) : u 2 C1 �B1� ; dist (suppu; e) > 0	� c capm (e;B2) : (39)



On Wiener's type regularity of a boundary point 145Proof. To obtain the left estimate we need the following well-known asser-tion.There exists a linear continuous mappingA:Ck�1;1 �B1�! Ck�1;1 �B2�,k = 1; 2; : : : ; such that(i) Av = v on B1;(ii) if dist(supp v; e) > 0, then dist(suppAv; e) > 0;(iii) the inequality kri(Av)kL2(B2) � c krivkL2(B1) (40)is valid with i = 0; 1; : : : ; l and c independent of v.Let v = A(1� u) and let � denote a function in C10 (B2) which is equalto 1 in a neighbourhood of the ball B1. Thencap (e;B2) � c krl(�v)k2L2(B2) � c kvk2Hm(B2) : (41)Now the left estimate in (39) follows from (40) and (41).Next we derive the right estimate in (39). Let w 2 C10 (B2), w = 1 ona neighbourhood of e.Then kwkHm(B1) � c krmwkL2(B2) :Minimizing the last norm we obtaininfu k1� uk2Hm(B1) � inf kwk2Hm(B1) � c cap (e;B2) :The proof is complete.Proof of the �rst assertion of Proposition 4. It su�ces to consider only thecase d = 1 and then use a dilation.1) Let N = � 1mesnB1 ZB1 u2(x) dx�1=2:Since dist(suppu; e) > 0, it follows from Lemma 3 thatcapm(e;B2) � c 1�N�1u2Hm(B1) = cN�2jjjujjj2m;B1+c 1�N�1u2L2(B1)



146 Vladimir Maz'yai.e. N2capm (e;B2) � cjjjujjj2m;B1 + c kN � uk2L2(B1) : (42)Without loss of generality we assume that u1 � 0. ThenpmesnB1 jN � u1j = kukL2(B1) � ku1kL2(B1) � ku� u1kL2(B1) :Consequently,kN � ukL2(B1) � kN � u1k+ ku� u1kL2(B1) � 2 ku� u1kL2(B1) :Hence, by (42) and the Poincar�e inequalityku� u1kL2(B1) � c krukL2(B1)we obtain cap (e;B2) kuk2L2(B1) � cjjjujjj2m;(B1) ;which completes the proof.Lemma 4. Let m and n be as in Proposition 2 and let the functionu 2 �Hm(
) satisfy �mu = 0 on 
 \ B2�. Then for all points p 2 
 \ B�there holds the estimateu2(p) + Z
\B� mXk=1 jrku(x)j2jx� pj2(m�k) � (x� p) dx� cm(�) Z
\S� mXk=1 jrku(x)j2�n�2k dx; (43)where m(�) = (�2m�ncapm(S� n
) for n > 2m;capm(S� n
;B4�) for n = 2m:Proof. We combine Corollary 2 with the inequalityZ
\S� u2(x) dx � cm(�) Z
\S� mXk=1 jrku(x)j2�n�2k dxproved in Proposition 4.



On Wiener's type regularity of a boundary point 147We are in a position to obtain a growth estimate for the solution formu-lated in terms of a Wiener type m-capacitary integral. Before stating theresult we note that the function m(�) is measurable not only for n > 2mwhen it is monotonous but also for n = 2m. In fact, one can easily showthat the function (�=2;1) 3 r 7! capm(S� n
;B4r)is continuous. Hence, being monotonous in �, the function of two variables(�; r) 7! capm(S� n 
;B4r) satis�es the so-called Carath�eodory conditionswhich imply the measurability of m(�) in the case n = 2m (see [31],[32], p. 152).Theorem 2. Let m and n be as in Proposition 2 and let the function u 2�Hm(
) satisfy �mu = 0 on 
 \B2R. Then, for all � 2 (0; R),sup�ju(p)j2 : p 2 
 \ B�	+ Z
\B� mXk=1 jrku(x)j2jxjn�2k dx� cMR(u) exp��c Z R� m(�) d�� �: (44)Proof. It is su�cient to assume that 2� � R, since in the opposite case theresult follows from Corollary 2. Denote the �rst and the second terms onthe left by '� and  � respectively. From Lemma 3 it follows that for r � R'r +  r � cm(r) ( 2r �  r) � cm(r) ( 2r �  r + '2r � 'r) :This along with the obvious inequality m(r) � c implies'r +  r � ce�c0m(r) ('2r +  2r) :By setting r = 2�jR; j = 1; : : : we arrive at the estimate'2�`R +  2�`R � c exp��cX̀j=1 m(2�jR)�('R +  R):We choose ` so that ` < log2 R� � `+ 1



148 Vladimir Maz'yain order to obtain'� +  � � c exp��c0X̀j=1 m(2�jR)�('R +  R):Now we notice that by Corollary 2'R +  R � cMR:It remains to use the inequalityX̀j=1 m(2�jR) � c1 Z R� m(�) d�� � c2;which follows from the subadditivity of the Riesz capacity.We formulate a su�cient condition for the regularity of O, which directlyfollows from Theorem 2.Corollary 3 ([17], [18]). Let n = 2; 3; : : : for m = 1, n � 7 for m = 2, andn � 2m+ 2 for m > 2. If Z0 m(�) d�� =1or, which is the same, Xj�1 m(2�j) =1;the point O is regular with respect to (��)m.Remark. One can see that the assertions and proofs of Theorems 1 and 2can be extended to the following class of di�erential operators. LetL(x; @)u(x) = (�1)m Xj�j=j�j=m @�(a��(x)@�u);where 2m < n and a�� are complex-valued measurable bounded functions,and let �(x; p) be a complex-valued function de�ned for x and p in a neigh-bourhood of the point O2 @
 and subject to the inequalityjrk;x�(x; p)j � c jx� pj2m�n�k



On Wiener's type regularity of a boundary point 149for k = 0; 1; : : : ;m. The operator L satis�es the inequality< Z
 L(x; @)u(x) � u(x)�(x; p) dx � C�ju(p)j2+ Z
 mXj=1 jrju(x)j2jx� pjn�2j dx�; (45)where u is an arbitrary function in Cm0 (
), supported by a neighbourhoodof O, p is an arbitrary point of 
 situated in this neighbourhood and C isa positive constant independent of u and p. The left-hand side in (45) isunderstood as< Z
 Xj�j=j�j=m a��(x)@�u(x)@�(u(x)�(x; p)) dx: (46)If, in particular, the operator L has constant coe�cients and � is itsfundamental solution, then the positivity of (46) follows from the inequality< ZRn ZRn L(i�)L(i(� � �))f(�)f(�) d�d� > 0valid for all non-zero f 2 C10 (Rn ). The last inequality was studied recentlyby S. Eilertsen [33].9 A pointwise estimate for a function,m-harmonic in 
 nB�Theorem 3. Let m and n be the same as in Proposition 2 and let u 2 �H(
)satisfy �mu = 0 on 
 nB�:Then for an arbitrary p 2 
 nB�,ju(p)j � c (M�(u))1=2� �jpj�n�2m exp��c Z jpj� m(�) d�� �: (47)Proof. Let w denote the Kelvin transform of u, i.e. the functionw(y) = jyj2m�nu� yjyj2�



150 Vladimir Maz'yade�ned on the image I
 of 
 under the inversion x 7! y = xjxj�2. It is wellknown that�my �jyj2m�nu� yjyj2�� = jyj�n�2m(�mu)� yjyj2� :(A simple way to check this formula is to introduce the variables (t; !),t = log r�1, and to use (27).) Consequently,ZI
 w(y)�my w(y) dy = Z
 u(x)�mx u(x) dx (48)and therefore w 2 �Hm(I
) and u 2 �Hm(
) simultaneously.By Corollary 2,jw(q)j � c��n ZB2=�nB1=� w2(y) dy�1=2 exp��c Z 1=�1=jqj m(�) d�� �for all q 2 I
 \B1=�, which is equivalent to the inequalityjqj2m�n ����u� qjqj2����� � c��n ZB2=�nB1=� jyj2(2m�n)u2� yjyj2� dy�1=2� exp��c Z �jpj m(�) d�� �:By putting p = qjqj�2; x = yjyj�2 we complete the proof.By (48) and Theorem 9.3.2/1 in [15] mentioned in the beginning of Sec. 2,one can obtain that capm(IK;B4=�) is equivalent to �2(2m�n)capm(K;B4�)for K � S�. Hence the function�m(�) = �2m�ncapm(S� n I
;B4�)satis�es the equivalence relation�m(�) � �n�2mcapm(S1=� n
;B4=�);which, together with the easily checked property of the capacitycapm(S� n
;B4�) � capm(S� n
);



On Wiener's type regularity of a boundary point 151valid for n > 2m (see [15], Proposition 9.1.1/3), impliesZ 1=�1=jpj �m(�) d�� � Z jpj� m(�) d�� :Here jpj > � and c1, c2 are positive constants depending on n and m.Furthermore, by de�nition of w,M1=�(w) � �n�2mM�(u)and the result follows from (44) applied to w.By a standard argument Theorems 2 and 3 yield the following variantof the Phragm�en-Lindel�of principle.Corollary 4. Let m and n be the same as in Proposition 2 and let�u 2 �Hm(
) for all � 2 C1(Rn ), � = 0 near O. If�mu = 0 on 
 \ B1;then either u 2 �H(
) andlim sup�!0 supB�\
 ju(x)j exp�c Z 1� m(�)d�� � <1 (49)or lim inf�!0 �n�2mM�(u) exp��c Z 1� m(�) d�� � > 0: (50)10 Estimates for the Green functionLet Gm be the Green function of the Dirichlet problem for (��)m, i.e. thesolution of the equation(��x)mGm(x; y) = �(x � y); y 2 
;with zero Dirichlet data understood in the sense of the space �Hm.Theorem 4. Let n = 5; 6; 7 for m = 2 and n = 2m+1, 2m+2 for m > 2.There exists a constant c, which depends only on m, such that��Gm(x; y)� jx� yj2m�n�� � c d2m�ny if jx� yj � dy;jGm(x; y)j � c jx� yj2m�n if jx� yj > dy;where dy = dist(y; @
).



152 Vladimir Maz'yaProof. Let 
y = fx 2 
 : jx�yj < dyg and a
y = fx 2 
 : jx�yj < adyg.We introduce the cut-o� function � 2 C10 [0; 1) equal to 1 on the segment[0; 1=2]. Put H(x; y) = Gm(x; y)� �� jx� yjdy �� (x� y):Clearly, the function x 7! (��x)mH(x; y) is supported by 
y n 2�1
y andthe inequality j�mx H(x; y)j � c d�nyholds.By Corollary 2 applied to the function x 7! H(x; y), we haveH(p; y)2 � 2 Z
y (��x)mH(x; y) �H(x; y)� (x� p) dx:Therefore,supp2
yH(p; y)2 � 2 supx2
y jH(x; y)j supp22
y Z
y j�mx H(x; y)j� (x� p) dx; (51)and hence,supp22
y jH(p; y)j � cd�ny supp22
y Z
y � (x� p) dx � cd2m�ny : (52)Since �mp H(p; y) = 0 for p 62 
y, we obtain from (52) and Corollary 4,where O is replaced by p, that for p 62 2
y,jH(p; y)j � c� dyjp� yj�n�2m supx22
y jH(x; y)j � cjp� yj2m�n:The result follows.Theorem just proved along with Corollary 2 yieldsCorollary 5. Let m and n be the same as in Theorem 4. The Green func-tion Gm satis�esjGm(x; y)j � cjyjn�2m exp��c Z jyjjxj m(�) d�� �for 2jxj < jyj.



On Wiener's type regularity of a boundary point 153We conclude with the following analogue of Theorem 4 in the casen = 2m.Theorem 5. Let n = 2m and let 
 be a domain with diameter D. Let also� (x� y) =  log Djx� yj :Then jGm(x� y)� � (x� y)j � c1 log Ddy + c2 if jx� yj � dy;jGm(x; y)j � c3 log Ddy + c4 if jx� yj > dy:Proof. Proceeding in the same way as in the proof of Theorem 4 we arriveat (51). Therefore,supp22
y jH(p; y)j � cd�2my supp22
y Z
y � (x� p) dx � c1 log Ddy + c2:Hence and by Corollary 2 we obtain for p 62 
yjH(p; y)j � c supx22
y jH(x; y)j � c�c1 log Ddy + c2� :Since Gm(p; y) = H(p; y) for p 62 2
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